
International Graduate School on Control: Lesson 5

1. Sums of Squares Polynomials

(a) Every polynomial can be expressed in the Gram matrix form Z(x)TQZ(x) where Q is a symmetric matrix
and Z(x) is a vector of monomials. What monomials must be included in Z(x) to represent a generic
polynomial of degree 4 in 2 variables?

(b) Consider the following degree 4 polynomial in two variables:
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We would like to determine if p is a SOS, i.e. if p can be represented as Z(x)TQZ(x) for some Q ≥ 0.
Equate the coefficients of p and Z(x)TQZ(x) to find a collection of linear equality constraints on the
entries of Q. Use these equations to find matrices Q0 and Q1 such that all solutions to p = Z(x)TQZ(x)
can be expressed as Q0 + λQ1. [Hint: It is possible to use the properties of semidefinite matrices to argue
that certain monomials need not be included in Z(x).]

(c) Plot the minimum eigenvalue of Q0 + λQ1 versus λ. For what values of λ is Q ≥ 0?

(d) Pick a value of λ for which Q ≥ 0. Use the Cholesky decomposition of Q to construct polynomials

{f1, . . . , fN} such that p =
∑N

k=1 f
2
k . How can you choose λ to minimize the number of terms N in the

SOS decomposition?

2. Lyapunov Stability

Download both SOSTOOLs and Sedumi (or other SDP solver that is compliant with SOSTOOLs). Add both
toolboxes (and the necessary subfolders) to your Matlab Path. Run sosdemo1 and sosdemo2 to verify that
your installation is working properly.

Consider the following third-order nonlinear system:

ẋ = A1Z1(x) +A2Z2(x) +A3Z3(x)
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(a) What is the linearization of this system at x = 0? Verify that this linearization is stable.

(b) If there exists a V such that V (0) = 0, V ≥ x2
1 + x2

2 and V̇ ≤ −rV then x = 0 is a globally exponentially
stable and all trajectories converge to the origin like e−rt. This is a slight modification of the Lyapunov
Theorem presented in class and is similar to an LMI condition we derived earlier. Use SOSTOOLs to find
the largest value of r (to within an accuracy of 0.1) for which there exists a quadratic Lyapunov function
which satisfies these conditions. How does rmax compare with the natural frequency of the poles of the
linearized system?

(c) Simulate the nonlinear system from several initial conditions and plot them on a single figure. On the
same figure, plot several contours of the Lyapunov function computed by SOSTOOLs. Comment on the
graphical interpretation of V̇ = ∇V · ẋ < 0.

3. Input-Output Gain Analysis

Consider the following third-order nonlinear system:

ẋ = A1Z1(x) +A2Z2(x) +A3Z3(x) +Bu

y = Cx

where {Ak}3k=1 and {Zk(x)}3k=1 are as defined in the previous problem. The input and output matrices are:

B =

[
10 2
0 1

]
, C =

[
1 1
2 3

]



(a) What is the linearization, G(s), of this system at x = 0? Compute the H∞ norm of this linearization.

(b) Construct an input signal which approximately achieves ∥G∥∞. Specifically, construct uwc(t) for t ∈
[0, 100] such that the response to this input, ywc, satisfies

∥ywc∥2

∥uwc∥2
≈ ∥G∥∞. Simulate the linear system

G with the input uwc and zero initial conditions. Compute both ∥ywc∥2, ∥uwc∥2 and verify the ratio is
approximately ∥G∥∞.

(c) Simulate the nonlinear system response ynl due to the input uwc constructed in the previous part. Use
this response to compute a lower bound for the L2-L2 gain of the nonlinear system.

(d) Use SOSTOOLs to compute an upper bound on the L2-L2 input-output gain of the nonlinear system.
How does this upper bound compare to ∥G∥∞ and the lower bound computed in the previous part? How
would you reduce the gap between the upper and lower bounds?


