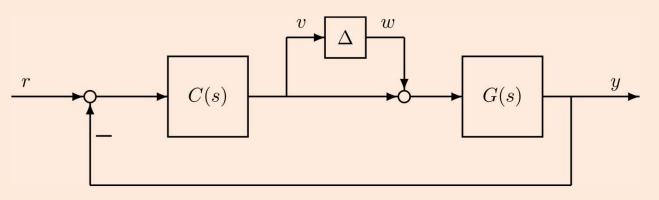
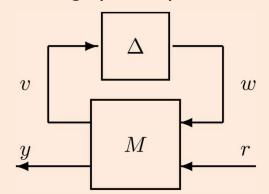
Self-Study Problems

1) Express the SISO feedback diagram below as an LFT $F_U(M, \Delta)$.





2) Consider the following state-space system:

$$\dot{x}(t) = A x(t) + B u(t)$$

$$y(t) = C x(t) + D u(t)$$

Show that the transfer function $G(s) = C(sI - A)^{-1}B + D$ can be expressed as an LFT $F_U(M, \frac{1}{s}I)$ where:

$$M = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$

Self-Study Problems

- 3) A stable, SISO, LTI system Δ satisfies the IQC defined by $J=\operatorname{diag}(1,-1)$, and $\Psi=\operatorname{diag}(W,1)$ where $W(s)=\frac{2s+0.1}{s+1}$. What is the uncertainty bound at $\omega=0$? What is the uncertainty bound as $\omega\to\infty$?
- 4) True or False? A SISO system Δ satisfies the IQC defined by $J=\operatorname{diag}(1,-1)$, and $\Psi=I$. The system $-\Delta$ satisfies the IQC defined by $J=\operatorname{diag}(-1,1)$, and $\Psi=I$.
- 5) True or False? A system Δ satisfies the IQCs defined by (J_1, Ψ_1) and (J_2, Ψ_2) . For any non-negative $\lambda_1, \lambda_2, \Delta$ satisfies the IQC with:

$$J = \begin{bmatrix} \lambda_1 J_1 & 0 \\ 0 & \lambda_2 J_2 \end{bmatrix} \text{ and } \Psi = \begin{bmatrix} \Psi_1 \\ \Psi_2 \end{bmatrix}$$