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Abstract
We describe a full conformal version of the conformal risk control procedure of Angelopoulos et al.
(2024). Like full conformal prediction, full conformal risk control allows the use of all data for both model
training and calibration, and is thus more data-efficient than the original procedure, although it is also
more computationally expensive.

1 Full conformal risk control

Conformal risk control has been previously described in a split conformal setting, wherein the risk of a
pre-trained model is measured on an as-yet-unseen calibration dataset. The fact that the calibration dataset
is unseen means that the loss incurred by the model on each calibration datapoint is exchangeable with the
loss on the test point; this allows us to bound the risk on the new point. However, it requires a separate split
of calibration data, which is not always possible, especially when the number of data points is small.

In this short note, we describe a full conformal version of conformal risk control, which allows the use of
all data for both model training and calibration, just like the full conformal prediction procedure of Vovk
et al. (2005). For a cross-conformal version of conformal risk control, the reader may also wish to reference
the simultaneously developed approach of Cohen et al. (2024), which builds on the resampling procedures
of Barber et al. (2021) and Vovk (2015). In some sense, these methods together complete the ‘mosaic’ of risk
control procedures:

1. Data-splitting. The conformal risk control family of methods is introduced using data-splitting
in Angelopoulos et al. (2024). This is analogous to the split-conformal procedure of Papadopoulos et al.
(2002).

2. Resampling. Resampling-based procedures for conformal risk control are described in Cohen et al.
(2024). This is analogous to the cross-conformal procedure of Vovk (2015).

3. Full-conformal. We describe the full-conformal risk control procedure in this note. This is analogous
to the full-conformal prediction procedure of Vovk et al. (2005).

1.1 Setup and notation
Consider the following;:
1. a feature space X and a label space Y with Z =X x );

2. an exchangeable set of feature-label pairs, (X1,Y1),...,(Xn+1,Ynt1), where the final label Y41 is
unknown;

3. a sequence of functions Cy : X x Z* — H for A € [0, 1], and some third space H, commonly taken to be
Y or 2Y;

4. a right-continuous loss function ¢ : Y x H — [0, B] satisfying, for all (z,y) € £ and all D € Z*,
AL <Ay = f(y, C)\l (.’L‘; D)) > f(y’ C)\z (‘(L.; D))

and
U(y,Co(z; D)) = B,  L(y,Ci(x; D)) = 0.



We furthermore assume that C is symmetric in its second argument, i.e., that for all ¢ € X, where X is
the set of all permutations of [n + 1], and all z € X, we have C(z; D) = C(x; D). The goal is to control the
risk at some level a € [0, B], i.e., to form a set satisfying

E[l(Ynt1,C(Xnt1))] < o

As in full conformal prediction, we will construct an augmented dataset based on a guess of Y;, 1. Define
the augmented dataset as the ordered vector

DY =((X1,Y1),...,(Xn+1,9))-

When we guess the correct label, DY»+1 is an exchangeable vector (i.e., one satisfying DY»+1 4 D};"“

o€ ).
Finally, we will use the shorthand L;(\; D) := £(Y;,Cx(Xy; D)) fori € [n] and LY, | (X; D) := £(y,Cx(Xpn41; D))
and

for all

. 1 —
Rp(X; D) = — ;Li(/\§ D) R, (\D) —— Ly (A D).
We also consider the vector of losses LY(\) = (L1(A; DY), .. n+1()\ DVY). Tt is not hard to see that LY»+1()\)

is exchangeable for all \.

1.2 The full conformal risk control procedure

Define . R
N = A(DY) =inf {\: RY,, (0 DY) < o}

and the intermediate sets
CY, () = Cy, (a3 DY).

Then we combine to get the final prediction set as
_ Yy _
= U s, (z) = Csupyey 50 ().
yeY
This prediction set has the desired guarantee:

Theorem 1 (Validity of full conformal risk control for monotone losses). In the above setting, we have
Elt(Yni1,C(Xni1))] < .

Proof. We have that DY»+1 is exchangeable by definition. The first step is to prove that LY»+! is exchangeable.
Beginning with the definition of LY"+!, we have that for any o € X,

LY (A) = (Li(A\ DY), L Lot (A DY)

n+1
4 Y CA(XI DY’n+1)) é( n+1,C,\(Xn+1;DY"+1)))

(

= (U

(£ U(l)vc)\( o(1); DY), (Yo (1), Ca (X g1y D))
= (U(Y.

= (

1

¢ o(1) ( o(1); DYn-H))’ s 7£(Ya(n+1)7C/\(Xg(n+1); DY"‘H)))
Lg(l)()\, DYnJrl), R Lo(n+1)()\; DY7L+1)).

Thus, LY»+1()) is a vector of exchangeable random functions.



Now we proceed to the main result.

E (Y1, C(Xn )] < E [£(Yos1,Cx s (Kntn))]

i ZE g(Ya(n+1)vC5\(D;’:n+1)(Xa(n+1)))_
—FE | %€
12
i Z Z(Ya(nJrl)ij\(DYnJrl)(Xa(n+1)))_
—F oeD
12

n+1
1
B g émv(/’mﬂ)(&)]
L 1=1

) [R::-Jil (5\Yn+1;DYn+1 )} <a
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