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Abstract. We focus on selecting handover configurations that result in
low human ergonomic cost not only at the time of handover, but also
when the human is achieving a goal with the object after that handover.
People take objects using whatever grasping configuration is most com-
fortable to them. When the human has a goal pose they’d like to place
the object at, however, the most comfortable grasping configuration at the
handover might be cumbersome overall, requiring regrasping or the use
of an uncomfortable configuration to reach the goal. We enable robots
to purposefully influence the choices available to the person when tak-
ing the object, implicitly helping the person avoid suboptimal solutions and
account for the goal. We introduce a probabilistic model of how humans se-
lect grasping configurations, and use this model to optimize expected cost.
We present results in simulation, as well as from a user study, showing
that the robot successfully influences people’s grasping configurations
for the better.

1 Introduction
Handovers happen frequently in collaborative manipulation tasks. Be it when
cooking a meal or assembling a device in a factory workcell, we need to pass
objects to each other in order to work more effectively. As a result, making
robot-to-human handovers seamless has been an area of growing importance
in robotics research [1–10].

Imagine unloading the dishwasher with a robot. The robot comes to give
you a mug so that you can place it in the cupboard. The way the robot presents
you the mug (its position, orientation, and the grasp the robot is already occu-
pying on the object) leads to you having a number of options for how to grasp
it, some demanding more effort than others. In the end, the robot’s choice of
grasp and the object’s pose in SE(3) affects how comfortable the handover is for
you, as well as what you can easily do with the object after the handover: how
easily you can just lay it down in the desired spot in the cupboard.

Naturally, the robot can take this into account when planning its handover.
Prior work has focused on selecting robot grasping configurations [2,4,6–8,10]
or object handover locations [1, 3, 5, 9] that maximize the number or range of
feasible human grasps [2,7,8] or minimize human ergonomic cost [1,3–6,9,10].

In contrast, our work enables the robot to minimize expected cost: our in-
sight is that, although we can’t control the human’s grasp directly, we can
model the probability that the human will select a particular grasping configu-
ration. This probability distribution can then be used to evaluate the ergonomic
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Fig. 1. Setup & Summary. We focus on finding robot handover grasps and object trans-
forms that encourage the human to select good grasps, especially when the human has
a next goal for the object. We model how humans select grasping configurations, and
leverage that model to minimize expected total ergonomic cost to the human.

cost to the person in expectation, accounting for what they are more or less
likely to do.

We propose to model the human as approximately-rational, selecting a
grasping configuration with higher probability if its ergonomic cost is lower.

Having such a model of how the human will select a grasp enables the
robot to influence the human to select better grasps. In particular, we investi-
gate two implications:
Avoiding suboptimal choices for the human, but only when these choices are
actually likely: The natural alternatives to having a model of how the user
takes the object and minimizing expected cost are either 1) to maximize the
total number of grasping configurations available to the user and give them
the most flexibility [2], or 2) to minimize average cost to the person [4, 6, 10],
without weighting the choices by the probability that the human will actually
select them.

Compared to the first, minimizing expected cost enables the robot to pro-
duce good configurations as opposed to many configurations. The second,
minimizing average cost, also achieves that. However, it also tries to avoid al-
lowing high-cost configurations, because these increase the cost mean. In con-
trast, in our approach, high-cost configurations do not actually matter, so long
as low-cost configurations are available, because the human is very unlikely to
select them. Instead, it is suboptimal yet low-cost configurations that are trou-
blesome — these are the configurations that the human might select with high
probability, due to the fact that they are not perfectly rational. Our formalism
naturally eliminates such choices for the human to the extent possible, helping
them select the better options.
Encouraging the human to plan ahead: Usually when we receive an object, it
is because we need to do something with it. There is some goal (or set of) goal
pose(s) for the object. However, humans are not always very good at planning
ahead: they might select a grasping configuration comfortable for taking the
object, without thinking of how they will need to manipulate it afterwards.
By modeling the human as approximately rational for the handover stage, but
myopic to the next stage, we enable robots to minimize expected total cost to
the human at both the handover and goal, accounting for this myopia. As a
result, the robot avoids handing over an object in ways that allow for low-cost
grasps which would have high cost at the goal: if a grasp looks tempting to the
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human locally, but would make it difficult for the human to satisfy the goal
afterwards, then the robot will try to hand over the object in a way that makes
such a grasp infeasible.

We tested our approach in simulation and in a user study, suggesting that
the robot can successfully influence people to take objects in a way that makes
it easier for them to achieve their goal.

2 Related Work
Our main contribution is to explicitly model the probability of the human
choosing different available grasps during handover planning, enabling the
robot to optimize for expected ergonomic cost. A secondary contribution of
our work is accounting for the human’s goal in the context of minimizing
ergonomic cost, enabling the robot to influence the person to select a better
grasp. Table 2 categorizes related work along three axes: whether the method
accounts for feasibility only or also for ergonomic cost, whether the method
accounts for the human’s goal, and whether the method accounts for positions
of the object only or also grasps.

Table 1. Prior Handover Planning Approaches

Feasibility Only Ergonomic Cost
H Only H + G H Only H + G

Position Only [1], [3], [5], [9]
Grasp Config. [2] [7], [8] [6], [10], [4] (this paper)

3 Technical Approach
Notation. To choose a handoff configuration, we must select the robot’s grasp
on the object gR and the object pose with respect to the world frame Thand

OW at
which the human will take the object. The object to be handed off allows the
human to grasp it at some set of poses GH ⊂ SE(3), which we represent as
a Task Space Region [11], and discretize to give a finite set of feasible human
grasps, so GH , {gH1, ..., gHk}.

Given a handoff grasp and object pose, (gR, Thand
OW ), each possible human

grasp gHi will be reachable with zero or more inverse kinematics (IK) solutions,
which we collect into a set Qhand

gHi
.

The union of these sets Qhand
(gR ,Thand

OW )
,

⋃
Qhand

gHi
gives all the available “taking”

configurations available to the human given the robot’s choice of (gR, Thand
OW ).

A human grasp gHi also induces IK solutions at the object’s goal pose, Tgoal
OW ,

which we collect in a set Qgoal
gHi .

Human Grasp Selection Model. Among possible options, we chose to model
the human ergonomic cost as the distance from some ideal nominal resting
configuration q∗ w.r.t. some metric w:

C(q) ,
√

wᵀ(q− q∗) (1)
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While we chose this cost function for its simplicity, it would be easy to
substitute any other function which maps human limb configurations to er-
gonomic costs. We would expect superior performance when using cost func-
tions which more accurately capture the human’s preferences.

We model the human as approximately-rational, selecting a grasping con-
figuration q at handover time with higher probability when it has lower cost:

P(q) ∝ e−λC(q) (2)
P(q) at the time of handover is normalized over all possible grasping configu-
rations Qhand

(gR ,Thand
OW )

. We can also compute the probability of a grasping config-

uration given a particular grasp,P(qhand|gH), by normalizing over Qhand
gH

, and

P(qgoal|gH) at the goal by normalizing over Qgoal
gH . Finally, we can compute the

probability of a human grasp by summing over all the IK solutions at that
grasp: P(gH) = ∑q∈Qhand

gH
P(q).

Optimization. When the human does not have a (known) goal, we optimize
for expected cost at the handover time:

min
gR ,Thand

OW

∑
q∈Qhand

(gR ,Thand
OW )

P(q)C(q)
(3)

When the human does have a goal, we optimize for expected total cost. The
expected cost at the goal is based on the probability of each grasp based on
what happened at the handover, P(gH), and the probability of each configura-
tion given that grasp:

min
gR ,Thand

OW

∑
gH

 ∑
q∈Qhand

gH

P(q|gH)P(gH)C(q) + ∑
q∈Qgoal

gH

P(q|gH)P(gH)C(q)

 (4)

4 Case Studies
We start with two case studies, highlighting the benefits of our approach: elim-
inating suboptimal yet tempting grasping configurations.
Expected Cost at Handover Time. Fig. 2 compares optimizing for feasibility,
average cost, and expected cost, in a scenario where the PR2 robot is handing
over a mug to a human. For each case, we take the robot grasp and object trans-
form that arises from the optimization, and compute: 1) the human grasping
configuration of minimum cost; 2) the most “risky” human grasping configu-
ration, that is not high-cost cost enough to be easily discarded by the human;
3) all human grasping configurations available; and 4) the histogram of costs
for these configurations.

We find that maximizing the number of feasible options can be dangerous,
because it might mean the expected cost is rather high, and the best config-
uration is not as good. Compared to minimizing average cost, we find that
minimizing expected cost will allow more high-cost configurations because
there is a very low probability for the human to pick them (marked “unimpor-
tant” on the histogram), but will allow fewer configurations that have good
cost but not great (marked “problematic” on the histogram). These are config-
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E[Cost] = 3.09

E[Cost] = 1.59

E[Cost] = 0.33

Fig. 2. Case Study w/o Goal - Increasing Great Choices, Reducing OK Choices, Dis-
regarding Bad Choices. A comparison between maximizing the number of feasible
human grasping configurations Q (top), minimizing the average ergonomic cost (mid-
dle), and minimizing expected ergonomic cost (bottom), for the case of a single handover
without a known object goal pose. The columns show the most probable human config-
uration (left), the configuration with the largest contribution to the total cost (middle),
and the full space of configurations (right). Our method increases the number of great
choices and decreases the number of OK choices which the human might actually pick.
It also keeps bad choices if needed, because they have a low probability of being se-
lected anyway.

urations for which the probability is high enough that the human might pick
them, but they are not as good as the best configurations.
Experimental Insight 1: A robot that models human handover choices can
make it more likely that the person will actually select a comfortable han-
dover grasp.
Expected Total Cost (Handover + Goal). Fig. 3 compares the three approaches
from above when accounting for the human goal. Feasibility here accounts
for the number of feasible configurations at both the handover and the goal,
average cost accounts for cost at the start and goal, and so does expected cost.
For each case, we take the resulting robot grasping configuration and compute
1) the human grasping configuration of minimum handover cost, which is
what the human will most likely choose if they are being myopic; 2) given this
grasp, the configuration of minimum cost at the goal (assuming no regrasp);
and 3) the expected cost at the handover and at the goal for each human grasp.

We find that maximizing feasible options can lead to very poor options
at the goal. Compared to minimizing average cost, we find that minimizing
expected cost is better at eliminating grasps that have low cost at handover
time but only allow for high cost at the goal.
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= 9.08
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= 6.83
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= 5.13

Fig. 3. Case Study w. Goal - Reducing Total Cost. A comparison between maximiz-
ing the number of feasible human grasping configurations Q at the handover and goal
(top), minimizing the average ergonomic total cost (middle), and minimizing expected
total cost (bottom). The columns show the most probable human configuration at han-
dover time (left), and at the goal (center), along with a plot of cost for each available
grasp to the human. Our method makes it such that the tempting configurations (low
cost at handover) also have low cost at the goal.

Experimental Insight 2: A robot that models human handover choices can
make it more likely that the person will select a handover grasp that also
allows for comfortably achieving the goal after the handover.

5 Simulation Study
Our case studies used a single object and a single goal configuration. Here we
expand to an experiment that manipulates both as factors.

5.1 Experimental Design
Manipulated Factors. We manipulate three factors. The first is the metric we
optimize, as in the case study: maximizing number of feasible options, min-
imizing average cost, or our metric, minimizing expected cost. The second is
the object being handed over by the robot: a mug as before, a glass, a pitcher,
and a plate, for a total of 4 objects. These objects have vastly different TSR
choices. The third is the goal pose, for which we use 5 different poses. This
leads to a total of 3(metrics) x 4(objects) x 5(goals) = 60 conditions.
Dependent Measures. As in the case studies, we measure expected total cost.
Hypothesis. Our metric is designed to optimize expected total cost (the de-
pendent measure), so we already know it will perform the best. The question
remains whether our metric will be better by a significant margin. Our hypoth-
esis is that it will: Our metric will result in a significant improvement in expected
cost compared to the baselines.
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Fig. 4. Optimal Handover for Different Goal Poses. The different goal poses in our ex-
periment lead to different optimal handover configurations for the robot, each selected
to minimize expected total cost at the handover time and at that particular goal. The
chart averages the expected total (handoff + goal) ergonomic costs for each of the three
metrics.
5.2 Analysis
We ran an ANOVA with metric as a factor to test differences among the three
metrics across objects and goal poses. We found a significant main effect,
F(2, 58) = 1031.07, p < .0001. A post-hoc analysis with Tukey HSD showed
that all three metrics were significantly different from each other, with the
average cost outperforming maximum feasibility (p < .0001) and our metric
outperforming average cost (p < .001), in line with our hypothesis.

Fig. 4 shows how the robot’s grasping configuration changes as the goal
pose for the human changes. The robot will present the mug so that the per-
son grabs it by the top when it needs to be placed right side up, by the side
when it needs to be placed upside down, etc. In line with our hypothesis, the
expected cost was three times lower with our approach compared to the maxi-
mum feasibility baseline, and two times lower compared to the minimum cost
baseline.

Fig. 5 shows how the robot’s grasping configuration changes, for a given
goal pose, as the object changes. The robot holds the objects in different ways
to ensure that the person can easily grasp them by the side and set them down
vertically with ease.

6 User Study
The previous sections tested our method in simulation, assuming users who
act according to our model. Real people do not. We conducted a user study to
test whether the simulation results generalize, and to explore whether users
perceive the improvement brought about by our method.

6.1 Experimental Design
Manipulated Factors. We manipulated three factors. We manipulated the met-
ric the robot used to compute its handover configuration, using our metric
based on the user model we proposed, min E[C], and the maximum feasibility
baseline min |Q|.
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Fig. 5. Optimal Handover for Different Objects. The different objects in our experi-
ment lead to different optimal handover configurations for the robot for a given goal.
The chart averages the expected total (handoff + goal) ergonomic costs for each of the
three metrics across objects.

We used the mug as the handover object for this experiment, and manipu-
lated the goal pose using 10 different poses. In these poses, the mug was placed
upside down, upright, and to the side to ensure variance.

Finally, we manipulated whether the user knows the goal (Fig. 6). We did this
because we wanted to separate the two assumptions our method is making:
that users select grasping configurations based on ergonomic cost, and that
users are myopic or greedy in this selection, only accounting for ergonomic
cost at handover time but not at the goal. Therefore, manipulating the user’s
knowledge of the goal enables us to test not only how our method performs
overall (in realistic situations in which users have a goal and are aware of it),
but also whether our method is influencing the users’ grasp choice in the way
we expected, assuming users are actually myopic (which in reality might or
might not be the case). Altogether, this led to 2(metrics) x 10(goals) x 2(knowl-
edge) = 40 conditions.
Subject Allocation. We recruited 9 users (6 male, 3 female, ages 22-29). All of
the factors were within-subjects, meaning each user experienced all conditions.
We counterbalanced the order of the metrics to avoid order effects, and ran-
domized the order of the goals. We split the experiment in two parts, the first
in which the user did not know the goal, and the second in which they did:

In Part 1, the robot handed the object to the person at each of the 20 optimal
handover configurations (one for each metric and goal pose), but the user was
not told the goal used by the planner. We instructed the user to take the object
from the robot and immediately drop it in a box. This ensured that no notion
of a goal pose would impact the subject’s choice of object grasp. This portion of
the experiment evaluated the two algorithms’ ability to influence the subjects
to select a particular grasp when the subject was not aware of a goal, i.e. when
the myopic/greediness assumption holds.

In Part 2, a pictoral marker was placed on a table next to the subject indicat-
ing the object’s goal pose during each handoff. The subject was told that two
different algorithms, “Program 1” and “Program 2,” would be used during
this part of the experiment. We conducted handovers at the same 20 configu-
rations as before, but this time the subject was instructed to place the object
at the indicated goal pose. We told the users before each handover which of
Programs 1 and 2 was in use. This portion of the experiment evaluated the
algorithm’s ability to influence people to select ergonomically optimal grasps
even when they know the goal, i.e. they are not necessarily myopic. Further-
more, it enabled us to ask users to compare the two methods, seeing if their
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Handover

Part 1: Drop 
(No Goal)

Part 2: Place 
(Specific Goal)

Fig. 6. User Study Setup.

notion of comfort matches ours. If people are actually myopic about the goal
when selecting a grasping configuration, then we expect results for this second
part to match those from the first part.
Dependent Measures. We used both objective and subjective measures.

Objective: We annotated for each condition which of the 6 TSRs for the
mug the person selected. From this, we computed expected cost over all IK
solutions at the goal, for all grasps that were feasible at handover time (i.e.
had feasible IK solutions), making 2 assumptions: 1) the person follows our
ergonomic model, and 2) we know the human kinematics:

OM1: E[C(qgoal)], λ = 10, ∀qgoal ∈ IK(g), ∀g ∈ TSR feas. at handover (5)
To alleviate bias in our results induced by the two assumptions, we intro-

duce 3 additional metrics that break each assumption separately as well as
both assumptions together: we break the first assumption by computing aver-
age cost (which is the expected cost using a uniform distribution, i.e. λ = 0)
instead of expected ergonomic cost , and we break the second assumption by
allowing infeasible grasps that a person with different kinematics might have
chosen:

OM2: E[C(qgoal)], λ = 0, ∀qgoal ∈ IK(g), ∀g ∈ TSR feas. at handover (6)

OM3: E[C(qgoal)], λ = 10, ∀qgoal ∈ IK(g), ∀g ∈ TSR (7)

OM4: E[C(qgoal)], λ = 0, ∀qgoal ∈ IK(g), ∀g ∈ TSR (8)
We did not estimate cost at handover time, because we were specifically

interested in whether the robot successfully influences users to select grasps
that are good at the goal. Indeed, we might see lower handover time costs for
the baseline condition because it restricts the users less.

Subjective. After each complete experiment, the subject answered a series of
1-7 Likert-scale survey questions about which program they preferred, which
program made their goal easier to accomplish, and which program inspired
the most trust in the robot. These capture each subject’s subjective opinion
about which metric was more effective at making interaction with the robot
comfortable and effective.
Hypotheses.

H1. IF humans are actually myopic when selecting grasping configurations (e.g.
when they are not even aware of the goal), our method successfully influences them to
select configurations with lower cost at the goal compared to the baseline.
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Table 2. Estimated Human Ergonomic Costs at Goal (Part 1: Users not aware of goal)

Objective Measure min |Q| min E[C]

E[C(qgoal)], λ = 10, ∀qgoal ∈ IK(g), ∀g ∈ TSR feas. at handover 12.43 6.02
E[C(qgoal)], λ = 0, ∀qgoal ∈ IK(g), ∀g ∈ TSR feas. at handover 12.41 6.30
E[C(qgoal)], λ = 10, ∀qgoal ∈ IK(g), ∀g ∈ TSR 12.18 11.26
E[C(qgoal)], λ = 0, ∀qgoal ∈ IK(g), ∀g ∈ TSR 12.28 11.45

Table 3. Estimated Human Ergonomic Costs at Goal (Part 2: Users aware of the goal)

Objective Measure min |Q| min E[C]

E[C(qgoal)], λ = 10, ∀qgoal ∈ IK(g), ∀g ∈ TSR feas. at handover 11.42 5.37
E[C(qgoal)], λ = 0, ∀qgoal ∈ IK(g), ∀g ∈ TSR feas. at handover 11.52 5.61
E[C(qgoal)], λ = 10, ∀qgoal ∈ IK(g), ∀g ∈ TSR 11.72 11.02
E[C(qgoal)], λ = 0, ∀qgoal ∈ IK(g), ∀g ∈ TSR 11.84 11.23

H2. Our method influences people to select configurations with lower cost at the
goal compared to the baseline, even when they are aware of the goal.

H3. People prefer to work and are more comfortable with a robot using our method
compared to the baseline.

6.2 Analysis
H1. We used results for part 1 of the study, when users are not aware of the
goal, to test H1. We first computed Cronbach’s α for the four objective mea-
sures, which was high at .9036. We thus computed an aggregate goal cost using
all four measures.

We then ran a repeated-measures factorial ANOVA on this aggregate, with
goal and metric as factors. We found a significant main effect for metric, as
expected (F(1, 179) = 377.83, p < .0001), and a significant main effect for goal
(F(9, 171) = 26.79, p < .0001). However, there was also a significant interac-
tion effect, and so we conducted a Tukey HSD post-hoc, comparing all pairs
but compensating for multiple comparisons. The analysis revealed that the ex-
pected cost (our) metric resulted in significantly lower cost at the goal than the
baseline for 7 out of the 10 goals, all with p < .03.

This supports our hypothesis H1, but suggests that the benefit of our
method does depend on the choice of the goal pose, with the maximum feasi-
bility baseline being sufficient for some goals.

Table 2 shows the goal ergonomic costs estimated by each of the four mea-
sures, averaged across all nine study participants for this part of the study.
It shows that pose optimization with min E[C] gives consistently lower er-
gonomic cost at the goal than optimization with min |Q|. This difference is
particularly marked for the first two measures, which consider only grasps
feasible at the handover. These results suggest that expected ergonomic cost
can be used to influence humans to choose grasps with good ergonomic prop-
erties even when they are completely unaware of the goal.
H2. For part 2, when users were given specific goals, our objective measures
again had high item reliability, Cronbach’s α = .8830. We again computed an
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Table 4. Post-Study Survey Results

Statement min |Q| min E[C] t(8) p

“I prefer Program __” 2.0 6.2 9.73 <.0001
“The robot was helpful when running Program __” 3.4 6.4 6.80 <.0001
“I trust the robot running Program __” 3.7 6.1 4.4 <.01
“The robot understood my goal when running

Program __” 2.8 6.4 5.33 <.001
“It was physically easy to do the task when

the robot was running Program __” 2.8 6.2 6.50 <.001
“The robot running Program __ handed me objects

in a way that made the task easier” 2.0 6.3 9.19 <.0001
“If you had to choose a program you prefer,

which would it be?” 0% 100% - -

aggregate cost. We again ran a factorial repeated-measures ANOVA, and the
results, as expected, were analogous to the results from part 1. We again saw
significant main effects, but also a significant interaction between the factors.
As before, a post-hoc with Tukey HSD corrections showed that 7 out of the 10
goals saw significantly lower costs at the goal with our method than with the
baseline. The set of these 7 goals was almost identical to the one in part 1, with
the exception of one goal no longer showing a significant difference, and one
goal starting to show a significant difference.

This supports out hypothesis H2: our method does not only help users
improve performance when we force them to be myopic by not making them
aware of the goal – it helps in realistic situations, when users have a goal
that they are aware of . This suggests that people are indeed myopic in their
selections of a grasp configuration.

Table 3 shows the goal ergonomic costs estimated by each of the four objec-
tive metrics, averaged across all nine study participants for Part 2 of the study,
where subjects were instructed to place the object on a pictoral marker at the
goal pose after each handover. We see a similar improvement in ergonomic
costs when minimizing E[C] versus maximizing |Q|.

Here, we found it interesting that the costs dropped slightly across the
board. This suggests that perhaps when people are aware of the goal they
perform slightly better, but that still our method can significantly help them
to further improve their performance.
H3. Table 4 summarizes users’ subjective ratings. t-tests showed that our method
outperformed the baseline in user overall preference, how helpful they thought
the robot was, how much they trusted the robot, and how easy it was to do the
task. Users thought that the robot understood their goal and that it handed
them objects in a way that made their task easier.

The users’ comments were particularly enlightening (here Program 1 refers
to the baseline and Program 2 refers to our method):

“With Program 2, I could move straight from grip to the target with a natural
motion. With Program 1, I would sometimes have to contort my arm unnaturally to
place the mug correctly.”; “Program 1 made it easier to pick up objects but harder to
achieve the goal. Program 2 sometimes made it more difficult to pick up objects but
achieving the goal was easier.”; “Program 1 is an a**hole.”
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7 Discussion
Summary. We introduced a model of how people take an object from the robot,
and used it to select robot actions that lead to better outcomes for the person.
Especially when the person has a goal for the object after the handover, but
they are myopic or greedy in their selection of their grasp and do not account
for the goal, we have shown that the robot can influence the person’s grasp to
help them achieve better comfort across the task – at the handover time, but
also at the goal time.
Limitations and Future Work. Our work is limited in many ways. We optimize
for total ergonomic cost to the person, but it is not clear what this ergonomic
cost should be, and it will likely differ from human to human. Furthermore,
our study did not measure exactly the ergonomic cost at the goal. Future work
might address this by instrumenting the person and the object. Nonetheless,
we are encouraged by the subjective results, which align well with our objec-
tive estimates. Thus far we only looked at cost at the handover and at the goal,
but not at the trajectory the human would plan from one to the other.
Conclusion. Despite these limitations, we are encouraged to see robots being
able to influence human actions in a helpful way, making it more likely for
them to find good solutions for the task. We are excited to explore further
applications of this idea beyond handovers, to human plans more broadly.
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