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Abstract. Interesting theoretical associations have been established by
recent papers between the fields of active learning and stochastic convex
optimization due to the common role of feedback in sequential querying
mechanisms. In this paper, we continue this thread in two parts by ex-
ploiting these relations for the first time to yield novel algorithms in both
fields, further motivating the study of their intersection. First, inspired
by a recent optimization algorithm that was adaptive to unknown uni-
form convexity parameters, we present a new active learning algorithm
for one-dimensional thresholds that can yield minimax rates by adapt-
ing to unknown noise parameters. Next, we show that one can perform
d-dimensional stochastic minimization of smooth uniformly convex func-
tions when only granted oracle access to noisy gradient signs along any
coordinate instead of real-valued gradients, by using a simple random-
ized coordinate descent procedure where each line search can be solved
by 1-dimensional active learning, provably achieving the same error con-
vergence rate as having the entire real-valued gradient. Combining these
two parts yields an algorithm that solves stochastic convex optimization
of uniformly convex and smooth functions using only noisy gradient signs
by repeatedly performing active learning, achieves optimal rates and is
adaptive to all unknown convexity and smoothness parameters.

1 Introduction

The two fields of convex optimization and active learning seem to have evolved
quite independently of each other. Recently, [1] pointed out their relatedness due
to the inherent sequential nature of both fields and the complex role of feedback
in taking future actions. Following that, [2] made the connections more explicit
by tying together the exponent used in noise conditions in active learning and
the exponent used in uniform convexity (UC) in optimization. They used this
to establish lower bounds (and tight upper bounds) in stochastic optimization
of UC functions based on proof techniques from active learning. However, it was
unclear if there were concrete algorithmic ideas in common between the fields.

Here, we provide a positive answer by exploiting the aforementioned connec-
tions to form new and interesting algorithms that clearly demonstrate that the
complexity of d-dimensional stochastic optimization is precisely the complex-
ity of 1-dimensional active learning. Inspired by an optimization algorithm that
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was adaptive to unknown uniform convexity parameters, we design an interest-
ing one-dimensional active learner that is also adaptive to unknown noise pa-
rameters. This algorithm is simpler than the adaptive active learning algorithm
proposed recently in [3] which handles the pool based active learning setting.

Given access to this active learner as a subroutine for line search, we show that
a simple randomized coordinate descent procedure can minimize uniformly con-
vex functions with a much simpler stochastic oracle that returns only a Bernoulli
random variable representing a noisy sign of the gradient in a single coordinate
direction, rather than a full-dimensional real-valued gradient vector. The result-
ing algorithm is adaptive to all unknown UC and smoothness parameters and
achieve minimax optimal convergence rates.

We spend the first two sections describing the problem setup and preliminary
insights, before describing our algorithms in sections 3 and 4.

1.1 Setup of First-Order Stochastic Convex Optimization

First-order stochastic convex optimization is the task of approximately minimiz-
ing a convex function over a convex set, given oracle access to unbiased estimates
of the function and gradient at any point, using as few queries as possible ([4]).

We will assume that we are given an arbitrary set S ⊂ R
d of known diameter

bound R = maxx,y∈S ‖x− y‖. A convex function f with x∗ = argminx∈S f(x) is
said to be k-uniformly convex if, for some λ > 0, k ≥ 2, we have for all x, y ∈ S

f(y) ≥ f(x) +∇f(x)�(y − x) +
λ

2
‖x− y‖k

(strong convexity arises when k = 2). f is L-Lipschitz for some L > 0 if
‖∇f(x)‖∗ ≤ L (where ‖.‖∗ is the dual norm of ‖.‖); equivalently for all x, y ∈ S

|f(x)− f(y)| ≤ L‖x− y‖
A differentiable f is H-strongly smooth (or has a H-Lipschitz gradient) for some
H > λ if for all x, y ∈ S, we have ‖∇f(x)−∇f(y)‖∗ ≤ H‖x−y‖, or equivalently

f(y) ≤ f(x) +∇f(x)�(y − x) +
H

2
‖x− y‖2

In this paper we shall always assume ‖.‖ = ‖.‖∗ = ‖.‖2 and deal with strongly
smooth and uniformly convex functions with parameters λ > 0, k ≥ 2, L,H > 0.
A stochastic first order oracle is a function that accepts x ∈ S, and returns

(
f̂(x), ĝ(x)

)
∈ R

d+1 where E
[
f̂(x)

]
= f(x),E

[
ĝ(x)

]
= ∇f(x)

(these unbiased estimates also have bounded variance) and the expectation is
over any internal randomness of the oracle.

An optimization algorithm is a method that sequentially queries an oracle at
points in S and returns x̂T as an estimate of the optimum of f after T queries
(or alternatively tries to achieve an error of ε) and their performance can be
measured by either function error f(x̂T )− f(x∗) or point error ‖x̂T − x∗‖.
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1.2 Stochastic Gradient-Sign Oracles

Define a stochastic sign oracle to be a function of x ∈ S, j ∈ {1...d}, that returns

ŝj(x) ∈ {+,−} where1
∣∣η(x)−0.5

∣∣ = Θ
(
[∇f(x)]j

)
and η(x) = Pr

(
ŝj(x) = +|x)

where ŝj(x) is a noisy sign
(
[∇f(x)]j

)
and [∇f(x)]j is the j-th coordinate of ∇f ,

and the probability is over any internal randomness of the oracle. This behavior
of η(x) actually needs to hold only when

∣∣[∇f(x)]j
∣∣ is small.

In this paper, we consider coordinate descent algorithms that are motivated by
applications where computing the overall gradient, or even a function value, can
be expensive due to high dimensionality or huge amounts of data, but computing
the gradient in any one coordinate can be cheap. [5] mentions the example of
minx

1
2‖Ax− b‖2 + 1

2‖x‖2 for some n× d matrix A (or any other regularization
that decomposes over dimensions). Computing the gradient A�(Ax − b) + x is
expensive, because of the matrix-vector multiply. However, its j-th coordinate
is 2Aj�(Ax − b) + xj and requires an expense of only n if the residual vector
Ax− b is kept track of (this is easy to do, since on a single coordinate update of
x, the residual change is proportional to Aj , an additional expense of n).

A sign oracle is weaker than a first order oracle, and can actually be obtained
by returning the sign of the first order oracle’s noisy gradient if the mass of the
noise distribution grows linearly around its zero mean (argued in next section).
At the optimum along coordinate j, the oracle returns a ±1 with equal probabil-
ity, and otherwise returns the correct sign with a probability proportional to the
value of the directional derivative at that point (this is reflective of the fact that
the larger the derivative’s absolute value, the easier it would be for the oracle
to approximate its sign, hence the smaller the probability of error). It is not
unreasonable that there may be other circumstances where even calculating the
(real value) gradient in the i-th direction could be expensive, but estimating its
sign could be a much easier task as it only requires estimating whether function
values are expected to increase or decrease along a coordinate (in a similar spirit
of function comparison oracles [6], but with slightly more power).

We will also see that the rates for optimization crucially depend on whether
the gradient noise is sign-preserving or not. For instance, with rounding errors
or storing floats with small precision, one can get deterministic rates as if we
had the exact gradient since the rounding or lower precision doesn’t flip signs.

1.3 Setup of Active Threshold Learning

The problem of one-dimensional threshold estimation assumes you have an in-
terval of length R, say [0, R]. Given a point x, it has a label y ∈ {+,−} that is
drawn from an unknown conditional distribution η(x) = Pr

(
Y = +|X = x

)
and

the threshold t is the unique point where η(x) = 1/2, with it being larger than
half on one side of t and smaller than half on the other (hence it is more likely
to draw a + on one side of t and a − on the other side).

1 f = Θ(g) means f = Ω(g) and f = O(g) (rate of growth).
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The task of active learning of threshold classifiers allows the learner to sequen-
tially query T (possibly dependent) points, observing labels drawn from the un-
known conditional distribution after each query, with the goal of returning a guess
x̂T as close to t as possible. In the formal study of classification (cf. [7]), it is common
to studyminimax rateswhen the regression functionη(x) satisfiesTsybakov’s noise
or margin condition (TNC) with exponent k at the threshold t. Different versions
of this boundary noise condition are used in regression, density or level-set estima-
tion and lead to an improvement in minimax optimal rates (for classification, also
cf. [8], [3]). Here, we present the version of TNC used in [9] :

M |x− t|k−1 ≥ |η(x)− 1/2| ≥ μ|x− t|k−1 whenever2 |η(x) − 1/2| ≤ ε0

for some constants M > μ > 0, ε0 > 0, k ≥ 1.
A standard measure for how well a classifier h performs is given by its risk,

which is simply the probability of classification error (expectation under 0 − 1
loss), R(h) = Pr

[
h(x) �= y

]
. The performance of threshold learning strategies

can be measured by the excess classification risk of the resultant threshold clas-
sifier at x̂T compared to the Bayes optimal classifier at t as given by 3

R(x̂T )−R(t) =

x̂T∨t∫

x̂T∧t

|2η(x)− 1|dx (1)

In the above expression, akin to [9], we use a uniform marginal distribution
for active learning since there is no underlying distribution over x. Alternatively,
one can simply measure the one-dimensional point error |x̂T − t| in estimation
of the threshold. Minimax rates for estimation of risk and point error in active
learning under TNC were provided in [9] and are summarized in the next section.

1.4 Summary of Contributions

Now that we have introduced the notation used in our paper and some relevant
previous work (more in the next section), we can clearly state our contributions.

– We generalize an idea from [10] to present a simple epoch-based active learn-
ing algorithm with a passive learning subroutine that can optimally learn
one-dimensional thresholds and is adaptive to unknown noise parameters.

– We show that noisy gradient signs suffice for minimization of uniformly con-
vex functions by proving that a random coordinate descent algorithm with an
active learning line-search subroutine achieves minimax convergence rates.

– Due to the connection between the relevant exponents in the two fields,
we can combine the above two methods to get an algorithm that achieves
minimax optimal rates and is adaptive to unknown convexity parameters.

– As a corollary, we argue that with access to possibly noisy non-exact gradi-
ents that don’t switch any signs (rounding errors or low-precision storage are
sign-preserving), we can still achieve exponentially fast deterministic rates.

2 Note that |x− t| ≤ δ0 :=
(
ε0
M

) 1
k−1 =⇒ |η(x)− 1/2| ≤ ε0 =⇒ |x− t| ≤

(
ε0
μ

) 1
k−1

.
3 a ∨ b := max(a, b) and a ∧ b := min(a, b).
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2 Preliminary Insights

2.1 Connections between Exponents

Taking one point as x∗ in the definition of UC, we see that

|f(x)− f(x∗)| ≥ λ

2
‖x− x∗‖k

Since ‖∇f(x)‖‖x− x∗‖ ≥ ∇f(x)�(x− x∗) ≥ f(x)− f(x∗) (by convexity),

‖∇f(x)− 0‖ ≥ λ

2
‖x− x∗‖k−1

Another relevant fact for us will be that uniformly convex functions in d dimen-
sions are uniformly convex along any one direction, or in other words, for every
fixed x ∈ S and fixed unit vector u ∈ R

d, the univariate function of α defined
by fx,u(α) := f(x+ αu) is also UC with the same parameters4. For u = ej ,

∣∣[∇f(x)]j − 0
∣∣ ≥ λ

2
‖x− x∗

j‖k−1

where x∗
j = x + α∗

jej and α∗
j = argmin{α|x+αej∈S} f(x + αej). This uncanny

similarity to the TNC (since ∇f(x∗) = 0) was mathematically exploited in [2]
where the authors used a lower bounding proof technique for one-dimensional
active threshold learning from [9] to provide a new lower bounding proof tech-
nique for the d-dimensional stochastic convex optimization of UC functions. In
particular, they showed that the minimax rate for 1-dimensional active learning
excess risk and the d-dimensional optimization function error both scaled like5

Θ̃
(
T− k

2k−2

)
, and that the point error in both settings scaled like Θ̃

(
T− 1

2k−2

)
,

where k is either the TNC exponent or the UC exponent, depending on the set-
ting. The importance of this connection cannot be emphasized enough and we
will see this being useful throughout this paper.

As mentioned earlier [9] require a two-sided TNC condition (upper and lower
growth condition to provide exact tight rate of growth) in order to prove risk
upper bounds. On a similar note, for uniformly convex functions, we will assume
such a Local k-Strong Smoothness condition around directional minima

Assumption LkSS: for all j ∈ {1...d} ∣∣[∇f(x)]j − 0
∣∣ ≤ Λ‖x− x∗

j‖k−1

for some constant Λ > λ/2, so we can tightly characterize the rate of growth as

∣∣[∇f(x)]j − 0
∣∣ = Θ

(
‖x− x∗

j‖k−1
)

This condition is implied by strong smoothness or Lipschitz smooth gradients
when k = 2 (for strongly convex and strongly smooth functions), but is a slightly
stronger assumption otherwise.

4 Since f is UC, fx,u(α) ≥ fx,u(0) + α∇fx,u(0) + λ
2
|α|k.

5 We use Õ, Θ̃ to hide constants and polylogarithmic factors.
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2.2 The One-Dimensional Argument

The basic argument for relating optimization to active learning was made in [2]
in the context of stochastic first order oracles when the noise distribution P(z)
is unbiased and grows linearly around its zero mean, i.e.

∫ ∞

0

dP(z) = 1
2 and

∫ t

0

dP(z) = Θ(t)

for all 0 < t < t0, for constants t0 (similarly for −t0 < t < 0). This is satisfied
for gaussian, uniform and many other distributions. We reproduce the argument
for clarity and then sketch it for stochastic signed oracles as well.

For any x ∈ S, it is clear that fx,j(α) := f(x + αej) is convex; its gradi-
ent ∇fx,j(α) := [∇f(x + αej)]j is an increasing function of α that switches
signs at α∗

j := argmin{α|x+αej∈S} fx,j(α), or equivalently at directional mini-
mum x∗

j := x+ α∗
jej. One can think of sign([∇f(x)]j) as being the true label of

x, sign([∇f(x)]j + z) as being the observed label, and finding x∗
j as learning the

decision boundary (point where labels switch signs). Define regression function

η(x) := Pr
(
sign([∇f(x)]j + z) = +|x

)

and note that minimizing fx0,j corresponds to identifying the Bayes threshold
classifier as x∗

j because the point at which η(x) = 0.5 or [∇f(x)]j = 0 is x∗
j .

Consider a point x = x∗
j + tej for t > 0 with [∇f(x)]j > 0 and hence has

true label + (a similar argument can be made for t < 0). As discussed earlier,∣∣[∇f(x)]j
∣∣ = Θ

(
‖x−x∗

j‖k−1
)
= Θ(tk−1). The probability of seeing label + is the

probability that we draw z in
(− [∇f(x)]j ,∞

)
so that the sign of [∇f(x)]j + z

is still positive. Hence, the regression function can be written as

η(x) = Pr
(
[∇f(x)]j + z > 0

)

= Pr(z > 0) + Pr
(
− [∇f(x)]j < z < 0

)
= 0.5 + Θ

(
[∇f(x)]j

)

=⇒ ∣∣η(x)− 1
2

∣∣ = Θ
(
[∇f(x)]j

)
= Θ

(
tk−1

)
= Θ

(
|x− x∗

j |k−1
)

Hence, η(x) satisfies the TNC with exponent k, and an active learning algorithm
(next subsection) can be used to obtain a point x̂T with small point-error and
excess risk. Note that function error in convex optimization is bounded above
by excess risk of the corresponding active learner using eq (1) because

fj(x̂T )− fj(x
∗
j ) =

∣∣∣∣∣

x̂T∨x∗
j∫

x̂T∧x∗
j

[∇f(x)]jdx

∣∣∣∣∣ = Θ

( x̂T∨x∗
j∫

x̂T∧x∗
j

|2η(x)− 1|dx
)

= Θ
(
R(x̂T )

)

Similarly, for stochastic sign oracles (Sec. 1.2), using η(x) = Pr
(
ŝj(x) = +

)
,

∣∣η(x)− 1
2

∣∣ = Θ
(
[∇f(x)]j

)
= Θ

(
‖x− x∗

j‖k−1
)
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2.3 A Non-adaptive Active Threshold Learning Algorithm

One can use a grid-based probabilistic variant of binary search called the BZ al-
gorithm [11] to approximately learn the threshold efficiently in the active setting,
in the setting that η(x) satisfies the TNC for known k, μ,M (it is not adaptive to
the parameters of the problem - one needs to know these constants beforehand).
The analysis of BZ and the proof of the following lemma are discussed in detail
in Theorem 1 of [12], Theorem 2 of [9] and the Appendix of [2].

Lemma 2.1. Given a 1-dimensional regression function that satisfies the TNC
with known parameters μ, k, then after T queries, the BZ algorithm returns a

point t̂ such that |t̂− t| = Θ̃(T− 1
2k−2 ) and the excess risk is Θ̃(T− k

2k−2 ).

Due to the described connection between exponents, one can use BZ to approx-
imately optimize a one dimensional uniformly convex function fj with known
uniform convexity parameters λ, k. Hence, the BZ algorithm can be used to find
a point with low function error by searching for a point with low risk. This, when
combined with Lemma 2.1, yields the following important result.

Lemma 2.2. Given a 1-dimensional k-UC and LkSS function fj, a line search
to find x̂T close to x∗

j up to accuracy |x̂T−x∗
j | ≤ η in point-error can be performed

in Θ̃(1/η2k−2) steps using the BZ algorithm. Alternatively, in T steps we can

find x̂T such that f(x̂T )− f(x∗
j ) = Θ̃(T− k

2k−2 ).

3 A 1-D Adaptive Active Threshold Learning Algorithm

We now describe an algorithm for active learning of one-dimensional thresholds
that is adaptive, meaning it can achieve the minimax optimal rate even if the
TNC parametersM,μ, k are unknown. It is quite different from the non-adaptive
BZ algorithm in its flavour, though it can be regarded as a robust binary search
procedure, and its design and proof are inspired from an optimization procedure
from [10] that is adaptive to unknown UC parameters λ, k.

Even though [10] considers a specific optimization algorithm (dual averaging),
we observe that their algorithm that adapts to unknown UC parameters can use
any optimal convex optimization algorithm as a subroutine within each epoch.
Similarly, our adaptive active learning algorithm is epoch-based and can use
any optimal passive learning subroutine in each epoch. We note that [3] also
developed an adaptive algorithm based on disagreement coefficient and VC-
dimension arguments, but it is in a pool-based setting where one has access to
a large pool of unlabeled data, and is much more complicated.

3.1 An Optimal Passive Learning Subroutine

The excess risk of passive learning procedures for 1-d thresholds can be bounded
by O(T−1/2) (e.g. see Alexander’s inequality in [13] to avoid

√
logT factors from

ERM/VC arguments) and can be achieved by ignoring the TNC parameters.
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Consider such a passive learning procedure under a uniform distribution of
samples (mimicked by active learning by querying the domain uniformly) in a
ball6 B(x0, R) around an arbitrary point x0 of radius R that is known to contain
the true threshold t. Then without knowledge of M,μ, k, in T steps we can get
a point x̂T close to the true threshold t such that with probability at least 1− δ

R(x̂)−R(t) =

x̂T∧t∫

x̂T∨t

|2η(x) − 1|dx ≤ CδR√
T

for some constant Cδ. Assuming x̂T lies inside the TNC region,

μ

x̂T∧t∫

x̂T∨t

|x− t|k−1dx ≤
x̂T∧t∫

x̂T∨t

|2η(x) − 1|dx

Hence μ|x̂T−t|k
k ≤ CδR√

T
. Since k1/k ≤ 2, w.p. at least 1− δ we get a point-error

|x̂T − t| ≤ 2

[
CδR

μ
√
T

]1/k
(2)

We assume that x̂T lies within the TNC region since the interval |η(x) − 1
2 | ≤ ε0

has at least constant width |x − t| ≤ δ0 = (ε0/M)1/(k−1), it will only take a
constant number of iterations to find a point within it. A formal way to argue
this would be to see that if the overall risk goes to zero like CδR√

T
, then the point

cannot stay outside this constant sized region of width δ0 where |η(x)−1/2| ≤ ε0,

since it would accumulate a large constant risk of at least
t+δ0∫
t

μ|x− t|k−1 =
μδk0
k .

So as long as T is larger than a constant T0 :=
C2

δR
2k2

μ2δ2k0
, our bound in eq 2

holds with high probability (we can even assume we waste a constant number
of queries to just get into the TNC region before using this algorithm).

3.2 Adaptive One-Dimensional Active Threshold Learner

Algorithm 1 is a generalized epoch-based binary search, and we repeatedly per-
form passive learning in a halving search radius. Let the number of epochs be

E := log
√

2T
C2

δ̃
log T

≤ log T
2 (if7 constant C2

δ̃
> 2) and δ̃ := 2δ/ logT ≤ δ/E. Let

the time budget per epoch be N := T/E (the same for every epoch) and the
search radius in epoch e ∈ {1, ..., E} shrink as Re := 2−e+1R.

Let us define the minimizer of the risk within the ball of radius Re centered
around xe−1 at epoch e as

x∗
e = argmin

{R(x) : x ∈ S ∩B(xe−1, Re)
}

Note that x∗
e = t iff t ∈ B(xe−1, Re) and will be one end of the interval otherwise.

6 Define B(x,R) := [x−R, x+R].
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Input: Domain S of diameter R, oracle budget T , confidence δ

Black Box: Any optimal passive learning procedure P (x,R,N) that outputs
an estimated threshold in B(x,R) using N queries

Choose any x0 ∈ S, R1 = R,E = log
√

2T
C2

δ̃
log T

, N = T
E

1: while 1 ≤ e ≤ E do
2: xe ← P (xe−1, Re, N)
3: Re+1 ← Re

2
, e← e+ 1

4: end while

Output: xE

Algorithm 1. Adaptive Threshold Learner

Theorem 3.1. In the setting of one-dimensional active learning of thresholds,

Algorithm 1 adaptively achieves R(xE)−R(t) = Õ
(
T− k

2k−2

)
with probability at

least 1−δ in T queries when the unknown regression function η(x) has unknown
TNC parameters μ, k.

Proof. Since we use an optimal passive learning subroutine at every epoch, we
know that after each epoch e we have with probability at least 1− δ̃ 7

R(xe)−R(x∗
e) ≤

Cδ̃Re√
T/E

≤ Cδ̃Re

√
logT

2T
(3)

Since η(x) satisfies the TNC (and is bounded above by 1), we have for all x

μ|x− t|k−1 ≤ |η(x) − 1/2| ≤ 1

If the set has diameter R, one of the endpoints must be at least R/2 away from
t, and hence we get a limitation on the maximum value of μ as μ ≤ 1

(R/2)k−1 .

Since k ≥ 2 and E ≥ 2, and 2−E = Cδ̃

√
log T
2T , using simple algebra we get

μ ≤ 2(k−2)E+2

(R/2)k−1
=

4.2−E2(k−1)E2(k−1)

Rk−1
=

4.2−E2(k−1)

(2−ER)k−1
=

4Cδ̃2
k−1

Rk−1
E+1

√
logT

2T

We prove that we will be appropriately close to t after some epoch e∗ by doing
case analysis on μ. When the true unknown μ is sufficiently small, i.e.

μ ≤ 4Cδ̃2
k−1

Rk−1
2

√
logT

2T
(4)

7 By VC theory for threshold classifiers or similar arguments in [13], C2
δ̃
∼ log(1/δ̃) ∼

log log T since δ̃ ∼ δ/ log T . We treat it as constant for clarity of exposition, but
actually lose log log T factors like the high probability arguments in [14] and [2].
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then we show that we’ll be done after e∗ = 1. Otherwise, we will be done after
epoch 2 ≤ e∗ ≤ E if the true μ lies in the range

4Cδ̃2
k−1

Rk−1
e∗

√
logT

2T
≤ μ ≤ 4Cδ̃2

k−1

Rk−1
e∗+1

√
logT

2T
(5)

To see why we’ll be done, equations (4) and (5) imply Re∗+1 ≤ 2
(

8C2
δ̃
log T

μ2T

) 1
2k−2

after epoch e∗ and plugging this into equation (3) with Re∗ = 2Re∗+1, we get

R(xe∗)−R(x∗
e∗ ) ≤ Cδ̃Re∗

(
logT

2T

) 1
2

= O

((
logT

T

) k
2k−2

)
(6)

There are two issues hindering the completion of our proof. The first is that even
though x∗

1 = t to start off with, it might be the case that x∗
e∗ is far away from t

since we are chopping the radius by half at every epoch. Interestingly, in lemma
3.1 we will prove that round e∗ is the last round up to which x∗

e = t. This would
imply from eq (6) that

R(xe∗ )−R(t) = Õ
(
T− k

2k−2

)
(7)

Secondly we might be concerned that after the round e∗, we may move further
away from t in later epochs. However, we will show that since the radii are
decreasing geometrically by half at every epoch, we cannot really wander too far
away from xe∗ . This will give us a bound (see lemma 3.2) like

R(xE)−R(xe∗ ) = Õ
(
T− k

2k−2

)
(8)

We will essentially prove that the final point xe∗ of epoch e∗ is sufficiently close
to the true optimum t, and the final point of the algorithm xE is sufficiently
close to xe∗ . Summing eq (7) and eq (8) yields our desired result.

Lemma 3.1. For all e ≤ e∗, conditioned on having x∗
e−1 = t, with probability

1 − δ̃ we have x∗
e = t. In other words, up to epoch e∗, the optimal classifier in

the domain of each epoch is the true threshold with high probability.

Proof. x∗
e = t will hold in epoch e if the distance between the first point xe−1

in the epoch e is such that the ball of radius Re around it actually contains t,
or mathematically if |xe−1 − t| ≤ Re. This is trivially satified for e = 1, and
assuming that it is true for epoch e− 1 we will show show by induction that it
holds true for epoch e ≤ e∗ w.p. 1−δ̃. Notice that using equation (2), conditioned
on the induction going through in previous rounds (t being within the search
radius), after the completion of round e− 1 we have with probability 1− δ̃

|xe−1 − t| ≤ 2

[
Cδ̃Re−1

μ
√

T/E

]1/k
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If this was upper bounded by Re, then the induction would go through. So what

we would really like to show is that 2

[
Cδ̃Re−1

μ
√

T/E

] 1
k

≤ Re. Since Re−1 = 2Re, we

effectively want to show
2kCδ̃2Re

μ

√
E
T ≤ Rk

e or equivalently that for all e ≤ e∗

we would like to have
4Cδ̃2

k−1

Rk−1
e

√
E
T ≤ μ. Since E ≤ log T

2 , we would be achieving

something stronger if we showed

4Cδ̃2
k−1

Rk−1
e

√
logT

2T
≤ μ

which is known to be true for every epoch up to e∗ by equation (5).

Lemma 3.2. For all e∗ < e ≤ E, R(xe)−R(xe∗ ) ≤ Cδ̃Re∗√
T/E

= Õ
(
T− k

2k−2

)
w.p.

1− δ̃, ie after epoch e∗, we cannot deviate much from where we ended epoch e∗.

Proof. For e > e∗, we have with probability at least 1− δ̃

R(xe)−R(xe−1) ≤ R(xe)−R(x∗
e) ≤

Cδ̃Re√
T/E

and hence even for the final epoch E, we have with probability (1− δ̃)E−e∗

R(xE)−R(xe∗) =

E∑
e=e∗+1

[R(xe)−R(xe−1)] ≤
E∑

e=e∗+1

Cδ̃Re√
T/E

Since the radii are halving in size, this is upper bounded (like equation (6)) by

Cδ̃Re∗√
T/E

[1/2 + 1/4 + 1/8 + ...] ≤ Cδ̃Re∗√
T/E

= Õ
(
T− k

2k−2

)

These lemmas justify the use of equations (7) and (8), whose sum yields our
desired result. Notice that the overall probability of success is at least (1− δ̃)E ≥
1− δ, hence concluding the proof of the theorem.

4 Randomized Stochastic-Sign Coordinate Descent

We now describe an algorithm that can do stochastic optimization of k-UC and
LkSS functions in d > 1 dimensions when given access to a stochastic sign oracle
and a black-box 1-D active learning algorithm, such as our adaptive scheme
from the previous section as a subroutine. The procedure is well-known in the
literature, but the idea that one only needs noisy gradient signs to perform
minimization optimally, and that one can use active learning as a line-search
procedure, is novel to the best of our knowledge.

The idea is to simply perform random coordinate-wise descent with approx-
imate line search, where the subroutine for line search is an optimal active
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threshold learning algorithm that is used to approach the minimum of the func-
tion along the chosen direction. Let the gradient at epoch e be called ∇e−1 =
∇f(xe−1), the unit vector direction of descent de be a unit coordinate vector
chosen randomly from {1...d}, and our step size from xe−1 be αe (determined
by active learning) so that our next point is xe := xe−1 + αede.

Assume, for analysis, that the optimum of fe(α) := f(xe−1 + αde) is

α∗
e := argmin

α
f(xe−1 + αde) and x∗

e := xe−1 + α∗
ede

where (due to optimality) the derivative is

∇fe(α
∗
e) = 0 = ∇f(x∗

e)
�de (9)

The line search to find αe and xe that approximates the minimum x∗
e can be

accomplished by any optimal active learning algorithm algorithm, once we fix
the number of time steps per line search.

4.1 Analysis of Algorithm 2

Input: set S of diameter R, query budget T

Oracle: stochastic sign oracle Of (x, j) returning noisy sign
(
[∇f(x)]j

)

BlackBox: algorithm LS(x, d, n) : line search from x, direction d, for n steps

Choose any x0 ∈ S, E = d(log T )2

1: while 1 ≤ e ≤ E do
2: Choose a unit coordinate vector de from {1...d} uniformly at random
3: xe ← LS(xe−1, de, T/E) using Of

4: e← e+ 1
5: end while

Output: xE

Algorithm 2. Randomized Stochastic-Sign Coordinate Descent

Let the number of epochs be E = d(logT )2, and the number of time steps per
epoch is T/E. We can do a line search from xe−1, to get xe that approximates x∗

e

well in function error in T/E = Õ(T ) steps using an active learning subroutine

and let the resulting function-error be denoted by ε′ = Õ
(
T− k

2k−2

)
.

f(xe) ≤ f(x∗
e) + ε′

Also, LkSS and UC allow us to infer (for k∗ = k
k−1 , i.e. 1/k + 1/k∗ = 1)

f(xe−1)− f(x∗
e) ≥ λ

2
‖xe−1 − x∗

e‖k ≥ λ

2Λk∗
∣∣∇�

e−1de
∣∣k∗

Eliminating f(x∗
e) from the above equations, subtracting f(x∗) from both sides,

denoting Δe := f(xe)− f(x∗) and taking expectations

E[Δe] ≤ E[Δe−1]− λ

2Λk∗ E

[∣∣∇�
e−1de

∣∣k∗]
+ ε′
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Since8 E

[
|∇�

e−1de|k
∗ ∣∣d1, ..., de−1

]
= 1

d‖∇e−1‖k∗
k∗ ≥ 1

d‖∇e−1‖k∗
we get

E[Δe] ≤ E[Δe−1]− λ

2dΛk∗ E

[
‖∇e−1‖k∗]

+ ε′

By convexity, Cauchy-Schwartz and UC9, ‖∇e−1‖k∗ ≥ (
λ
2

)1/k−1
Δe−1, we get

E[Δe] ≤ E[Δe−1]

(
1− 1

d

(
λ

2Λ

)k∗)
+ ε′

Defining10 C := 1
d

(
λ
2Λ

)k∗
< 1, we get the recurrence

E[Δe]− ε′

C
≤ (1− C)

(
E[Δe−1]− ε′

C

)

Since E = d(log T )2 and Δ0 ≤ L‖x0 − x∗‖ ≤ LR, after the last epoch, we have

E[ΔE ]− ε′

C
≤ (1− C)E

(
Δ0 − ε′

C

)
≤ exp

{− Cd(log T )2
}
Δ0

≤ LRT−Cd log T

As long as T > exp
{
(2Λ/λ)k

∗}
, a constant, we have Cd log T ≥ 1 and

E[ΔE ] = O(ε′) + o(T−1) = Õ
(
T− k

2k−2

)

which is the desired result. Notice that in this section we didn’t need to know
λ, Λ, k, because we simply run randomized coordinate descent for E = d(logT )2

epochs with T/E steps per subroutine, and the active learning subroutine was
also adaptive to the appropriately calculated TNC parameters. In summary,

Theorem 4.1. Given access to only noisy gradient sign information from a
stochastic sign oracle, Randomized Stochastic-Sign Coordinate Descent can min-
imize UC and LkSS functions at the minimax optimal convergence rate for

expected function error of Õ(T− k
2k−2 ) adaptive to all unknown convexity and

smoothness parameters. As a special case for k = 2, strongly convex and strongly
smooth functions can be minimized in Õ(1/T ) steps.

4.2 Gradient Sign-Preserving Computations

A practical concern for implementing optimization algorithms is machine pre-
cision, the number of decimals to which real numbers are stored. Finite space
may limit the accuracy with which every gradient can be stored, and one may

8 k ≥ 2 =⇒ 1 ≤ k∗ ≤ 2 =⇒ ‖.‖k∗ ≥ ‖.‖2.
9 Δk

e−1 ≤ [∇�
e−1(xe−1 − x∗)]k ≤ ‖∇e−1‖k‖xe−1 − x∗‖k ≤ ‖∇e−1‖κ 2

λ
Δe−1.

10 Since 1 < k∗ ≤ 2 and Λ > λ/2, we have C < 1.
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ask how much these inaccuracies may affect the final convergence rate - how is
the query complexity of optimization affected if the true gradients were rounded
to one or two decimal points? If the gradients were randomly rounded (to re-
main unbiased), then one might guess that we could easily achieve stochastic
first-order optimization rates.

However, our results give a surprising answer to that question, as a similar
argument reveals that for UC and LkSS functions (with strongly convex and
strongly smooth being a special case), our algorithm achieves exponential rates.
Since rounding errors do not flip any sign in the gradient, even if the gradient
was rounded or decimal points were dropped as much as possible and we were
to return only a single bit per coordinate having the true signs, then one can
still achieve the exponentially fast convergence rate observed in non-stochastic
settings - our algorithm needs only a logarithmic number of epochs, and in each
epoch active learning will approach the directional minimum exponentially fast
with noiseless gradient signs using a perfect binary search. In fact, our algorithm
is the natural generalization for a higher-dimensional binary search, both in the
deterministic and stochastic settings.

We can summarize this in the following theorem:

Theorem 4.2. Given access to gradient signs in the presence of sign-preserving
noise (such as deterministic or random rounding of gradients, dropping decimal
places for lower precision, etc), Randomized Stochastic-Sign Coordinate Descent
can minimize UC and LkSS functions exponentially fast, with a function error
convergence rate of Õ(exp{−T }).

5 Future Work

While the assumption of smoothness is natural for strongly convex functions, our
assumption of LkSS might appear strong in general. It is possible to relax this
assumption and require the LkSS exponent to differ from the UC exponent, or to
only assume strong smoothness - this still yields consistency for our algorithm,
but the rate achieved is worse. [10] and [2] both have epoch based algorithms
that achieve the minimax rates under just Lipschitz assumptions with access to
a full-gradient stochastic first order oracle, but it is hard to prove the same rates
for a coordinate descent procedure without smoothness assumptions.

Given a target function accuracy ε instead of query budget T , a similar ran-
domized coordinate descent procedure to ours achieves the minimax rate with a
similar proof, but it is non-adaptive since we presently don’t have an adaptive
active learning procedure when given ε. As of now, we know no adaptive UC
optimization procedure when given ε.

Recently, [15] analysed stochastic gradient descent with averaging, and show
that for smooth functions, it is possible for an algorithm to automatically adapt
between convexity and strong convexity, and in comparision we show how to
adapt to unknown uniform convexity (strong convexity being a special case of
κ = 2). It may be possible to combine the ideas from this paper and [15] to get a
universally adaptive algorithm from convex to all degrees of uniform convexity.
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It would also be interesting to see if these ideas extend to connections between
convex optimization and learning linear threshold functions.

In this paper, we exploit recently discovered theoretical connections by pro-
viding explicit algorithms that take advantage of them. We show how these could
lead to cross-fertilization of fields in both directions and hope that this is just
the beginning of a flourishing interaction where these insights may lead to many
new algorithms if we leverage the theoretical relations in more innovative ways.

References

[1] Raginsky, M., Rakhlin, A.: Information complexity of black-box convex optimiza-
tion: A new look via feedback information theory. In: 47th Annual Allerton Con-
ference on Communication, Control, and Computing (2009)

[2] Ramdas, A., Singh, A.: Optimal rates for stochastic convex optimization under
tsybakov noise condition. In: Intl. Conference in Machine Learning, ICML (2013)

[3] Hanneke, S.: Rates of convergence in active learning. The Annals of Statis-
tics 39(1), 333–361 (2011)

[4] Nemirovski, A., Yudin, D.: Problem complexity and method efficiency in opti-
mization. John Wiley & Sons (1983)

[5] Nesterov, Y.: Efficiency of coordinate descent methods on huge-scale optimization
problems. Core Discussion Papers 2, 2010 (2010)

[6] Jamieson, K., Nowak, R., Recht, B.: Query complexity of derivative-free optimiza-
tion. In: Advances in Neural Information Processing Systems, NIPS (2012)

[7] Tsybakov, A.: Optimal aggregation of classifiers in statistical learning. The Annals
of Statistics 32(1), 135–166 (2004)

[8] Audibert, J.Y., Tsybakov, A.B.: Fast learning rates for plug-in classifiers. Annals
of Statistics 35(2), 608–633 (2007)

[9] Castro, R.M., Nowak, R.D.: Minimax bounds for active learning. In: Bshouty,
N.H., Gentile, C. (eds.) COLT. LNCS (LNAI), vol. 4539, pp. 5–19. Springer, Hei-
delberg (2007)

[10] Iouditski, A., Nesterov, Y.: Primal-dual subgradient methods for minimizing uni-
formly convex functions. Universite Joseph Fourier, Grenoble, France (2010)

[11] Burnashev, M., Zigangirov, K.: An interval estimation problem for controlled ob-
servations. Problemy Peredachi Informatsii 10(3), 51–61 (1974)

[12] Castro, R., Nowak, R.: Active sensing and learning. Foundations and Applications
of Sensor Management, 177–200 (2009)

[13] Devroye, L., Györfi, L., Lugosi, G.: A probabilistic theory of pattern recognition,
vol. 31. Springer (1996)

[14] Hazan, E., Kale, S.: Beyond the regret minimization barrier: an optimal algorithm
for stochastic strongly-convex optimization. In: Proceedings of the 23nd Annual
Conference on Learning Theory (2011)

[15] Bach, F., Moulines, E.: Non-asymptotic analysis of stochastic approximation al-
gorithms for machine learning. In: Advances in Neural Information Processing
Systems, NIPS (2011)


	Algorithmic Connections between Active Learning and Stochastic Convex Optimization
	Introduction
	Setup of First-Order Stochastic Convex Optimization
	Stochastic Gradient-Sign Oracles
	Setup of Active Threshold Learning
	Summary of Contributions

	Preliminary Insights
	Connections between Exponents
	The One-Dimensional Argument
	A Non-adaptive Active Threshold Learning Algorithm

	A 1-D Adaptive Active Threshold Learning Algorithm
	An Optimal Passive Learning Subroutine
	Adaptive One-Dimensional Active Threshold Learner

	Randomized Stochastic-Sign Coordinate Descent
	Analysis of Algorithm 2
	Gradient Sign-Preserving Computations

	Future Work


