Self-Study Problems: True/False

- 1) If a dynamical system is dissipative with respect to supply rates s_1 and s_2 , then it is dissipative with respect to rate $s_1 s_2$.
- 2) For a dynamical system G, let -G denote the same system with the sign of the output reversed. G is dissipative with respect to s if and only if -G is dissipative with respect to -s.
- 3) Define the sum of two dynamical systems G_1 and G_2 as a dynamical system whose response to u is $y = G_1(u) + G_2(u)$. If G_1 is dissipative with supply rate s_1 and G_2 with supply rate s_2 , then $G_1 + G_2$ is dissipative with supply rate $s_1 + s_2$.
- 4) If G_i is dissipative with supply rate $u_i^{\top} y_i$ i = 1,2, then $G_1 + G_2$ is dissipative with supply rate $u^{\top} y$
- 5) If $\dot{x} = f(x, u), y = h(x, u)$ is dissipative, then so is the system $\tau \dot{x} = f(x, u), y = h(x, u)$ with the same supply rate for any $\tau > 0$.

Self-Study Problems: True/False

6) Consider N independent systems G_i , i = 1, ..., N, each with input output pair (u_i, y_i) , and let u and y denote the concatenations of u_i and y_i as shown below:

If G_i is dissipative with supply rate $s_i(u_i, y_i)$, i = 1, ..., N, then for any set of nonnegative weights $p_i \ge 0$, i = 1, ..., N, the composite system is dissipative with supply rate:

$$s(u, y) = \sum_{i=1}^{N} p_i s_i(u_i, y_i)$$