
International Graduate School on Control: Lesson 4

1. Hard Disk Drives: Uncertainty Modeling

A typical hard disk drive (HDD) works by spinning a magnetic disk while a magnetic head reads/writes data
from/to circular tracks on the disk. To keep up with the increasing performance requirements, most modern
HDDs utilize a dual-stage actuator composed of a voice coil motor (VCM) and a micro actuator (MA) to
control the position of the magnetic head (Figure 1). The VCM is the primary actuator that provides a full
range of motion for the magnetic head across all disk tracks. The MA provides a greater tracking accuracy
than the voice coil motor but has a limited range of motion.

Figure 1: Typical Internal structure of a HDD with a dual stage actuator.

In this problem you will investigate the uncertainty associated with the VCM dynamics. The file HDDdata.mat
posted with this homework contains the following data for the VCM:

� wexp: An Nw-by-1 vector of frequencies (rad/sec) for response data

� RespData: AnNw-by-Nexp matrix of experimental frequency response data. The ith column RespData(:,i)
provides the experimental frequency response data (at the frequencies in wexp) for the ith system.

� [A0,B0,C0,D0]: State space data for a nominal design fit.

(a) Let G0 denote the nominal design model and {Gi}50i=1 denote fifty experimental frequency responses. Cre-
ate a single Bode plot (magnitude and phase) with both the experimental responses and the nominal
model. Select colors and or line widths so that the nominal model can be distinquished from the experi-
mental responses. Note that the nominal model is accurate at low frequencies but becomes less accurate
at high frequencies. What frequency (roughly) does the model accuracy begin to degrade?

(b) Define the relative error between the nominal model and each frequency response:

Ei(ω) :=
|G0(jω)−Gi(jω)|

|G0(jω)|

Ei(ω) can be interpreted as a frequency dependent relative error. For example, if Ei(ω) = 0.05 then the
model error is 5% of the nominal gain. Compute the relative error Ei for each response. Plot all relative
errors {Ei}50i=1 on a single plot. Up to what frequency (roughly) does the relative error remain below 0.1
(=10%)?

(c) We will approximate the model mismatch using linear time-invariant (LTI) uncertainty. In particular,
we’ll define the following set of models:

M := {G0(1 + ∆Wu) : ∆ is LTI & ∥∆∥∞ ≤ 1} where Wu(s) :=

(
s+ 1

0.5s+ 3

)4

.

The transfer function Wu was selected to roughly approximate the relative error as a function of frequency.
For example, if |Wu(jω)| = 0.05 then the the models in M can vary by 5% from the nominal model G0.
Create a Bode magnitude plot for Wu and confirm that it roughly approximates the relative errors Ei.

[Note: Wu only approximately captures the behavior of the relative errors Ei. This was selected by hand
but a more precise transfer function fit Wu can be computed, e.g. using tools like ucover in Matlab.]



2. Nonlinear Dynamic Uncertainty

(a) Consider the classical feedback system shown below with plant dynamics G(s) = 4
s2+8s+7 and proportional

control Kp = 20. Assume ∆ is a nonlinear, dynamic system with a norm bound ∥∆∥ ≤ 0.2. The nominal
feedback system is given by ∆ = 0. Construct the nominal sensitivity function Snom from r to e and
compute the gain ∥Snom∥∞.

(b) Construct an LTI system M so that the uncertain feedback system is given in LFT form by Fu(M,∆).
You may construct M by hand or by using functions in Matlab (e.g. udyn and lftdata). Verify your
construction by comparing the Bode plots of Fu(M, 0) with the Snom constructed in part (a).

(c) Use the condition derived in class to compute an upper bound on the largest possible gain from r to e
over all possible nonlinear, norm-bounded, dynamic uncertainties.

(d) Finally, let β denote the bound on the uncertainty, i.e. ∥∆∥ ≤ β. In the previous part you computed the
gain from r to e for β = 0.2. In this part, compute the bound on the gain from r to e for several values
of β. Draw a plot of this gain vs. the uncertainty level β.
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3. Hard Disk Drives: Robustness Analysis

Consider the classical feedback system shown below with the nominal HDD model G0 and uncertainty weight
Wu from the previous problem. In addition, consider the following controller:

K(s) =
0.03101s+ 0.004135

s+ 1.2
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(a) The nominal feedback system is given by ∆ = 0. Construct the nominal sensitivity function Snom from r
to e and compute the gain (H∞ norm) of Snom.

(b) Construct an LTI system N so that the uncertain feedback system is given in LFT form by Fu(M,∆).
You may construct M by hand or by using functions in Matlab (e.g. udyn and lftdata). Verify your
construction by comparing the Bode plots of Fu(M, 0) with the Snom constructed in part (a).
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(c) Use the condition derived in class to compute an upper bound on the largest possible gain from r to e
over all possible nonlinear, norm-bounded, dynamic uncertainties (∥∆∥ ≤ 1). [Note: We constructed the
uncertain model in problem 1 assuming ∆ is LTI. Hence the gain computed in this part will be an upper
bound on the true worst-case gain.]

(d) Use the condition derived in class to compute an upper bound on the largest possible gain from r to e over
all possible LTI, norm-bounded, dynamic uncertainties (∥∆∥∞ ≤ 1). The example file LTIUncertainty.m
from class can be used to solve this problem. You should notice that this condition yields a significantly
smaller upper bound on the induced gain.

Note: This is written in Matlab and uses CVX. It requires some functionality to easily connect systems
and I’m not sure if are similar functions in Python. The posted code also generates results using the
function wcgain. This solves for the largest gain for systems with LTI uncertainty. It uses a specialized
numerical implementation to solve this problem but the theory is similar to that used to develop our SDP
upper bound condition.


