
Swift Regular Expression Matching

Paper #706

ABSTRACT
Queries involving Regular Expressions (RegEx) have a wide
range of applications including document stores, bioinformatics
and information retrieval. However, efficiently executing RegEx
queries over large datasets remains a challenging task. Data
scans do not scale well with input size; however, existing tech-
niques that avoid data scans — referred to as “black-box” ap-
proaches — offer little or no benefit over data scans for RegEx.
The latter typically execute RegEx queries by decomposing the
query along operators, computing intermediate results for indi-
vidual sub-queries (using indexes and/or partial data scans) and
combining the intermediate results along respective operators.

We analyze the black-box approach and identify operators for
which the execution time of the black-box approach can be far
from optimal. We then propose Swift, a set of transformations
over the original RegEx that allow avoiding the black-box ap-
proach for such operators. We implement Swift over several data
structures (including suffix trees, suffix arrays, compressed in-
dexes, etc.) and show that Swift achieves significant speedups
over the black-box approach and over popular open-source data
stores that support RegEx via data scans, sometimes by as much
as two orders of magnitude.

1. INTRODUCTION
Regular expressions (RegEx) are a powerful tool for text and

data analytics. Traditionally, RegEx have been used in a wide
range of applications including XML databases [15–17], bioin-
formatics [35, 48] and document stores [2, 50]. Unsurprisingly,
efficiently executing queries involving RegEx is a problem that
has been studied for decades.

However, over the last few years, RegEx have witnessed a re-
newed interest in the community due to queries involving RegEx
becoming both more important and more challenging. Indeed,
the rise of social media and Internet of Things (IoT) has enabled
access to a data source that is information rich, but also unstruc-
tured and noisy. To extract insights from this data source, in-
creasingly many applications use RegEx across various stages in
their data analytics pipeline including data cleaning and wran-
gling [6, 27, 33, 40], information extraction [18, 19, 21, 25, 26,
41, 42], natural language processing [36, 49, 56, 58] and even
interactive queries [12,13,29,30].

Queries involving RegEx have also become more challenging
due to tremendous growth in amount of data, which in turn has
led to new scalability issues. Specifically, one of the two tradi-
tional approaches to executing RegEx queries is full-data scans,
supported by DFA/NFA [2,4,7,50]. While efficient on small data
sets, scanning the entire dataset does not scale very well with in-
put data size, resulting in high query latency as the input size

grows to tens or hundreds of gigabytes [22,61]. Arguing the in-
efficiency of data scans in software, recent industry systems pro-
pose using hardware accelerators to speed up data scans [1,51].

Full-data scans can be avoided using m-gram indexes [22], po-
tentially combined with partial data scans. The idea is to pre-
process the input and index tokens of length m, either for multi-
ple [22, 44, 55] or all values of m [10, 14, 43, 62, 63]. RegEx-
friendly indexes are often considered space-inefficient [22].
However, recent research has shown that their space require-
ments can be reduced down to no more than the input size with-
out asymptotic increase in query latency [9, 38, 53, 54]. RegEx
queries using such indexes are usually executed by decomposing
the query into multiple tokens along RegEx operators, search-
ing for each token individually (using index and/or partial data
scans), and combining the intermediate results based on respec-
tive operators (§3). We call this the “black-box” approach.

In this paper, we first analyze the performance of the black-box
approach (§3). We show that, under the standard algorithmic
cost model, the Union, Repeat and Wildcard operators com-
bine the intermediate results in near-optimal time. For RegEx
queries that contain these operators only, the black-box approach
thus executes in near-optimal time. We also show that if the
query contains Concatenation operator, the execution time of
the black-box approach could be far from optimal.

We then present Swift: a simple, yet efficient, query rewrit-
ing technique that optimizes RegEx execution for the latter set
of queries (§4). Swift first constructs a RegEx execution tree (re-
ferred to as RTree) in a manner that traversing an RTree in a
bottom-up fashion is equivalent to executing the black-box ap-
proach. Swift then uses a set of transformations, that, when ap-
plied on this RTree, ensure that the black-box approach: (1) is
used only for Union, Wildcard and Repeat operators; and (2)
can be avoided altogether for Concat operator for most queries.

The design and implementation of Swift is independent of
the underlying data structures used to perform search of indi-
vidual tokens after decomposing the original RegEx query. We
have implemented Swift on top of a variety of data structures,
including inverted indexes [44, 55], suffix trees [62, 63], suffix
arrays [43, 62], compressed suffix trees [10], and compressed
suffix arrays [9,38,54], along with support for partial data scans.

One of the by-products of Swift is support for RegEx query
execution directly on a compressed representation of the input
data. This is in the spirit of the seminal work in columnar stores
that enabled executing analytical queries directly on compressed
data [8,59]. Our implementation of Swift on compressed suffix
arrays extends it to the case of RegEx queries, enabling query
execution directly on compressed data without performing data
decompression (§5).

We evaluate Swift over real-world and benchmark datasets for
applications from bioinformatics and document stores (§5). We
show that Swift transformations help in a wide range of queries,
leading to significant (as much as two orders of magnitude)
improvements over the black-box approach. We also compare
Swift against popular open-source systems from each application
that support RegEx query execution, including ElasticSearch [2],
MongoDB [50] and ScanProsite [34]. We find that Swift achieves
significant speedups compared to these systems, often as high as
three orders of magnitude.

In summary, our contributions are three-fold:

• We analyze the black-box approach to executing RegEx
queries. We show that the black-box approach over RegEx
queries containing only Union, Wildcard and Repeat oper-
ators executes in near-optimal time; however, when the query
contains Concat operator, the execution time of black-box ap-
proach could be far from optimal.

• We present Swift: a simple, yet efficient, set of transforma-
tions that ensure that the black-box approach is executed over
Union, Wildcard and Repeat operators, and can be avoided
for the Concat operator for most queries.

• We implement Swift on top of a wide range of data structures
including inverted indexes, suffix trees and suffix arrays. Our
implementation on top of compressed suffix arrays enables ex-
ecuting RegEx queries directly on a compressed representation
of the input data. We evaluate Swift against the black-box ap-
proach, and against popular open-source systems that support
RegEx queries. The evaluation shows that Swift leads to signif-
icant speed up in RegEx query execution across a wide range
of underlying data structures, queries, and applications.

2. PRELIMINARIES
We start with the notation used in the paper and the class of

data structures for which our results apply.

Notation. Throughout the paper, we use the usual definitions
of RegEx operators, as summarized in Table 1. The supported
RegEx syntax is the POSIX extended standard [3]. Let Σ denote
a totally ordered set of alphabets in the input. The operators are
interleaved by tokens, that can be either:

• A character class, denoted by ‘[]’; for example, [0-9a-dA-F]
represents any character from 0 through 9, a through d, and
A through F;

• An m-gram, which is a sequence of m alphabets from Σ.

RTree. A RegEx can equivalently be represented as a binary tree
that takes standard precedence constraints between operators
into account [37, 60]. We call this tree an RTree. Each internal
node of the RTree represents a RegEx operator, while the leaves
represent tokens (see Figure 1).

Note that the problem of constructing an RTree is orthogonal
to Swift techniques. For instance, consider an example RegEx
(RE1).* (RE2)(RE3). There are at least two ways to construct
at RTree for the above RegEx: one with Wildcard operator as
the root and the other with Concatenation as the root. In the
former, the sub-RegEx (RE2)(RE3) is evaluated first, and then
the intermediate results are combined along the Wildcard op-
erator; in the latter, the sub-RegEx (RE1).* (RE2) is evaluated
first, and then the intermediate results are combined along the

Table 1: Supported operator classes.

Operator Contents Explanation

Concat (RE1)(RE2)
RE2 immediately

follows RE1

Union RE1|RE2 Either RE1 or RE2

Repeat
RE?

RE*

RE+

Concat of RE with RE

Zero or one (?)
Zero or more (*)
One or more (+)

Wildcard (RE1).* (RE2)
RE2 occurs anywhere

after RE1

C

U

Yo Ho

R

Ho

(Yo|Ho)(Ho+)

Figure 1: RTree for RegEx (Yo|Ho)(Ho+). Nodes represent Concat
(C), Union (U) and Repeat (R) operators.

Concatenation operator. The performance of the two execu-
tion strategies depends on the cardinality of RE1, RE2 and RE3 in
the underlying dataset. It is an interesting problem to construct
an optimized RTree given the cardinality of tokens constituting
the input RegEx.

Scope. The search results for individual tokens can be computed
using a wide variety of techniques [9, 10, 14, 22, 24, 28, 31, 38,
43, 44, 46, 53–55, 62, 63]. In this paper, we focus on techniques
that avoid full-data scans, including:

• A k-gram index, that supports search of tokens of some fixed
length k [24,28,44,55]; tokens of length different than k can
be searched either via partial scans over index and/or input.

• An arbitrary m-gram index, that supports search of tokens of
arbitrary length m. Examples include suffix trees [43, 62,
63], suffix arrays [46], corresponding compressed data struc-
tures [9,10,38,53,54].

For the case of semi-structured data, we assume that the indexes
above map each token to a (documentID, offset) pair, where
the latter is the offset into the documentID where the token
occurs. For ease of description, we drop the documentID in the
better half of the paper and assume the input file to be a flat
unstructured file. Later in the paper, we adapt all the algorithms
and techniques for flat unstructured files to semi-structured data
without any change in the asymptotic complexity. Irrespective of
the indexing technique, we also assume access to the input file
to support partial data scans.

One way to use indexes is to filter the documents that con-
tain tokens in the query, and to execute RegEx via full scans on
filtered set of documents. This works well when tokens have
high selectivity, but may require full data scans for many queries
(see [22] for detailed discussion). For instance, as discussed in
§5, each and every query in the bioinformatics application will
be executed using full data scans when using indexes for filtering
only. The black-box approach outlined in §3 uses indexes more
aggressively, performing partial data scans very infrequently.

Offset 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Input Y o H o Y o H o H o Y o Y o H o H o H o $

Search(Yo) = {0, 4, 10, 12}; Search(Ho) = {2, 6, 8, 14, 16, 18}

Query: (Yo|Ho)

{0, 4, 10, 12}, {2, 6, 8, 14, 16, 18}

Result = {0, 2, 4, 6, 8, ...}

Lengths = {2, 2, 2, 2, 2, ...}

Query: (Yo)(Ho)

{0, 4, 10, 12}, {2, 6, 8, 14, 16, 18}

Result = {0, 4, 12}

Lengths = {4, 4, 4}

Query: (Ho)+

{2, 6, 8, 14, 16, 18}

Result = {2, 6, 6, 8, 14, 14, 14, ...}

Lengths = {2, 2, 4, 2, 2, 4, 6, ...}

Query: (Yo).*(Ho)

{0, 4, 10, 12}, {2, 6, 8, 14, 16, 18}

Result = {0, 0, 0, 0, 0, 4, 4, 4, ...}

Lengths = {4, 8, 10, 16, 20, 6, 12, 14, ...}

Figure 2: Illustration of the third step in black-box approach from §3 — executing algorithms in Appendix A on an example input file (the top row
shows the file offsets for ease of illustration). The intermediate search results (i.e., offsets into the input file) for the 2-grams Yo and Ho are shown next.
(top left) The Union operator outputs the set union of the offsets for the two operands. (bottom left) The Concat operator outputs all left operand
offsets for which there exists a right operand offset satisfying offsetright = offsetleft+lengthleft. (top right) The Repeat operator is similar to the
Concat operator except for length admits values depending on last result. (bottom right) The Wildcard operator outputs all left operand offsets for
which there exists a right operand offset satisfying offsetright ≥ offsetleft+lengthleft.

3. BLACK-BOX REGEX
In this section, we outline and analyze the black-box approach

to executing RegEx queries.

Black-box RegEx. The “black-box” approach can be summarized
in three steps (see example below):
1. Construct an RTree;

2. Compute search results (offsets into the input file) for each
leaf of the tree (token) individually1

3. Traverse the tree bottom up, generating the results at each
operator node using intermediate results for the left and the
right subtrees. The algorithms to combine intermediate re-
sults for each operator2 are in Appendix A and are illustrated
in Figure 2.

Example. Consider a query (Yo|Ho)(Ho+) over the input file
of Figure 2. The black-box approach first constructs the cor-
responding RTree (as in Figure 1) and computes the offsets
for individual tokens ({Yo, Ho}). The RTree is then traversed
bottom-up — token results are first used to compute the result for
(Yo|Ho) and for (Ho)+, as in Figure 2, and then combined along
the Concat operator to get the final result {4, 12, 14}. Note
that to combine the results across multiple operators, the length
for corresponding intermediate results (e.g., 2 for (Yo|Ho)) also
needs to be tracked.

3.1 Analysis of Black-box RegEx
We now analyze the black-box approach under the standard

RAM computational model [23] 3. Specifically, we obtain the

1Any of the techniques from §2 may be used to compute inter-
mediate search results; thus the “black-box” approach.
2We believe these algorithms to be standard, but outline them
for sake of completeness of our analysis results.
3While a standard for algorithmic analysis, the RAM computa-
tion model ignores the effects of data caching. Nevertheless, it
provides a rough estimate of the efficiency of the individual op-
erators in the black-box approach. Our evaluation (§5) takes this
limitation into account by ensuring that all data fits in memory.

following result for the individual operator algorithms from Ap-
pendix A (proofs in Appendix A):

Lemma 1 Given the intermediate results for the left and the right
subtree as sorted arrays of size m and n≥m, there exist algorithms
for Union, Repeat, Wildcard and Concat operators that com-
bine the intermediate results in time O(so),O(so),O(so logn) and
O(m+n), respectively, where so is the cardinality of the final out-
put.

It is known that, under the RAM computational model, the time
complexity of an algorithm is lower bounded by the output
size [23]. Since the output cardinality so is dependent on the
input file and is unknown a priori, the above lemma shows that
independent of the cardinality of the results for the left and the right
subtree, the Union, Repeat and Wildcard operators combine
these results in almost optimal time for any fixed RTree4. How-
ever, such is not the case for the Concat operator — the output
cardinality for the Concat operator (O(1) in the worst-case) can
be arbitrarily smaller than the cardinality of results for the left
or the right subtree. Thus, the Concat operator when operating
on intermediate results of the left and the right subtree may end
up performing significantly more operations than ideal — linear
in the output size — making the black-box approach inefficient.

Lemma 1, thus, suggests two possible ways to improve the
execution latency for any given RegEx. First, if possible, avoid
executing Concat operator on intermediate results of the left
and the right subtree. Second, transform the RTree so that
the Union, Repeat and Wildcard operators are pushed up the
RTree; compared to the original RTree, the output cardinality so
for these operators is smaller up the RTree, making these oper-
ators more efficient. In §4, we present a set of transformations
on the RTree that achieve these goals.

Caching can still affect partial data scan performance, but since
partial scans are performed at random locations for only a few
characters, the effect on end-to-end query performance is mini-
mal.
4The Wildcard operator requires an extra logarithmic factor in
terms of the cardinality of the intermediate results.

C
U

RE1 RE2

RE3

(RE1|RE2)(RE3)

U
C

RE1 RE3

C

RE2 RE3

(RE1)(RE3)|(RE2)(RE3)

T1 C

RE1

U

RE2 RE3

(RE1)(RE2|RE3)

U
C

RE1 RE2

C

RE1 RE3

(RE1)(RE2)|(RE1)(RE3)

T2

Figure 3: Pull-Up Union (§4.1): transformation T1 is used if the Union operator is the left child, and T2 otherwise.

Concatenation of Repeats of Character Class tokens. Con-
sider a RegEx (R1)(R2+) with two tokens R1,R2, where R1 is an
m-gram and R2 is a character class. Indeed, one way to avoid the
black-box approach for this particular case of the Concat oper-
ator is to search for the offsets of R1, and then perform a partial
scan around these offsets to check if the following characters be-
long to R2. We show in Appendix B that, in this case, partial scans
perform better than combining individual results for R1 and R2
under the above cost model (independent of the input file). In-
tuitively, this follows from the result of Lemma 1, which shows
that the Concat operator may become increasingly inefficient as
the cardinality of intermediate results increases. This is espe-
cially the case when either of R1,R2 is a repeat of character class,
since in general, the cardinality for repeats of character class is
usually very large.

End-to-end performance. The end-to-end performance of the
black-box approach depends on the time taken to construct the
RTree, searching for leaf tokens, and traversing the tree com-
bining the intermediate results at nodes. We show in §5 that
the last step is indeed the performance bottleneck (thus mak-
ing Lemma 1 result more relevant). Intuitively, this is because
constructing an RTree and searching for individual tokens is
extremely fast when tokens are indexed. The performance of
the third step, in turn, requires combining intermediate results
across the operators along the RTree, which is significantly more
complex than (a few) binary searches to search for tokens in the
index.

4. Swift
We now describe Swift, a set of transformations for the RTree

that improves upon the black-box approach using two ideas.
First, it transforms a naïvely built RTree into one where most
Union, Wildcard and Repeat operators are not the children
of a Concat operator (§4.1, §4.2, §4.3). These operators are,
thus, pushed up the tree and operate in a near-optimal manner
as shown in Lemma 1. Second, it avoids the black-box approach
for the Concat operator for most RegEx queries (§4.4). We fi-
nally show how to combine these two ideas to construct an effi-
cient end-to-end RegEx execution engine (§4.5).

4.1 Pull-Up Union
The Pull-Up Union transformation attempts to transform a

given RTree into one where Union operator is not a child of
a Concat operator. The transformation is formally described
in Algorithm 1, and is illustrated in Figure 3. The transfor-
mation uses a simple observation that a RegEx of the form
(RE1|RE2)(RE3) is equivalent to (RE1)(RE3)|(RE2)(RE3), for arbi-
trary RegEx RE1,RE2,RE3. However, the ordering of the Union
and the Concat operands needs to be handled carefully (see Fig-
ure 3). Note that if both children of the Concat operator are
Union operators, the transformation needs to be applied recur-
sively (as in Algorithm 1) since the transformation introduces
new Concat nodes in the RTree.

Algorithm 1 PullUpUnion

1: procedure Pull-Up-Union(node: RTree)

/* Base case: terminate if leaf node is a token. */
2: if node type is Token then

3: return

4: end if

/* Pull up unions in left and right sub-tree. */

5: pullUpUnion(node.left)

6: pullUpUnion(node.right)

7: if node type is Concat then

/ *Apply transformations (recursively)*/

8: if node.left type is Union then

9: apply transformation T1 to node (Figure 3)

10: else if node.right type is Union then

11: apply transformation T2 to node (Figure 3)

12: end if

13: pullUpUnion(node.left)

14: pullUpUnion(node.right)

15: end if

16: return

17: end procedure

4.2 Pull-Up Wildcard
The Pull-Up Wildcard transformation attempts that the re-

sulting RTree does not have a Wildcard operator as a child of
a Concat operator. The transformation builds upon another
simple observation that a RegEx of the form (RE1)(RE2.*RE3)
is equivalent to (RE1)(RE2).*RE3. Figure 4(a) illustrates this
transformation on a RTree containing Wildcard as a child of the
Concat operator. Note that no new nodes are introduced, and
thus, the transformation does not need to be applied recursively.

4.3 Pull-Out Repeat
Unlike Union and Wildcard operators, ensuring that a

Repeat operator is not a child of a Concat operator is more
challenging. Swift only partially handles this case — when the
child of the Repeat operator is either a Wildcard operator or an
m-gram token, the transformation pulls out the Repeat operator
from the RTree. Otherwise, the subtree rooted at the Repeat
operator (denoted by RE+ below) is left as is.

RE with Wildcard. Note that if RE contains a Wildcard opera-
tor, the child of the Repeat operator is the Wildcard operator
(due to standard precedence order). If RE≡ RE1.*RE2, then it
is easy to see that results for RE+ are same as that of RE, by def-
inition of the Wildcard operator. Therefore, if the (only) child
of the Repeat operator is a Wildcard operator, we simply re-
move the corresponding Repeat node from the RTree (see (Fig-
ure 4(b))).

C

RE1

W

RE2 RE3

(RE1)(RE2.*RE3)

W
C

RE1 RE2

RE3

((RE1)(RE2)).*RE3

(a) Pull-Up Wildcard (§4.2)

R

W

RE1 RE2

(RE1.*RE2)+

W

RE1 RE2

(RE1.*RE2)

(b) Pull-Out Repeat (§4.3)

C

C

T1 T2

C

T3 T4

(T1)(T2)(T3)(T4)

C

T1T2 T3T4

(T1T2)(T3T4)

T1T2T3T4

(c) Pull-Out Concat (§4.4)

C

T R

[...]

(T)([...]+)

PS

T R

[...]

(T)([...]+)

(d) Partial Scans (§4.4)

Figure 4: Swift Transformations

RE with m-gram token. Now consider the case when RE does not
contain a Wildcard operator; since Swift does not transform the
RTree when RE contains either of Union or Concat operators, RE
must be a token. If RE is an m-gram, the transformation exploits
the observation that a Repeat operator can equivalently be rep-
resented as a Union of Concatenations. Specifically, let REi

represent exactly i self-concatenations of RE; that is, RE1 = RE,
RE2 = (RE)(RE), and so on. Then, the expression RE+ can be
written as RE+=(RE1|RE2|RE3|...|REn), where n is the number of
characters in the input file. The transformation, thus, replaces
the repeat operator by a subtree composed of Union and Concat
operators corresponding to the above expression.

However, naïvely doing this transformation will result in RTree
having very large depth (due to expanding RE+ for length n, the
number of characters in the input file). Indeed, in practice, there
exists a small k such that REk has non-zero number of occur-
rences while REk+1 has zero occurrences. It is therefore sufficient
to expand the Repeat operator for only k terms. Furthermore,
since RE is an m-gram, it suffices to perform a binary search for
k — each step in the binary search looks up the index to check
whether REi has non-zero occurrences. This requires log(n) in-
dex lookups but is still faster than the black-box approach. The
subtree rooted at the Repeat operator is thus replaced by a com-
bination of Union and Concat operators. We then apply the
transformations from §4.1 and §4.2 to ensure that Concat is not
a parent of the Union or Wildcard operators.

4.4 Pull-Out Concat
Finally, we introduce a simple Pull-Out Concat transforma-

tion, which is executed when either of the two conditions are
met. First, if both the children of a Concat operator are tokens
(say, T and T’), the transformation pulls out the Concat opera-
tor and replaces the subtree rooted at the Concat operator with
a new token TT’, a longer string that is a string concatenation
of the two children tokens (Figure 4(c)). Second, if the child of
the Concat operator is a Repeat operator with character class
token as its child, the sub-RegEx must be of the form (R1)(R2+).
As discussed in §3, Swift executes this sub-expression using par-
tial scans. The transformation thus pulls out the Concat operator
and replaces it with a partial scan (PS) operator (Figure 4(d)).

4.5 Putting it all together
We finally connect all the pieces together, and show how Swift

executes a given RegEx query. Given the query, we construct a
RTree; we then traverse the RTree in a bottom-up fashion, ap-
plying the transformations from §4.1, §4.2 and §4.3 to transform
the original RTree into one with the property that most of the
Concat operators only have tokens or other Concat operators
as its children. Given this new RTree, we again traverse the tree
bottom-up, applying Pull-Out Concat transformation. Finally,
we execute search for the tokens (corresponding to the leaves
of the new RTree), and traverse the RTree bottom-up combining
the intermediate results across the operators. Once the root of
the tree is reached, the final query results are returned.

Limitations of Swift. Note that there are two cases where Swift
may still execute the Concat operator on intermediate results.
These cases are when one of the children of the Concat opera-
tor is a: (i) PS operator; and, (ii) Repeat operator with Union
and/or Concat operators as its children.

5. EVALUATION
We now evaluate the performance of Swift against the black-

box approach and against popular open-source systems that
support RegEx query execution, across a range of applications,
datasets, and queries.

5.1 Experimental Setup
Datasets and Queries. Our datasets and queries are drawn from
two applications that commonly use RegEx: bioinformatics [35,
48] and document stores [2,50].

For the bioinformatics application, we use the standard Pfam-
A Protein dataset [32], which is 8GB in size and consists of 46
million protein sequences, each composed of 20 distinct amino-
acids represented by the standard IUPAC one letter codes [5].
Typical RegEx queries on these sequences search for protein sig-
natures, that are certain important regions within the sequence.
We present results for 10 randomly selected protein signature
RegEx queries from the Prosite [57] database (see Table 2).

For the document store application, we use a collection of 4.8
million English Wikipedia articles, constituting roughly 10GB of
data. Unfortunately, there is no standard workload for RegEx

Table 2: Protein Signature RegEx queries taken from the Prosite Database [57]
Query ID Query Protein Family

Query#1 [DE][SN]L[SAN][ACDFHKMLNQPSRTWVY][ACDGFIHKMNQPSRWVY][DE].EL GRANINS_1
Query#2 [LIVMF][LIMN]E[LIVMCA]N[PATLIVM][KR][LIVMSTAC] CPSASE_2
Query#3 [KRG][KR].[GSAC][KRQVA][LIVMK][WY][LIVM][KRN][LIVM][LFY][APK] RIBOSOMAL_L16_1
Query#4 [DE]GSW.[GE].W[GA][LIVM].[FY].Y[GA] TERPENE_SYNTHASES
Query#5 Q[LIV]HH[SA]..DG[FY]H CAT
Query#6 [AC]GL.FPV HISTONE_H2A
Query#7 CKPCLK.TC CLUSTERIN_1
Query#8 Y..[HP]W[FYH][APS][DE].P.KG.[GA][FY]RC[IV][RH][IV] BTG_1
Query#9 G[MV]ALFCGCGH MYELIN_PLP_1
Query#10 [FYW]P[GS]N[LIVM]R[EQ]L.[NHAT] SIGMA54_INTERACT_3

Table 3: Document analysis RegEx queries taken from [22]; \d and \. refer to any digit (i.e.[0-9]) and to the dot (‘.’) character,
respectively.

Query ID Query Description

Query#1 <script>.*</script> HTML Scripts
Query#2 Motorola.*(XPC|MPC)([0-9])+([0-9a-z])* Motorola PowerPC chip numbers
Query#3 William [A-Z]([a-z])+ Clinton President Clinton’s middle name
Query#4 1-\d\d\d-\d\d\d-\d\d\d\d US Phone Numbers
Query#5 ([a-z0-9_\.])+(([a-z0-9])+\.)*stanford\.edu Stanford domain URLs.

6

12

18

To
ta

lS
to

ra
ge

Fo
ot

pr
in

t
In

pu
t

Si
ze

Wikipedia Dataset Pfam-A Dataset

ST SA CSA1 CSA2

Figure 5: Storage footprint for different data structures for the
Wikipedia and Pfam-A datasets. Note that ST and SA require storing the
original input as well (shown as solid fill), while CSA provides similar
functionality without storing the input.

queries on document stores; to that end, we ran all the queries
from [22], and present results for queries that output non-zero
results for Wikipedia dataset (see Table 3).

Data structures and Systems. Intuitively, the performance ben-
efits of Swift over the black-box approach depend on the query
as well as the underlying data structure used to search m-gram
tokens. We have implemented the black-box and the Swift ap-
proaches on a variety of data structures, including, Suffix Trees
(ST) [63], Suffix Arrays with LCP (SA) [43], k-gram indexes,
compressed suffix trees (CST), and compressed suffix arrays
(CSA) [9], along with support for partial scans. Each of these
data structures achieves a unique tradeoff between the storage
footprint and the search latency for m-gram tokens. We present
results for ST, SA, and CSA (termed CSA1 and CSA2)5 since
these achieve strictly better space-latency tradeoff than other
data structures. Figure 5 shows the storage footprint for these
data structures.

Note that CSA2 acheives a storage footprint smaller than the
input itself ; consequently, our following results show that Swift
enables execution of RegEx queries directly on compressed data.

5CSA can achieve multiple operating points on the storage-
latency tradeoff space depending on the desired compression
factor; we present the results for the two extremes.

We then compare the performance of Swift against popu-
lar open-source systems that support RegEx queries — Elas-
ticSearch [2] and MongoDB [50] for the document store ap-
plication, and ScanProsite [34] for the bioinformatics applica-
tion. ElasticSearch uses Lucene [45] as its underlying search-
ing and indexing engine, and executes RegEx queries using an
automaton-based approach. MongoDB indexes are not sup-
ported for documents larger than 1KB (which is the case for
some of the Wikipedia articles); thus, MongoDB executes RegEx
queries using full-data scans. Finally, ScanProsite is a publicly
available tool for executing RegEx on protein sequences using
main memory data scans.

In terms of storage overhead, ElasticSearch and MongoDB
have storage footprint of roughly 1.4× the input size while Scan-
Prosite uses storage exactly 1× the input size. The rest of the pa-
per focuses on latency of executing RegEx, over an Amazon EC2
r3.8xlarge instance with 244GB RAM, large enough to fit each of
the data structures completely in memory (for all the systems).

5.2 Comparison against Black-box
We now evaluate the performance benefits of Swift against the

black-box approach. Our key observations are:

• Figure 7 and Figure 8: When a query comprises of Union,
Repeat and Wildcard operators only (that execute in near-
optimal time as shown in Lemma 1), Swift performance is
identical to the black-box approach. However, most queries
(12 out of 15 in our evaluation) can benefit significantly using
Swift, sometimes by as much as two orders of magnitude.

• Figure 9: The choice of data structure (ST, SA, CSA) has a
significant impact on absolute RegEx query execution latency,
both for the black-box and the Swift approach. Interestingly,
the higher storage footprint often comes with the benefit of
super-linear improvements in latency.

• Irrespective of the underlying data structure, character classes
(and repeats of character classes) often make RegEx query ex-
ecution complex and time consuming (for both the black-box
and the Swift approach). Intuitively, character classes often
lead to a large number of intermediate results (and hence,
higher latency in combining intermediate results) or a large
fraction of file scanned during partial data scans.

0.01

0.1

1

10

100

Se
ar

ch
Ti

m
e

Tr
av

er
sa

lT
im

e

Query# 1 2 3 4

ST SA CSA1

(a) Wikipedia Dataset

0.01

0.1

1

10

100

Se
ar

ch
Ti

m
e

Tr
av

er
sa

lT
im

e

Query# 1 2 4 5 6 7 8 9

ST SA CSA1

(b) Pfam-A Dataset

Figure 6: Understanding Latency Bottlenecks. Ratio of search and traversal time for queries from Table 2 and Table 3. The black-box approach
does not finish within 10 minutes of execution time for CSA2, for Wikipedia Query#5 and for Pfam-A Query#3, #10. Besides a few exceptions (§5.2),
traversal is the latency bottleneck, taking 10× more time than search — precisely the problem Swift aims to solve.

We discuss the results in depth below.

Understanding latency bottlenecks in the black-box ap-
proach. Recall from §3, the black-box approach for RegEx com-
prises of (i) search, which includes constructing the RTree and
searching for leaves (i.e., Steps 1 and 2) and (ii) traversal, com-
bining intermediate results while traversing the RTree (Step 3).
Figure 6 shows the ratio of the search time and the traversal time
for the evaluated queries. We observe that, for most queries, the
traversal requires at least 10× more time than search (with two
exceptions, as discussed below). The queries are, thus, bottle-
necked by combining the intermediate results while traversing
the RTree — precisely the problem that Swift aims to solve.

There are two exceptions when the traversal time is compa-
rable or smaller than search time, though. First, in comparison
to ST and SA, search in CSA1 requires some extra computations
that are linear in cardinality of search results. It, thus, makes
traversal taking 2–4× more time than search for most queries
(rather than 10×). Second, for some queries (Query#1, #4
of the Wikipedia dataset), the intermediate results after initial
search (Query#1) or after first partial scan (Query#4) are very
small making traversals extremely fast. Nevertheless, for most
queries, the traversal takes 4–10× more time than search.

Queries for which Swift is unnecessary. We start the discus-
sion with queries where Swift transformations are unnecessary
(3 out of 15 queries in our evaluation). These queries either:
(1) do not contain sub-optimal operators for the black-box ap-
proach (e.g., Query#1 for Wikipedia); or (2) contain character
classes where both the black-box and the Swift approaches per-
form partial scans (e.g., Query#2, #3 for Wikipedia). Figure 7
shows that Swift has performance similar to the black-box ap-
proach for these queries.

Benefits of Swift. For most of the queries (12 out of 15 queries in
our evaluation; see Figure 7 and Figure 8), Swift approach yields
significant speedup over the black-box approach. These queries
have three peculiar properties that make the black-box approach
inefficient. First, some of these queries (e.g., Query #1�#5,
#8, #10 in Pfam) contain a large number of Concat operators,
making the black-box approach inefficient due to Lemma 1. Sec-
ond, queries that contain fewer Concat operators (e.g., Query
#6, #7, #9 in Pfam) often have large number of occurrences
for individual tokens; Lemma 1 shows that as the cardinality of
results for the left and the right subtree increases, the black-box
approach may get worse for the Concat operator. Finally, all
Pfam queries as well as some Wikipedia queries (e.g., Query #4,

#5) have character classes around frequently occurring tokens,
making partial data scans inefficient since a large fraction of the
input needs to be scanned. Swift overcomes these inefficiencies
of the black-box approach using its transformations, leading to
one to two orders of magnitude faster query execution than the
black-box approach (more in-depth discussion on Swift perfor-
mance below).

On choice of data structure. While Swift offers performance
benefits across all the evaluated data structures, the absolute
performance depends on the underlying data structure. Figure 9
shows the performance of SA, and the two versions of CSA rela-
tive to the ST data structure; these are the same results as in Fig-
ure 7 and Figure 8, just focusing on Swift performance and scaled
by the ST latency. Interestingly, the higher storage footprint of
ST often offers super-linear latency benefits when the system is
not memory-constrained — ST requires 2.2×,4.3× and 26.2×
higher storage than SA, CSA1 and CSA2, and offers 4.7×,10×
and 13.3× lower latency on an average, respectively. Indeed,
the tradeoff may be different for memory-constrained systems;
we leave a through evaluation of this case for future work.

Digging deeper into Swift performance: when and why it
works?. Irrespective of the underlying data structure, Swift
achieves its performance benefits by avoiding the Concat opera-
tor over the intermediate results altogether. This is, for instance,
the case for all queries in the bioinformatics application. Be-
sides avoiding the suboptimal Concat operator, Swift achieves
performance benefits due to another interesting reason. Intu-
itively, after the transformations are applied on the RTree, the
leaves of the resulting RTree has tokens that are of length longer
than the tokens in the original query. Figure 10 shows that, for
the Pfam-A dataset, the number of occurrences (and hence, the
cardinality of intermediate results) decreases exponentially as
the length of the tokens increase; we see a similar trend for the
Wikipedia dataset. The operators up the RTree, hence, operate
on smaller cardinality sets leading to further improvements in
the query latency.

Finally, we observe that Swift performance varies significantly
across queries. Interestingly, there is a particular parameter that
allows us to explain this performance difference. It turns out
that Swift performance is proportional to the number of leaves
with non-zero occurrences in the transformed RTree. Of course,
it is hard to find the number of leaves with non-zero occurrences
apriori since it depends on the input file. We can, however, esti-
mate this by assuming that each leaf in the RTree has non-zero

101

103

105

La
te

nc
y

(m
s)

D
N

F

Query# 1 2 3 4 5

Black-box Swift

(a) Suffix Tree

101

103

105

La
te

nc
y

(m
s)

D
N

F

Query# 1 2 3 4 5

Black-box Swift

(b) Suffix Array

101

103

105

La
te

nc
y

(m
s)

D
N

F

Query# 1 2 3 4 5

(c) CSA1

101

103

105

La
te

nc
y

(m
s)

D
N

F

Query# 1 2 3 4 5

(d) CSA2

Figure 7: Black-box vs. Swift across different data structures for the Wikipedia dataset. Swift achieves significant speedups for queries where
Swift transformations are applicable (Query#4-5); queries where the transformations are not applicable or require partial scans see performance similar
to the black box approach (Query#1-3). Queries marked with DNF did not finish within 10 minutes of execution time.

101

103

105

107

La
te

nc
y

(m
s)

D
N

F

D
N

F

Query# 1 2 3 4 5 6 7 8 9 10

Black-box Swift

(a) Suffix Tree

101

103

105

107

La
te

nc
y

(m
s)

D
N

F

D
N

F
Query# 1 2 3 4 5 6 7 8 9 10

Black-box Swift

(b) Suffix Array

101

103

105

107

La
te

nc
y

(m
s)

D
N

F

D
N

F

Query# 1 2 3 4 5 6 7 8 9 10

(c) CSA1

101

103

105

107

La
te

nc
y

(m
s)

D
N

F

D
N

F

D
N

F

D
N

F

D
N

F

D
N

F

D
N

F

D
N

F

Query# 1 2 3 4 5 6 7 8 9 10

(d) CSA2

Figure 8: Black-box vs. Swift across different data structures for the Pfam-A dataset. Since Swift transformations are applicable for all queries,
Swift offers significantly lower latency compared to the black box approach. Queries marked with DNF did not finish within 10 minutes of execution
time.

10

100

N
or

m
al

iz
ed

La
te

nc
y

Query# 1 2 3 4 5

SA CSA1 CSA2

(a) Wikipedia Dataset

10

100

N
or

m
al

iz
ed

La
te

nc
y

Query# 1 2 3 4 5 6 7 8 9 10

SA CSA1 CSA2

(b) Pfam-A Dataset

Figure 9: Comparison of Swift latency across different data-structures. Query latency results are normalized against Suffix Tree latency. Note that
the higher storage footprint of Suffix Tree offers super-linear gains over Suffix Array and Compressed Suffix Arrays.

103

106

109

A
ve

ra
ge

#
O

cc
ur

re
nc

es

Token Length
2 4 6 8 10

Figure 10: Why Swift works. Variation of token frequency with token
length for the Pfam-A dataset — the average number of occurrences of
the tokens decrease as their length is increased.

number of occurrences. The number of leaves are then given
by the cartesian product of the sets corresponding to each token
in the original RTree. Our evaluation suggests that in most cases
(except for one query, Query#8), the total number of leaves com-
puted using the cartesian product provides a good estimate for
the number of leaves in the transformed RTree. Intuitively, this
is because most of the tokens have at least a few occurrences in
large datasets.

5.3 Comparison against Existing Systems
We now evaluate the performance of Swift against popular

open-source systems that support RegEx query execution. We
use CSA2 as our underlying data structure for the Swift algo-
rithms since Swift has the worst performance for this data struc-
ture among all the evaluated ones.

Document Stores. Figure 11(a) summarizes the query latency
results for the compared systems. Swift executes RegEx signif-
icantly faster than other systems, with latency benefits varying
from 1–3 orders of magnitude across all the evaluated queries.
MongoDB scans through all of the documents to find matches to
the regular expressions, while ElasticSearch scans through all the
index entries. Swift, however, transforms the RTree to efficiently
search for component m-grams within the RegEx, avoiding data
scans as much as possible. This enables Swift to achieve much
lower query latency compared to above systems.

Bioinformatics. The query latencies for Swift and ScanProsite
are summarized in Figure 11(b). Swift significantly outperforms

ScanProsite, often as much as by four orders of magnitude. This
is primarily because ScanProsite scans the entire data for each
query (leading to roughly same latency across queries). Swift,
on the other hand, avoids scans and can efficiently lookup the
RegEx tokens from the underlying data structure (CSA, in this
case), enabling it to find matches for the protein signatures much
faster.

6. RELATED WORK
There are two traditional approaches to executing RegEx

queries. We compare and contrast Swift against these ap-
proaches.

Index-based approaches. There are a multitude of techniques
both for indexing and using indexes. On the indexing front, we
note that RegEx by nature contain strings that are not linguisti-
cally meaningful, making traditional indexing techniques (e.g.,
inverted indexes) that use English words or other linguistic con-
structs [24, 28, 44, 55] as keys less useful. As a result, several
specialized indexes for RegEx have been designed — m-gram
indexes [22, 52], full-text indexes [45, 50], and tree-based in-
dexes [10,11,14,20,31,39,43,46,47,62,63], among others.

How these indexes are used to execute RegEx typically de-
pends on the underlying indexing technique. However, at a high-
level, there are two possible approaches. First, using indexes as
a mechanism to filter the documents to be scanned [22]; or, exe-
cuting the entire RegEx using indexes, potentially supported by
partial data scans (the black-box approach from §3). The first
approach is extremely fast when the selectivity of indexed to-
kens is high, that is, filtering results in very few documents to be
scanned. However, when such is not the case (e.g., all Pfam-A
queries), this results in full data scans. This paper focused on the
second approach, and identified the sources of inefficiencies in
this approach via analyzing the performance of individual RegEx
operators. The proposed Swift technique overcomes these ineffi-
ciencies using a set of transformations on the underlying RTree,
achieving as much as two orders of magnitude improvements
over the black-box approach.

Scan-based approaches, and why are index-based ap-
proaches not used in practice?. Most of the popular open-
source data stores that support RegEx queries [2, 50] resort to
data scans rather than using index based techniques. We believe
this is for two reasons: (i) the storage overhead of indexes spe-
cialized for RegEx queries [22]; and (ii) index-based techniques
do not offer latency gains over data scans (even in our evaluation

101

103

105

107

La
te

nc
y

(m
s)

Query# 1 2 3 4 5

Elasticsearch MongoDB Swift

(a) Document Stores

101

103

105

107

La
te

nc
y

(m
s)

Query# 1 2 3 4 5 6 7 8 9 10

ScanProsite Swift

(b) Bioinformatics

Figure 11: Swift executes RegEx significantly faster than popular open-source systems across various application domains.

from §5, compare results for black-box approach in Figure 7 and
Figure 8 with results for scan-based approaches in Figure 11). In-
dexes thus use more storage while providing little or no latency
benefits.

However, recent research has shown that the storage overhead
of indexes can be reduced down to no more than the input size
without asymptotic increase in query latency [9,38,53,54], thus
motivating us to revisit index-based approaches. Moreover, Swift
transformations lead to orders of magnitude speed up over the
scan-based approaches for most of the evaluated queries. Swift,
when operating on CSA1 and CSA2, resolves both the above is-
sues with index-based approaches making them an interesting
choice for executing RegEx queries.

7. CONCLUSION
In this paper, we revisit the index-based techniques to execut-

ing RegEx queries. We first analyze the performance of individ-
ual operators in the black-box approach, and show that while
Union, Repeat and Wildcard operators are individually effi-
cient, index-based techniques are particularly inefficient when
the RegEx query contains Concatenation operator. We then
proposed Swift, a set of transformations on the original RegEx
query that ensures that the black-box approach can be avoided
for the Concat operator to whatever extent possible. Evalua-
tion of Swift against the black-box approach and against popu-
lar open-source data stores shows that Swift leads to significant
speed ups in RegEx query execution, sometimes by two to three
orders of magnitude.

8. REFERENCES
[1] Accelerating text analytics queries on reconfigurable

platforms. http://www.ece.cmu.edu/~calcm/carl/lib/
exe/fetch.php?media=carl15-atasu.pdf.

[2] Elasticsearch. http://www.elasticsearch.org/.
[3] Extended Regular Expressions.

http://pubs.opengroup.org/onlinepubs/9699919799/.
[4] Introducing oracle regular expressions.

http://www.oracle.com/technetwork/database/
focus-areas/application-development/
twp-regular-expressions-133133.pdf.

[5] IUPAC One letter codes for Amino Acids.
http://www.bioinformatics.org/sms/iupac.html.

[6] Openrefine. http://openrefine.org.
[7] Regular expressions in mysql.

https://dev.mysql.com/doc/refman/5.7/en/regexp.html.
[8] D. J. Abadi, S. R. Madden, and M. Ferreira. Integrating

Compression and Execution in Column-Oriented Database

Systems. In ACM International Conference on Management
of Data (SIGMOD), 2006.

[9] R. Agarwal, A. Khandelwal, and I.Stoica. Succinct:
Enabling Queries on Compressed Data. In USENIX
Symposium on Network System Design and Implementation
(NSDI), pages 337–350, 2015.

[10] Aoe, Jun-ichi and Morimoto, Katsushi and Sato, Takashi.
An Efficient Implementation of Trie Structures. Software:
Practice and Experience, pages 695–721, 1992.

[11] N. Askitis and R. Sinha. HAT-trie: A Cache-conscious
Trie-based Data Structure for Strings. In Australasian
Conference on Computer Science (ACSC), pages 97–105.
Australian Computer Society, Inc., 2007.

[12] P. Barceló, L. Libkin, and J. L. Reutter. Querying Graph
Patterns. In Proceedings of the Thirtieth ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems, PODS ’11, pages 199–210, New York,
NY, USA, 2011. ACM.

[13] P. Barceló Baeza, M. Romero, and M. Y. Vardi. Semantic
acyclicity on graph databases. In Proceedings of the 32Nd
Symposium on Principles of Database Systems, PODS ’13,
pages 237–248, New York, NY, USA, 2013. ACM.

[14] R. Bayer and E. McCreight. Organization and
Maintenance of Large Ordered Indices. In ACM-SIGMOD
Workshop on Data Description, Access and Control, pages
107–141, 1970.

[15] G. J. Bex, W. Gelade, W. Martens, and F. Neven.
Simplifying XML Schema: Effortless Handling of
Nondeterministic Regular Expressions. In ACM
International Conference on Management of Data
(SIGMOD), pages 731–744, 2009.

[16] G. J. Bex, F. Neven, T. Schwentick, and K. Tuyls. Inference
of Concise DTDs from XML Data. In International
Conference on Very Large Data Bases (VLDB), pages
115–126, 2006.

[17] G. J. Bex, F. Neven, and S. Vansummeren. Inferring XML
Schema Definitions from XML Data. In International
Conference on Very Large Data Bases (VLDB), pages
998–1009, 2007.

[18] P. Bohannon, N. Dalvi, Y. Filmus, N. Jacoby, S. Keerthi,
and A. Kirpal. Automatic Web-scale Information
Extraction. In Proceedings of the 2012 ACM SIGMOD
International Conference on Management of Data, SIGMOD
’12, pages 609–612, New York, NY, USA, 2012. ACM.

[19] F. Brauer, R. Rieger, A. Mocan, and W. M. Barczynski.
Enabling Information Extraction by Inference of Regular

http://www.ece.cmu.edu/~calcm/carl/lib/exe/fetch.php?media=carl15-atasu.pdf
http://www.ece.cmu.edu/~calcm/carl/lib/exe/fetch.php?media=carl15-atasu.pdf
http://www.elasticsearch.org/
http://pubs.opengroup.org/onlinepubs/9699919799/
http://www.oracle.com/technetwork/database/focus-areas/application-development/twp-regular-expressions-133133.pdf
http://www.oracle.com/technetwork/database/focus-areas/application-development/twp-regular-expressions-133133.pdf
http://www.oracle.com/technetwork/database/focus-areas/application-development/twp-regular-expressions-133133.pdf
http://www.bioinformatics.org/sms/iupac.html
http://openrefine.org
https://dev.mysql.com/doc/refman/5.7/en/regexp.html

Expressions from Sample Entities. In Proceedings of the
20th ACM International Conference on Information and
Knowledge Management, CIKM ’11, pages 1285–1294,
New York, NY, USA, 2011. ACM.

[20] C.-Y. Chan, M. Garofalakis, and R. Rastogi. RE-tree: An
Efficient Index Structure for Regular Expressions.
Proceedings of the VLDB Endowment, pages 102–119,
2003.

[21] L. Chiticariu, V. Chu, S. Dasgupta, T. W. Goetz, H. Ho,
R. Krishnamurthy, A. Lang, Y. Li, B. Liu, S. Raghavan, F. R.
Reiss, S. Vaithyanathan, and H. Zhu. The systemt ide: An
integrated development environment for information
extraction rules. In Proceedings of the 2011 ACM SIGMOD
International Conference on Management of Data, SIGMOD
’11, pages 1291–1294, New York, NY, USA, 2011. ACM.

[22] J. Cho and S. Rajagopalan. A Fast Regular Expression
Indexing Engine. In IEEE International Conference on Data
Engineering (ICDE), page 419, 2001.

[23] T. H. Cormen. Introduction to Algorithms. 2009.
[24] D. Cutting and J. Pedersen. Optimization for Dynamic

Inverted Index Maintenance. In ACM SIGIR Conference on
Research and Development in Information Retrieval, pages
405–411, 1990.

[25] N. Dalvi, R. Kumar, and M. Soliman. Automatic Wrappers
for Large Scale Web Extraction. Proc. VLDB Endow.,
4(4):219–230, Jan. 2011.

[26] R. Fagin, B. Kimelfeld, F. Reiss, and S. Vansummeren.
Spanners: A formal framework for information
extraction. In Proceedings of the 32Nd Symposium on
Principles of Database Systems, PODS ’13, pages 37–48,
New York, NY, USA, 2013. ACM.

[27] R. Fagin, B. Kimelfeld, F. Reiss, and S. Vansummeren.
Cleaning inconsistencies in information extraction via
prioritized repairs. In Proceedings of the 33rd ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems, PODS ’14, pages 164–175, New York,
NY, USA, 2014. ACM.

[28] C. Faloutsos. Access Methods for Text. ACM Computing
Surveys (CSUR), pages 49–74, 1985.

[29] W. Fan. Graph Pattern Matching Revised for Social
Network Analysis. In Proceedings of the 15th International
Conference on Database Theory, ICDT ’12, pages 8–21,
New York, NY, USA, 2012. ACM.

[30] W. Fan, J. Li, S. Ma, N. Tang, and Y. Wu. Adding regular
expressions to graph reachability and pattern queries. In
Data Engineering (ICDE), 2011 IEEE 27th International
Conference on, pages 39–50. IEEE, 2011.

[31] P. Ferragina and R. Grossi. The String B-tree: A New Data
Structure for String Search in External Memory and Its
Applications. Journal of the ACM (JACM), pages 236–280,
1999.

[32] R. D. Finn, A. Bateman, J. Clements, P. Coggill, R. Y.
Eberhardt, S. R. Eddy, A. Heger, K. Hetherington, L. Holm,
J. Mistry, et al. Pfam: The protein families database.
Nucleic Acids Research, page gkt1223, 2013.

[33] V. Ganti and A. D. Sarma. Data cleaning: A practical
perspective. Synthesis Lectures on Data Management,
5(3):1–85, 2013.

[34] A. Gattiker, E. Gasteiger, and A. M. Bairoch. ScanProsite:
a reference implementation of a PROSITE scanning tool.
Applied Bioinformatics, pages 107–8, 2002.

[35] Gattiker, Alexandre and Gasteiger, Elisabeth and Bairoch,

Amos Marc. Scanprosite: a reference implementation of a
prosite scanning tool. Applied Bioinformatics, pages
107–8, 2002.

[36] D. Gianfelice, L. Lesmo, M. Palmirani, D. Perlo, and D. P.
Radicioni. Modificatory provisions detection: A hybrid nlp
approach. In Proceedings of the Fourteenth International
Conference on Artificial Intelligence and Law, ICAIL ’13,
pages 43–52, New York, NY, USA, 2013. ACM.

[37] R. R. Goldberg. Finite state automata from regular
expression trees. The Computer Journal, pages 623–630,
1993.

[38] R. Grossi and J. S. Vitter. Compressed suffix arrays and
suffix trees with applications to text indexing and string
matching. SIAM Journal on Computing, pages 378–407,
2005.

[39] S. Heinz, J. Zobel, and H. E. Williams. Burst tries: a fast,
efficient data structure for string keys. ACM Transactions
on Information Systems (TOIS), pages 192–223, 2002.

[40] S. Kandel, A. Paepcke, J. Hellerstein, and J. Heer.
Wrangler: Interactive visual specification of data
transformation scripts. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, pages
3363–3372. ACM, 2011.

[41] R. Krishnamurthy, Y. Li, S. Raghavan, F. Reiss,
S. Vaithyanathan, and H. Zhu. Systemt: a system for
declarative information extraction. ACM SIGMOD Record,
37(4):7–13, 2009.

[42] Y. Li, E. Kim, M. A. Touchette, R. Venkatachalam, and
H. Wang. Vinery: A visual ide for information extraction.
Proc. VLDB Endow., 8(12):1948–1951, Aug. 2015.

[43] U. Manber and G. Myers. Suffix Arrays: A New Method
for On-line String Searches. In ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 319–327, 1990.

[44] U. Manber and S. Wu. GLIMPSE: A Tool to Search
Through Entire File Systems. In USENIX Winter Technical
Conference, pages 4–4, 1994.

[45] M. McCandless, E. Hatcher, and O. Gospodnetic. Lucene in
Action, Second Edition: Covers Apache Lucene 3.0. 2010.

[46] E. M. McCreight. A Space-Economical Suffix Tree
Construction Algorithm. Journal of the ACM (JACM),
pages 262–272, 1976.

[47] D. R. Morrison. PATRICIA - Practical Algorithm To
Retrieve Information Coded in Alphanumeric. Journal of
the ACM (JACM), pages 514–534, 1968.

[48] Mulder, Michael and Nezlek, GS. Creating Protein
Sequence Patterns Using Efficient Regular Expressions in
Bioinformatics Research. In IEEE International Conference
on Information Technology Interfaces (ITI), pages 207–212,
2006.

[49] Y. Ogawa, S. Inagaki, and K. Toyama. Automatic
Consolidation of Japanese Statutes Based on
Formalization of Amendment Sentences. In Proceedings of
the 2007 Conference on New Frontiers in Artificial
Intelligence, JSAI’07, pages 363–376, Berlin, Heidelberg,
2008. Springer-Verlag.

[50] E. Plugge, T. Hawkins, and P. Membrey. The Definitive
Guide to MongoDB: The NoSQL Database for Cloud and
Desktop Computing. 2010.

[51] R. Polig, K. Atasu, H. Giefers, and L. Chiticariu. Compiling
text analytics queries to fpgas. In Field Programmable
Logic and Applications (FPL), 2014 24th International
Conference on, pages 1–6. IEEE, 2014.

[52] D. Robenek, J. Platos, and V. Snasel. Efficient In-memory
Data Structures for n-grams Indexing. In DATESO, pages
48–58, 2013.

[53] K. Sadakane. Compressed text databases with efficient
query algorithms based on the compressed suffix array. In
Algorithms and Computation, pages 410–421. 2000.

[54] K. Sadakane. Succinct representations of lcp information
and improvements in the compressed suffix arrays. In
ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 225–232, 2002.

[55] G. Salton. Automatic Text Processing: The Transformation,
Analysis, and Retrieval of Information by Computer. 1989.

[56] M. Shahbaz, P. McMinn, and M. Stevenson. Automated
Discovery of Valid Test Strings from the Web Using
Dynamic Regular Expressions Collation and Natural
Language Processing. In Proceedings of the 2012 12th
International Conference on Quality Software, QSIC ’12,
pages 79–88, Washington, DC, USA, 2012. IEEE
Computer Society.

[57] C. J. Sigrist, E. De Castro, L. Cerutti, B. A. Cuche, N. Hulo,
A. Bridge, L. Bougueleret, and I. Xenarios. New and

continuing developments at PROSITE. Nucleic Acids
Research, page gks1067, 2012.

[58] P. Spinosa, G. Giardiello, M. Cherubini, S. Marchi,
G. Venturi, and S. Montemagni. Nlp-based metadata
extraction for legal text consolidation. In Proceedings of
the 12th International Conference on Artificial Intelligence
and Law, ICAIL ’09, pages 40–49, New York, NY, USA,
2009. ACM.

[59] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen,
M. Cherniack, M. Ferreira, E. Lau, A. Lin, S. R. Madden,
E. J. O’Neil, P. E. O’Neil, A. Rasin, N. Tran, and S. B.
Zdonik. C-Store: A Column-Oriented DBMS. In
International Conference on Very Large Data Bases (VLDB),
2005.

[60] J. W. Thatcher. Tree Automata: An Informal Survey. 1973.
[61] D. Tsang and S. Chawla. A Robust Index for Regular

Expression Queries. In ACM Conference on Information and
Knowledge Management (CIKM), pages 2365–2368, 2011.

[62] E. Ukkonen. On-Line Construction of Suffix Trees.
Algorithmica, pages 249–260, 1995.

[63] P. Weiner. Linear Pattern Matching Algorithms, 1973.

APPENDIX
A. BLACK BOX ALGORITHMS

We start by describing the algorithms for combining the inter-
mediate results (corresponding to the left and right subtree) for
individual operators using the black-box approach. We first de-
scribe algorithms for a flat unstructured file, where a ResultSet
is a collection of (offset, length) pairs, corresponding to the
offsets and the match length for the sub-RegEx rooted at a node
in the RTree. We then extend these algorithms to support RegEx
on semi-structured data.

Union. The algorithm for the Union operator simply outputs
the set union of the results for the left (L) and the right (R) sub-
tree. The algorithm accesses each element in L and R exactly
once; thus the complexity of the algorithm is O(|L|+ |R|). Since
the output cardinality is also so = |L|+ |R|, the complexity of the
algorithm is O(so).

Algorithm 2 Union

1: procedure Union(L : ResultSet, R : ResultSet)

2: return set union of L and R.

3: end procedure

Concat. The algorithm for the Concat operator scans L and
R, and outputs all offsets L[i].off in L for which there ex-
ists an offset R[j].off in R such that R[j].off = L[i].off
+ L[i].length indicating that the sub-RegEx corresponding to
results in R immediately follows the sub-RegEx corresponding to
results in L.

The algorithm maintains two pointers (each initialized to the
first index of the two sets). Whenever the above condition is
satisfied, the pointers are advanced to the next index for both
the sets; else the pointer corresponding to the smaller offset is
advanced. The algorithm terminates when one of the sets is com-
pletely scanned. Clearly. the algorithm accesses each element in
L and R at most once; thus the complexity of the algorithm is
O(|L|+ |R|).

Algorithm 3 Concat

1: procedure Concat(L : ResultSet, R : ResultSet) . L, sorted by (offset +
length), R sorted by offset

2: i← 0, j← 0

3: R← ;
4: while i< L.size and j< R.size do

5: if (L[i].offset + L[i].length = R[j].offset) then

6: Put (L[i].offset, L[i].length + R[j].length) in O

7: i← i+1, j← j+1

8: else if (L[i].offset + L[i].length < R[j].offset) then

9: i← i+1

10: else

11: j← j+1

12: end if

13: end while

14: return O

15: end procedure

Repeat. The algorithm for Repeat is similar to that of Concat;
the main difference is that the length variable (denoted by `)

now depends on the number of valid repetitions.
The algorithm again maintains two pointers (on the same set)

and checks, in each step, whether the offset for the first pointer
summed up with the current length matches the offset for the
second pointer. If the condition matches, a single result is output,
the length value is updated to reflect another repetition and the
second pointer is advanced to check for further repetitions; oth-
erwise, the first pointer is advanced, the length is re-initialized
to zero and the second pointer is brought back to the position
of the first pointer. Note that each input value corresponds to at
least one output value (for single repetitions). Moreover, note
that the first pointer access each element in L once; the second
pointer may access any element more than once but outputs at
least one output for each access. The complexity of the algorithm
is, thus, |L|+ |O|< 2|O|= 2so, since L ⊆ O.

Algorithm 4 Repeat

1: procedure Repeat(L : ResultSet) . L, sorted by (offset + length)

2: for i← 0 to L.size do

3: j← i

4: `← 0

5: while (L[i].offset + ` = L[j].offset) do

6: ` += L[j].length

7: Put (L[i].offset, `) in O

8: j← j+1

9: end while
10: end for

11: return O

12: end procedure

Wildcard. The algorithm for the Wildcard operator takes L and
R and outputs all pairs of elements (`, r) such that r occurs
after ` (the length of ` is taken into account accordingly).

The algorithm has two main ideas. First, to avoid unneces-
sary operations, the algorithm first picks the element in R that
occurs after than the first element in L into the file — this en-
sures that there exists at least one element in L corresponds to
the Wildcard results. Second, to find the smaller element in
L, the algorithm performs a binary search rather than a scan.
The binary search takes time log(|L|+|R|), and outputs, say
x1 results (the first idea ensures that x1 6= 0). The complexity
of each step is, thus, x1+ log(|L|+|R|) <= x1 · log(|L|+|R|).
The end-to-end complexity of the algorithm is: (x1+ x2+ . . .) ·
max(log(|L|), log(|R|)) = s0 · log(|L|+|R|), which is linear in the
output size except for the logarithmic terms.

A.1 Semi-Structured Data
We now discuss how the above black-box algorithms are adapted

to semi-structured data. We assume that indexes map tokens to
(documentID, offset) pair, where offset is the starting off-
set of the document into a flat file containing all documents. The
(documentId, offset) pairs are sorted by offsets; given an
offset, the corresponding documentID can be found via binary
search.

Union. No modifications required, since each (documentID,
offset) pair already corresponds to a valid result.

Concat. Line 5 in Algorithm 3 is modified to additionally check if
both L[i].offset and R[j].offset have the same documentID.
This ensures that two offsets are concatenated only if they belong
to the same documentID.

Algorithm 5 Wildcard

1: procedure Wildcard(L : ResultSet, R : ResultSet) . L, sorted by (offset
+ length), R sorted by offset

2: Sort L by (offset + length)

3: Sort R by offset

4: R← ;
5: Binary search to find smallest index idx2 into R such that,

L[0].offset + L[0].length <= R[idx2].offset
6: for i ← idx2 to R.size do

7: Binary search to find largest index idx1 into L such that,
L[idx1].offset + L[idx1].length <= R[i].offset

8: for j ← 0 to idx1 do

9: ` ← (R[i].offset − L[j].offset) + R[i].length

10: Put (L[j].offset, `) in O

11: end for

12: end for

13: return O

14: end procedure

Repeat. As above, Line 5 in Algorithm 4 is modified to addi-
tionally check if both L[i].offset and L[j].offset have the
same documentID.

Wildcard. Line 10 in Algorithm 5 is modified to insert only
those results into R for which L[j] and R[i] have the same
documentID. For each R[i], we determine the start and end off-
set for the corresponding document by consulting the (documentId,
offset) pairs; while inserting corresponding L[j] entries in
ROut, we check if L[j].offset lies between the begin and end
offsets for R[i]’s document.

Since we perform an additional binary search on the list of
documents for each R[i], this adds an additional log(#documents)
term to the complexity, bringing the overall complexity to s0 ·
(log(|L|+|R|)+ log(#documents)).

B. CHARACTER CLASSES
Character classes can be viewed as unions of single charac-

ter tokens, e.g., [0-9] can be viewed as a Union of character
tokens 0, 1, 2, ..., 9. They can, therefore, be replaced by equiv-
alent Union operators in the RegEx query. Another approach to
computing character classes is by performing partial scans on the
original input. To see how, consider the expression

(T)(R1)(R2)(R3)...(Rk)
where T is a token, and each Ri is a character class composed
of |Ri | characters. In order to search for such an expression, we
search for token T, which returns, say, f0 offsets into the input,
and scan starting at each of these offsets for k characters to find
all matches of the expression above.

Intuitively, if the number of occurrences of the token T is small,
then it would be require fewer operations to compute the results
for the expression using partial scans of the input, as opposed
to computing them using the Black Box or Swift approach. We
analytically determine a strategy which minimizes the number
of operations required to compute such an expression. In all of
our following analysis, we consider the worst case execution time
for each of the approaches.

Partial scans. To evaluate the expression using partial scans,
we scan through each of the offsets corresponding to the occur-
rences of T, and scan the input starting at those offsets for k

characters. Thus, the time taken for partial scans is

Ts = f0+k f0

Black Box approach. To compute the results using the Black
box approach, we search for each of the characters in the char-
acter ranges, combine them using the Union operator, and finally
combine the occurrences of T with the occurrences of character
class tokens using the Concat operator. If Fi be the number of
occurrences of character range Ri , then the time taken for the
black box approach is:

Tb = f0+
k
∑

i=1

Fi

Swift approach. With the Swift approach, we perform Pull-Up
Union followed by Pull-Out Concat transformations across each
of the character classes (see §4) to get a transformed RTree com-
posed of Unions of tokens. The time taken by the Swift approach
would be depend on the number of leaves in the transformed
RTree, and the time taken to perform a union of the results of
the Union operator. It is clear to see that the maximum number
of leaves in the transformed RTree is

∏k
i=1 |Ri .

6 The time taken
to perform the final Union would be equal to the size of the fi-
nal output (say s0). Therefore, the time to taken by the Swift
approach is given by

Tp =
k
∏

i=1

|Ri |+ s0

Execution Strategy for Black Box. For the Black Box approach
to incur fewer operations, we must have

Ts > Tb

⇒ k f0 >
k
∑

i=1

Fi (1)

Since the number of occurrences of a token is typically much
less than that for a character class, we have,

Fi > f0,∀i (2)

and therefore,

k
∑

i=1

Fi > k f0

This implies that Equation 1 would never hold, and partial
scans would always incur fewer operations compared to the Black
box approach.

Execution Strategy for Swift. As with the Black box approach,
we must have

6In practice, however, we can prune the leaves that have zero
occurrences while applying the Pull-Out Concat transforma-
tion. The expression shown is therefore an overestimate of the
number of leaves in the RTree.

Ts > Tp

⇒ f0+k f0 >
k
∏

i=1

|Ri |+ s0

⇒ f0 >

∏k
i=1 |Ri |
(1+k)

as s0 > 0.
Since we know the values of f0, k and |Ri | while executing

the query, we can determine whether Swift approach requires
fewer operations than a partial scan during query execution by
evaluating Equation B, and pick the optimal strategy on the fly.

Repeat of Character Classes. Consider the expression

(T)(R+)

where T is a token with f0 occurrences, and R is a character class
composed of |R| character tokens. In order to analyze the time
taken for this scenario, we assume k to be the maximum num-
ber of repetitions, beyond which the Repeat operator yields no
results for the expression above.

Partial scans. For partial scans, the time taken to evaluate the
expression would be similar to the earlier scenario, i.e.,

Ts = f0+k f0

Black Box approach. If the size of the results for the character
range R be F , then in the worst case, the size of the output for
the expression R+ would be kF . We know from Appendix A that
executing the Repeat operator would take F + kF time. Addi-
tionally, performing the Concat of token T with the expression
R+ would take an additional (f0+kF) time. Therefore, the total
time taken for the Black box approach would be

Tb = f0+(2k+1)F

Swift approach. The total number of leaf nodes in the trans-
formed RTree for the Swift approach would be given by

|R|+ |R|2+ |R|3+ ...+ |R|k

where the ith term in the expression corresponds to performing
the repeat for the character class i times. Therefore, the total
time taken by the Swift approach is bound by

Tp =
|R|(|R|k−1)
|R|−1

+ s0

Execution Strategy for Black Box approach. For the Black Box
approach to incur fewer operations, we must have

Ts > Tb

⇒ k f0 > (2k+1)F (3)

Since the number of occurrences of a token is typically much
less than that for a character class, we have,

F > f0
and therefore,

(2k+1)F > k f0

This implies that Equation 3 would never hold, i.e., partial
scans would always incur fewer operations than the Black box
approach.

Execution Strategy for Swift approach. As before, we must
have

Ts > Tb

⇒ f0+k f0 >
|R|(|R|k−1)
|R|−1

+ s0

⇒ f0 >
|R|(|R|k−1)
(k+1)(|R|−1)

(4)

as s0 > 0.
Since we know the values of f0, and |R| while executing the

query, we can determine the value of k beyond which partial
scans would incur fewer operations than the Swift approach us-
ing Equation 4 on the fly.

	Introduction
	Preliminaries
	Black-box RegEx
	Analysis of Black-box RegEx

	Swift
	Pull-Up Union
	Pull-Up Wildcard
	Pull-Out Repeat
	Pull-Out Concat
	Putting it all together

	Evaluation
	Experimental Setup
	Comparison against Black-box
	Comparison against Existing Systems

	Related Work
	Conclusion
	References
	Black Box Algorithms
	Semi-Structured Data

	Character classes

