
New Directions for
Network Verification

Aurojit Panda, Katerina Argyraki, Mooly Sagiv, Michael Schapira, Scott Shenker

Brief Summary of This Talk
• Context:

• Proliferation of network verification tools.

• Build on assumption that the network state is immutable.

• Immutable = Data packets do not change behavior of network

Brief Summary of This Talk
• Context:

• Proliferation of network verification tools.

• Build on assumption that the network state is immutable.

• Immutable = Data packets do not change behavior of network

• My point:

• Many network elements have mutable state

• Verifying mutable networks requires new techniques

• Two technical challenges: Modeling and Scaling

Outline

• Background on networks.

• Background on network verification.

• Verifying mutable networks.

Classical Networking

Switch

Switch

Switch

• Networks provide end-to-end connectivity.
• Just contain host and switches.
• All interesting processing at the hosts.

Alice
Bob

TrentMallory

Ted Stevens was right

Real Networks have Middleboxes!

Switch

Switch

Switch

Alice
Bob

TrentMallory

Real Networks have Middleboxes!

Firewall

Switch

Switch

Switch

Alice
Bob

TrentMallory

• Security (firewalls, IDSs,…).

Real Networks have Middleboxes!

Firewall

CacheSwitch

Switch

Switch

Alice
Bob

TrentMallory

• Security (firewalls, IDSs,…).
• Performance (caches, load balancers,…).

Real Networks have Middleboxes!

Firewall

Proxy CacheSwitch

Switch

Switch

Alice
Bob

TrentMallory

• Security (firewalls, IDSs,…).
• Performance (caches, load balancers,…).
• New functionality (proxies,…).

Outline

• Background on networks.

• Background on network verification.

• Verifying mutable networks.

Reachability Invariants
• Focus on reachability invariants

• Most important in practice, simple to state but already hard

Balancer

Firewall

FirewallMallory

S1

S2

Reachability Invariants
• Focus on reachability invariants

• Most important in practice, simple to state but already hard

Balancer

Firewall

FirewallMallory

S1

S2
Can S2 receive packets of type T from Mallory?

Reachability Invariants
• Focus on reachability invariants

• Most important in practice, simple to state but already hard

Balancer

Firewall

FirewallMallory

S1

S2
Can S2 receive “infected” packets from Mallory?

Reachability Invariants
• Focus on reachability invariants

• Most important in practice, simple to state but already hard

Balancer

Firewall

FirewallMallory

S1

S2
Can S2 receive packets from Mallory without a connection?

Abstractions for Invariants

• Operators want to specify packet types using abstractions:

Abstractions for Invariants

• Operators want to specify packet types using abstractions:

• “infected”

Abstractions for Invariants

• Operators want to specify packet types using abstractions:

• “infected”

• from “authenticated user”

Abstractions for Invariants

• Operators want to specify packet types using abstractions:

• “infected”

• from “authenticated user”

• from a given application

Abstractions for Invariants

• Operators want to specify packet types using abstractions:

• “infected”

• from “authenticated user”

• from a given application

• How these types are determined in a network varies

Abstractions for Invariants

• Operators want to specify packet types using abstractions:

• “infected”

• from “authenticated user”

• from a given application

• How these types are determined in a network varies

• Invariants should not depend on these details

Network Verification Today
• Switches: Forwarding rules in switches.

HSA, Veriflow, NetKAT, etc.

Network Verification Today
• Switches: Forwarding rules in switches.

HSA, Veriflow, NetKAT, etc.

• SDN Controller: Code generating these rules.

Vericon, FlowLog, etc.

Network Verification Today
• Switches: Forwarding rules in switches.

HSA, Veriflow, NetKAT, etc.

• SDN Controller: Code generating these rules.

Vericon, FlowLog, etc.

• Firewalls: Verify firewall configuration.

Fang, Margrave, etc.

Existing Assumptions/Limitations
Switches
• Limited computational model (rule-based forwarding).
• Immutable, functionality only changes with new rules.
• Limited set of invariants enforced by networks.

Existing Assumptions/Limitations
Switches
• Limited computational model (rule-based forwarding).
• Immutable, functionality only changes with new rules.
• Limited set of invariants enforced by networks.

Controllers
• All state and actions are centralized. (Globally ordered)
• Data plane itself is immutable.

Existing Assumptions/Limitations
Switches
• Limited computational model (rule-based forwarding).
• Immutable, functionality only changes with new rules.
• Limited set of invariants enforced by networks.

Controllers
• All state and actions are centralized. (Globally ordered)
• Data plane itself is immutable.

Firewalls

• Treated as if they contain Immutable state.
• Assume a particular (simple) computational model.

Existing Assumptions/Limitations
Switches
• Limited computational model (rule-based forwarding).
• Immutable, functionality only changes with new rules.
• Limited set of invariants enforced by networks.

Controllers
• All state and actions are centralized. (Globally ordered)
• Data plane itself is immutable.

Firewalls

• Treated as if they contain Immutable state.
• Assume a particular (simple) computational model.

Violated by many middleboxes

Outline

• Background on networks.

• Background on network verification.

• Verifying mutable networks.

Verification of Mutable Networks
• Naive approach

• Verify a program equivalent to the entire network.

Verification of Mutable Networks
• Naive approach

• Verify a program equivalent to the entire network.

• Feasibility is not clear

• Large, proprietary code bases (Bro ~102K lines of code).

Verification of Mutable Networks
• Naive approach

• Verify a program equivalent to the entire network.

• Feasibility is not clear

• Large, proprietary code bases (Bro ~102K lines of code).

• Scalability is crucial

• Networks contain several 1000 middleboxes or more.

Modeling Middleboxes

Modeling Middleboxes

Classify Packet Determines what application sent a packet, etc.
Complex, proprietary processing.

Modeling Middleboxes

Classify Packet

Update Packet

Determines what application sent a packet, etc.
Complex, proprietary processing.

Updating payload is complex (compression, etc.)
Updating header is simple (fixed format).

Modeling Middleboxes

Classify Packet

Update State

Update Packet

Determines what application sent a packet, etc.
Complex, proprietary processing.

Could be simple (remember packets)
or complex (update many hash tables).

Updating payload is complex (compression, etc.)
Updating header is simple (fixed format).

Modeling Middleboxes

Classify Packet

Update State

Update Packet

Forward Packet

Determines what application sent a packet, etc.
Complex, proprietary processing.

Could be simple (remember packets)
or

Updating payload is complex (compression, etc.)
Updating header is simple (fixed format).

Always simple: forward or drop packets.

Modeling Middleboxes

Classify Packet

Update State

Update Packet

Forward Packet

Determines what application sent a packet, etc.
Complex, proprietary processing.

Could be simple (remember packets)
or

Updating payload is complex (compression, etc.)
Updating header is simple (fixed format).

Always simple: forward or drop packets.

Oracle: Specify data dependencies and outputs

Modeling Middleboxes

Classify Packet

Update State

Update Packet

Forward Packet

Determines what application sent a packet, etc.
Complex, proprietary processing.

Could be simple (remember packets)
or

Updating payload is complex (compression, etc.)
Updating header is simple (fixed format).

Always simple: forward or drop packets.

Oracle: Specify data dependencies and outputs

Forwarding Model: Specify Completely

Example

Classify Packet

Update State

Update Packet

Forward Packet

Oracle: Specify data dependencies and outputs

Forwarding Model: Specify Completely

Example

Classify Packet

Update State

Update Packet

Forward Packet

Oracle: Specify data dependencies and outputs

Forwarding Model: Specify Completely

Outputs
Is packet infected.

Dependencies
See all packets in connection (flow).

Example

Classify Packet

Update State

Update Packet

Forward Packet

Oracle: Specify data dependencies and outputs

Forwarding Model: Specify Completely

Outputs
Is packet infected.

Dependencies
See all packets in connection (flow).

if (infected) {
 infected_connections.add(packet.flow)
}

Example

Classify Packet

Update State

Update Packet

Forward Packet

Oracle: Specify data dependencies and outputs

Forwarding Model: Specify Completely

Outputs
Is packet infected.

Dependencies
See all packets in connection (flow).

if (packet.flow not in infected_connections) {
 forward (packet);
}

if (infected) {
 infected_connections.add(packet.flow)
}

Scaling Verification

Scaling Verification

• Middleboxes are “flow-parallel”

Scaling Verification

• Middleboxes are “flow-parallel”

• State is partitioned between “flows.”

Scaling Verification

• Middleboxes are “flow-parallel”

• State is partitioned between “flows.”

• This enables “compositional verification”

Scaling Verification

• Middleboxes are “flow-parallel”

• State is partitioned between “flows.”

• This enables “compositional verification”

• 30,000 middlebox networks verified in 5 minutes

Compositional Verification
mbox
mbox

mbox

mbox

mbox

mbox

mbox

mbox

mbox

mbox

mbox

mbox

Compositional Verification
mbox
mbox

mbox

mbox

mbox

mbox

mbox

mbox

mbox

mbox

mbox

mbox

Compositional Verification
mbox
mbox

mbox

mbox

mbox

mbox

mbox

mbox

mbox

mbox

mbox

mbox

•Invariants talk about pairs of hosts.
•When flow-parallel, need-only verify path.

Conclusion
• Real networks:

• Contain mutable middleboxes.
• Used to enforce rich connectivity invariants.

• Network verification needs to evolve to handle this.
• Several challenges

• Right level of abstraction for specifying middleboxes.
• Scalability, by leveraging compositional verification.
• Future: Tractability of verification.

Some pictures taken from the Noun Project

Backup

Does State Mutation Matter
• Do we even need to look at state evolution?
• Check invariant for all possible states.
• Approach used in tools like Margrave.
• # of states is small (just whether connection established).

• False positives, some states may never occur.

Does State Mutation Matter

Firewall

• Do we even need to look at state evolution?
• Check invariant for all possible states.
• Approach used in tools like Margrave.
• # of states is small (just whether connection established).

• False positives, some states may never occur.

Firewall

a b
b ! a ()
⌥conn(a ! b)

a ! b ()
⌥conn(b ! a)

conn(a ! b) Connection started by a to b.
Requires a to send packet to b, and b to respond

Can a packet from 'a' reach 'b'?

