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• My point: 

• Many network elements have mutable state 

• Verifying mutable networks requires new techniques 

• Two technical challenges: Modeling and Scaling
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Classical Networking
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• Networks provide end-to-end connectivity. 
• Just contain host and switches. 
• All interesting processing at the hosts.
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• Security (firewalls, IDSs,…).
• Performance (caches, load balancers,…).
• New functionality (proxies,…).
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Reachability Invariants
• Focus on reachability invariants 

• Most important in practice, simple to state but already hard

Balancer

Firewall

FirewallMallory

S1

S2
Can S2 receive packets from Mallory without a connection?
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Abstractions for Invariants

• Operators want to specify packet types using abstractions:

• “infected”

• from “authenticated user”

• from a given application

• How these types are determined in a network varies

• Invariants should not depend on these details
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Network Verification Today
• Switches: Forwarding rules in switches. 

HSA, Veriflow, NetKAT, etc.

• SDN Controller: Code generating these rules. 

Vericon, FlowLog, etc.

• Firewalls: Verify firewall configuration. 

Fang, Margrave, etc.
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Existing Assumptions/Limitations
Switches
• Limited computational model (rule-based forwarding). 
• Immutable, functionality only changes with new rules. 
• Limited set of invariants enforced by networks.

Controllers
• All state and actions are centralized. (Globally ordered) 
• Data plane itself is immutable.

Firewalls

• Treated as if they contain Immutable state. 
• Assume a particular (simple) computational model.

Violated by many middleboxes
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Verification of Mutable Networks
• Naive approach 

• Verify a program equivalent to the entire network.

• Feasibility is not clear 

• Large, proprietary code bases (Bro ~102K lines of code).

• Scalability is crucial 

• Networks contain several 1000 middleboxes or more.
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Example

Classify Packet

Update State

Update Packet

Forward Packet

Oracle: Specify data dependencies and outputs

Forwarding Model: Specify Completely

Outputs
Is packet infected.

Dependencies
See all packets in connection (flow).

if (packet.flow not in infected_connections) { 
    forward (packet); 
}

if (infected) { 
    infected_connections.add(packet.flow) 
}
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Scaling Verification

• Middleboxes are “flow-parallel”

• State is partitioned between “flows.”

• This enables “compositional verification”

• 30,000 middlebox networks verified in 5 minutes
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•Invariants talk about pairs of hosts. 
•When flow-parallel, need-only verify path.



Conclusion
• Real networks: 

• Contain mutable middleboxes. 
• Used to enforce rich connectivity invariants. 

• Network verification needs to evolve to handle this. 
• Several challenges 

• Right level of abstraction for specifying middleboxes. 
• Scalability, by leveraging compositional verification. 
• Future: Tractability of verification.

Some pictures taken from the Noun Project
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• Approach used in tools like Margrave. 
• # of states is small (just whether connection established). 

• False positives, some states may never occur.
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Firewall

• Do we even need to look at state evolution? 
• Check invariant for all possible states. 
• Approach used in tools like Margrave. 
• # of states is small (just whether connection established). 

• False positives, some states may never occur.

Firewall

a b
b ! a ()
⌥conn(a ! b)

a ! b ()
⌥conn(b ! a)

conn(a ! b) Connection started by a to b. 
Requires a to send packet to b, and b to respond

Can a packet from 'a' reach 'b'?


