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Abstract— For applications such as Amazon warehouse order
fulfillment, robots must grasp a desired object amid clutter:
other objects that block direct access. This can be difficult
to program explicitly due to uncertainty in friction and push
mechanics and the variety of objects that can be encountered.
Deep Learning networks combined with Online Learning from
Demonstration (LfD) algorithms such as DAgger and SHIV
have potential to learn robot control policies for such tasks
where the input is a camera image and system dynamics
and the cost function are unknown. To explore this idea, we
introduce a version of the grasping in clutter problem where
a yellow cylinder must be grasped by a planar robot arm
amid extruded objects in a variety of shapes and positions. To
reduce the burden on human experts to provide demonstrations,
we propose using a hierarchy of three levels of supervisors:
a fast motion planner that ignores obstacles, crowd-sourced
human workers who provide appropriate robot control values
remotely via online videos, and a local human expert. Physical
experiments suggest that with a fixed budget of 160 expert
demonstrations, using the hierarchy of supervisors can increase
the probability of a successful grasp (reliability) from 55% to
90%.

I. INTRODUCTION

As illustrated by the recent Amazon Picking Challenge at
ICRA 2015, the grasping in clutter problem, where a robot
needs to grasp an object that might be occluded by other
objects, poses an interesting challenge to robotic systems.
This problem is relevant to industrial applications such as
warehouse shipping operations and flexible manufacturing in
semi-structured environments. One fundamental approach to
grasping in clutter is the analytic model driven approach [6],
where the interaction dynamics between the robot and obsta-
cles are formulated analytically. However, modeling all the
physical properties of interaction poses a highly challenging
problem due to uncertainty in modeling parameters such as
inertial properties and friction.

Another approach to the grasping in clutter problem is
a data-driven manner, where the interaction behavior is
learned directly from interactions with the environment and
a supervisor, which can be an expert human or an analytical
method [4]. Learning from demonstration (LfD) algorithms
have been used successfully in recent years for a large
number of robotic tasks, including helicopter maneuvering [2],
car parking [3], and robot surgery [34]. Furthermore, deep
learning, which we use to learn policies directly from raw
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Fig. 1: Three policy roll-outs on a Zymark 3-DOF Robot of a fully trained
grasping in clutter policy (one per row, left to right) which was trained using
a hierarchy of three supervisors consisting of a motion planning algorithm,
crowd-sourcing and a human expert. Red shapes indicate clutter objects and
the robot is trained to reach the yellow cylinder. The trained manipulation
policy is represented as a deep neural network that receives as input an
image of the scene and outputs a change in state position. The resulting
policy learns to sweep away clutter objects to reach the goal object.

video data, has emerged as a highly versatile technique used
for this purpose [26].

Our approach is based on Online Learning from Demonstra-
tions where a robot iteratively learns a policy and is provided
feedback on the current policy roll out by a supervisor [13],
[27], [28]. We build on DAgger, an online LfD algorithm,
which at each iteration, computes a policy based on prior
demonstrations, and then rolls out that policy. A supervisor
then provides control signals as feedback on the current policy
and new state/control examples are aggregated with the prior
examples for the next iteration. DAgger and related algorithms
have been applied in a wide range of applications, such as
quadrotor flight, natural language and Atari games [14], [12],
[29]. Ross et al. showed that DAgger, under a no-regret
assumption, can be guaranteed to deviate from the supervisor’s
policy with an error at most linear in the time horizon for
the task [28].

One drawback of DAgger is that it imposes a substantial
burden on the supervisor, who must label all states that the
robot visits during training. Previously, only a single expert
supervisor has been considered [27], [21], [28], [29], [12].

We propose to instead utilize a hierarchy of supervisors
to incrementally bootstrap the learning process, as opposed
to utilizing an expensive expert supervisor from scratch. At
the lowest level of the hierarchy, we use a motion planner



on a simplified version of the grasping in clutter problem
that ignores ambient obstacles. For the next supervisor in the
hierarchy, we consider crowd-sourced workers on Amazon
Mechanical Turk. The robot is finally trained with a PhD
student in robotics, who is considered an expert human
supervisor. Experiments suggest that with a fixed budget
of 160 expert demonstrations leveraging a hierarchy of
supervisors can increase reliability from 55% to 90% on
a test set of unknown object configurations.

II. RELATED WORK

Below, we summarize related work in Robotic Grasping
in Clutter, the Online LfD setting and Curriculum Learning.
Robotic Grasping in Clutter Robotic grasping is a well-
established research topic in robotics that has been studied
for several decades [6]. A significant amount of prior work
focuses on planning grasps given a known object. However,
in unstructured environments, clutter poses a significant
challenge for reaching the planned grasp [16].

Prior work has studied the problem of manipulating objects
by performing pushing operations [24]. Cosgun et al. [9] and
King et al. [18] consider the problem of planning a series
of push operations that move an object to a desired target
location. We are interested in reaching a desired goal object,
not how to move an object to a specific pose.

Additionally, prior work has studied the use of hierarchical
approaches for motion planning amid movable obstacles [32],
[35]. The approach is to use sampling-based methods to
compute a high-level plan to move objects out of the way
and get to a goal location. Dogar and Srinivasa applied this
approach to push-grasping in clutter to plan a trajectory
towards a grasp by maintaining a set of movable objects [11].
Our approach could be integrated with a high level planner
for more advanced problems, where removing objects from
the environment is needed.

Dogar et al. proposed a physics-based grasp planning
approach that pre-computes and caches interactions with
obstacles in the environment, which allows for fast real
evaluation for a planner [10]. However, it does not account
for inter-object interactions, which can be significant in
cluttered environments. A supervisor could potentially impart
an intuition for inter-object interaction while training the robot.
Kiteav et al. planned a trajectory in a physics simulator using
LQG based controllers [19] to reach a goal object surrounded
by movable obstacles. They demonstrated that leveraging
knowledge of object dynamics can lead to higher success
than only using motion planning. However, for unknown
objects it can be difficult to know parameters such as mass
and friction coefficient, which are important for simulation.

Leeper et al. [22] used a human operator for assistance to
guide the robot through clutter with the objective of grasping
a target object. However, the robot required the human to
be present at all times and was not operated autonomously.
We are interested in a data-driven approach that only queries
a supervisor at training time and can operate autonomously
thereafter.

Prior work has addressed integrated perception and grasp-
ing in clutter where the objective is to grasp objects in
an unorganized pile [26], [25], but these methods do not
specifically aim to grasp a single target object in clutter. We

train a robot specifically to move towards a goal object and
treat other objects as clutter.

A model-free approach to robotic manipulation is Guided
Policy Search [23]. However, this assumes a known low-
dimensional state representation to both estimate dynamics
and apply an LQG controller. In the grasping in clutter domain,
it can be hard to specify such a low dimensional representation
due the dependence on the objects’ shape.
Online LfD with an Expert Supervisor Successful robotic
examples of Online Learning From Demonstration with an
expert supervisor include applications of flying a quad-copter
through a forest, navigating a wheel chair across a room,
teaching a robot to follow verbal instructions and surgical
needle insertion [29], [17], [12], [21]. However, to date, these
approaches have used only one expert supervisor to provide
training data for all parts of the state space. We propose to
instead utilize a hierarchy of supervisors with different skill
levels and cost to reduce the overall burden on the expert.
Reducing Supervisor Burden in Online LfD Active learn-
ing approaches to reducing supervisor burden only ask for su-
pervision when the robot is uncertain about the correct control
to apply. Traditional active learning techniques like query-by-
committee and uncertainty sampling have been utilized for this
purpose [8], [15], [13]. Kim et al. demonstrated that due to
the non-stationarity of the distribution of states encountered
during learning traditional active learning techniques may
not be suitable. Thus the use of novelty detection was
proposed [17]. Laskey et al. introduced SHIV, which used an
active learning approach tailored to high dimensional and non-
stationarity state distributions and a modified version of the
One Class SVM classifier. This reduced the density estimation
problem to a simpler regularized binary classification [21].

However, all of these works focus on reducing the duration
of the demonstration an expert needs to provide. We focus
on reducing the number of demonstrations the expert needs
to provide, not the duration.
Curriculum Learning Our approach is closely related to
ideas from curriculum learning, where a neural network
is trained incrementally: first on easier examples and then
gradually on data of increasing difficulty [5]. Sanger et al.
used curriculum learning to gradually train a neural network
policy to learn the inverse dynamics of a robot manipulator.
They then considered a collection scheme where easily learned
trajectories were shown to the robot first and then gradually
increased the difficulty [30]. We avoid the complexity of
ranking training data by difficulty and instead propose an
iterative scheme where data is presented in an unbiased
manner to a hierarchy of supervisors.

III. ROBOT GRASPING IN CLUTTER

We consider a robot grasping an object in a cluttered
environment. The robot’s goal is to grasp a target, or goal,
object in the presence of extruded objects obstructing the
path towards the goal object. Kiteav et al. demonstrated that
applying only a motion planner to this problem is not as
successful as incorporating knowledge of object dynamics
[19]. However, since contact dynamics can be difficult to
model without information such as friction coefficient and
mass [19], [18], we do not assume knowledge of explicit
object or dynamics models and instead learn a grasping policy
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Fig. 2: Shown above is a Zymark robot. The robot consists of a 3DOF arm
in a planar workspace. It is able to extend its arm and rotate about a fixed
base. The robot can also open and close its gripper.

directly from demonstrations. We consider the following robot
system, three supervisors S1, S2, S3 and neural network policy
architecture:
Robot System The robot, shown in Fig. 2, has a 3 dimen-
sional internal state of base rotation, arm extension and
gripper opening width. The state space of the environment,
X , is captured by an overhead Logitech C270 camera, which
is positioned to capture the workspace that contains all
cluttered objects, the goal object and the robot arm. We
use only the current image as state space, which captures
positional information. We hypothesize the need to include
other information such as velocity, as the speed of the robot is
increased. Examples of images from the camera can be seen
in Fig. 1. The robot is commanded via position control with a
PID controller. Similar to [21], the controls, U , to the robot are
bounded changes in the internal state, which allows for us to
easily register control signals to the demonstrations provided
by supervisors as opposed to torque control. The control
signals for each degree of freedom are continuous values
with the following ranges: base rotation, [−15◦, 15◦], arm
extension [−1, 1]. The units are degrees for base rotation and
centimeters for arm extension. The precision of the control
signal is 0.001 for each degree of freedom. In supervised
learning, or regression, it is common to use a high level of
precision for control signals [23], [21], [17].

The robot receives feedback from a supervisor by first
executing a trajectory that has a time horizon, T , where
T = 100. The trajectory, which is composed of 100 states, or
images captured by the camera, is then given to a supervisor,
who provides a demonstration. A demonstration is defined
as the supervisor providing the control they would apply if
they were in the robot’s current state, for each state in the
trajectory. The robot then uses these demonstrations in an
approach similar to supervisor learning, described in Sec. IV,
to update its current manipulation policy.
MPIO: Motion Planner Ignoring Obstacles Supervisor
Supervisor, S1, is a first order motion planner that computes
control signals for the robot to reach the goal object in a
straight line, ignoring the presence of obstacles. We refer
to this supervisor as Motion Planner Ignoring Obstacles
(MPIO). Our method employs template matching to identify
the goal object in the image and uses the forward dynamics
of the robot to compute the relative change in direction the
robot should apply as a control. The template matching is

Fig. 3: We display the interface AMT workers see for providing feedback
to the robot for the grasping in clutter task. The pink overlay indicates the
desire control, which is a bounded change in internal state, the robot should
apply to move towards the yellow object. Then the AMT workers can use
their intuition for how objects respond to force to provide examples of how
the robot should behave. We show two examples of robot state and control
label a human supervisor would provide via a Computer Mouse.

implemented in OpenCV and uses the normalized cross-
correlation filter [7]. This supervisor is designed to just
provide an initial improvement from a random neural network
policy.
Crowd-Sourced Supervisor Supervisor, S2, uses a crowd
source service, called Amazon Mechanical Turk (AMT).
The AMT platform makes readily available thousands of
human workers, who can provide supervision for $0.10 per
demonstration. The time to provide a demonstration to the
robot is 50s, since the robot trial is slowed down to a half
second per time-step in the trajectory.

In order to have the AMT workers provide demonstrations,
we designed the supervision interface shown in Fig. 3. The
interface displays a video of a trajectory in the image state
space and allows the human supervisors to command an
overlay visualization of the robot arm to demonstrate the
correct control the robot should apply. The interface is
controlled via a mouse. When the mouse button is pressed a
robot visualization appears and can be dragged to the desired
control (or change in state) the robot should apply. The desired
control is bounded by the range in controls listed above.

We designed a tutorial for the Crowd-Sourced Supervisor.
We first describe the learning task to them as a robot that
is trying to reach a yellow cylinder and needs their help
learning how to get it. In a tutorial, they are then trained to
perform designated motions with a virtual robot, to help them
understand the robot’s kinematics. We additionally provide
a video of an expert providing corrections on three robot
trajectories. We instruct the Crowd-Sourced Supervisor to
provide a control only when they are confident. If a state in
the demonstration does not receive a label then that state is
not added to the training set.

To help ensure quality, we provide all Crowd-Sourced
Supervisors with the same trajectory first and compare their
demonstration against a demonstration of a Human Expert
Supervisor. If the average Squared-Euclidean distance over
control signals between demonstrations is above a threshold,
then the Crowd-Sourced Supervisor is not asked to provide
additional demonstrations. The threshold is set with the
intention to only remove AMT workers, who provide arbitrary
demonstrations, no demonstrations or possibly adversarial
demonstrations. On average the AMT workers would provide
only 8 demonstrations, however for a larger set of demon-
strations it is advised to periodically test their quality.



Expert Supervisor Supervisor, S3 is the Expert Supervisor,
who is capable of a better understanding of the problem
domain but is a limited resource. An Expert Supervisor in
this case is a PhD student in machine learning and robotics.
The Expert Supervisor uses the same interface as the Crowd-
Sourced supervisors, shown in Fig. 3, to provide examples
to the robot.

An Expert Supervisor can utilize a variety of knowledge
about the physical limitations of the robot and environment,
joint limits and experience in how certain objects might
behave under force. Furthermore, the Expert Supervisor might
have an intuition for how training examples could lead to
better training of the robot.
Neural Network Policy Architecture In Online LfD, a robot
is trained by learning a policy, or function mapping state
space X to control space U . Commonly, a policy is a specific
function in some function class such as linear regression,
kernelized ridge regression, or a neural network. To handle
the high dimensional image space of the problem, we are
interested in representing the robot’s policy as a deep neural
network. Deep learning can be advantageous because it has
the potential to learn features relevant for manipulation [23],
[26]. Furthermore as opposed to kernel based methods, neural
networks readily support online updates (i.e. the ability to add
more demonstrations without having to retrain on previous
demonstrations) [31], which can be important when switching
supervisors in the hierarchy.

To facilitate training the neural network, we scaled the
controls between 1 and -1 for each dimension independently,
which is common for training [1]. To be robust to lighting
and to reduce the dimensionality of the problem, we applied
a binary mask to each channel of the 250x250 RGB image
setting values above 125 to one and 0 otherwise. This results
in an image with a black background, red obstacle objects, a
yellow goal object and a white robot arm. The policy outputs
a 4 dimensional control signals, or delta state positions, for a
given input image or state. The network also has the ability
to control the turn-table motor controlling the rotation of the
disc workspace and the single degree of freedom of the robot
gripper. However, we do not use these controls in experiments
and in the training data set those controls to 0.

To determine the network architecture we performed
a search over 30 different architectures trained after 400
iterations with a batch size of 200. The set of architectures
consisted of different network architectures in terms of
convolutional layers, filter size, fully connected layers and
output dimension of each layer. In determining an architecture,
we trained all networks on a dataset of 6K state/control pairs
from the MPIO Supervisor.

The found network architecture was as follows. First, to
work with image data, it uses a convolutional layer with
5 channels and 11x11 filters. We added a Rectified Linear
Unit (i.e. max(0, x)) or ReLu, to add a non-linearity between
layers. ReLus have been shown to allow for faster training
than other non-linear separators [20]. After the non-linearity,
we added a fully connected layer, or a weight matrix, with
an output dimension of 128. Then, another ReLu followed
by a weight matrix that maps to the 4 dimensional output.
We place a final tanh function on the output, which enforces
the output to be between −1 and 1.

We trained all networks on a Nvidia Tesla K40 GPU, which
is able to train each network in an average of 10 minutes.
All networks were trained using Stochastic Gradient Descent
with Momentum in TensorFlow [1]. Momentum is a method
to control the magnitude of the gradient based on how large
previous gradients were. We used a gradient step size, or
learning rate, of 0.01 and a momentum term of 0.9. We
initialize all weights with zero mean Gaussian noise with a
variance of 0.1.

IV. ONLINE LEARNING FROM DEMONSTRATIONS

Given a collection of increasingly skilled supervisors
S1, . . . , SM , the goal of this work is to learn a policy that
closely matches that of the most skilled supervisor SM while
minimizing the overall number of queries to the more skilled
supervisors.
Assumptions and Modeling Choices We assume a known
state space and set of controls. We also assume access to a
robot or simulator, such that we can sample from the state
sequences induced by a sequence of controls. Lastly, we
assume access to a set of supervisors who can, given a state,
provide a control signal label. We additionally assume the
supervisors can be noisy and imperfect.

We model the system dynamics as Markovian, stochastic,
and stationary. Stationary dynamics occur when, given a
state and a control, the probability of the next state does
not change over time. Note this is different from the non-
stationary distribution over the states the robot encounters
during learning. We model the initial state as sampled from
a distribution over the state space.
Policies and State Densities We denote by X the set of
observable states for a robot task, consisting, for example,
of high-dimensional vectors corresponding to images from
a camera, or robot joint angles and object poses in the
environment. We denote by U the set of allowable control
inputs for the robot. U may be discrete or continuous in
nature. We model dynamics as Markovian: the probability of
state xt+1 ∈ X depends only on the previous state xt ∈ X
and control input ut ∈ U :

p(xt+1|ut,xt, . . . ,u0,x0) = p(xt+1|ut,xt).

We assume an unknown probability density over initial states
p(x0). A demonstration (or trajectory) τ̂ is a series of T + 1
pairs of states visited and corresponding control inputs at
these states, τ̂ = (x0,u0, ....,xT ,uT ), where xt ∈ X and
ut ∈ U for t ∈ {0, . . . , T} and some T ∈ N. For a given
trajectory τ̂ as above, we denote by τ the corresponding
trajectory in state space, τ = (x0, ....,xT ).

A policy is a function π : X → U from states to control
inputs. We consider a space of policies πθ : X → U
parameterized by some θ ∈ Rd. Any such policy πθ in
an environment with probabilistic initial state density and
Markovian dynamics induces a density on trajectories. Let
p(xt|θ) denote the density of states visited at time t if the
robot follows the policy πθ from time 0 to time t − 1.
Following [28], we can compute the average density on states
for any timepoint by p(x|θ) = 1

T

∑T
t=1 p(xt|θ).

While we do not assume knowledge of the distributions
corresponding to: p(xt+1|xt,ut), p(x0), p(xt|θ) or p(x|θ),
we assume that we have a stochastic robot or a simulator



such that for any state xt and control ut, we can sample xt+1

from the density p(xt+1|πθ(xt),xt). Therefore, ‘rolling out’
trajectories under a policy πθ in our experiments, we utilize
the robot to sample the resulting stochastic trajectories rather
than estimating p(x|θ) itself.
Objective. The objective of policy learning is to find a policy
that maximizes some known cumulative reward function∑T
t=1 r(xt,ut) of a trajectory τ̂ . The reward r : X ×U → R

is typically user defined and task specific. For example, in
the task of inserting a peg into a hole, a function quantifying
a notion of distance between the peg’s current and desired
final state can be used [23].

Since grasp success is typically considered as a binary
reward which is observed only at a delayed final state [19],
grasping in clutter poses a challenging problem for traditional
reinforcement learning methods. Hence, we instead build upon
DAgger which queries a supervisor for appropriate actions,
to provide the robot a set of N stochastic demonstrations
trajectories {τ̂1, ...τ̂N}. This induces a training data set D
of state-control input pairs. We define a ‘surrogate’ loss
function as in [28], l : U×U → R, which provides a distance
measure between any pair of control values. We consider
l(u0,u1) = ||u0 − u1||22.

Given a candidate policy πθ, DAgger uses the surrogate loss
function to approximately measure how ‘close’ the robot’s
policy’s returned control input πθ(x) ∈ U at a given state
x ∈ X is to the supervisor’s policy’s control output π̃(x) ∈ U .
The goal is of DAgger is to produce a policy that minimizes
the expected surrogate loss:

min
θ
Ep(x|θ)[l(πθ(x), π̃(x))] (1)

Instead of a single supervisor S, which classically is
considered to be a skilled human teacher, we instead con-
sider a hierarchy S1, . . . , SM of supervisors which may be
algorithms or humans and which follow policies π1, . . . , πM
with associated expected cumulative rewards Ri satisfying
R1 ≤ R2 ≤ . . . ≤ RM . Furthermore, we assume that the
cost associated to providing a state label for supervisor Si
is Ci with C1 ≤ C2 ≤ . . . CM , so that the ordering of
supervisors is consistent with respect to both cost and skill
level. We consider the problem of minimizing the expected
surrogate loss of a trained policy with respect to the most
skilled supervisor SM in the hierarchy while minimizing the
overall training cost.

In particular, this paper provides an empirical study of
greedy (with respect to cost) combinations of three types
of supervisors S1, S2, S3 for grasping in clutter which are
applied in order to train a policy parameterized by a deep
neural network. Here, S1 is a motion planning algorithm that
ignores ambient obstacles, S2 a supervisor consisting of a
crowd-sourced Amazon Mechanical Turk laborers and S3 a
human expert supervisor.

V. APPROACH AND BACKGROUND

A. Details on DAgger: Dataset Aggregation
Since the cumulative expected reward of a policy is

difficult to optimize directly, DAgger [28] instead solves the
minimization in Eq. 1 by iterating two steps: 1) computing
the policy parameter θ using the training data D thus far,

and 2) by executing the policy induced by the current θ, and
asking for labels for the encountered states.

1) Step 1: The first step of any iteration k is to compute a
θk that minimizes surrogate loss on the current dataset Dk =
{(xi, ui)|i ∈ {1, . . . ,M}} of demonstrated state-control pairs
(initially just the set D of initial trajectory demonstrations):

θk = argmin
θ

M∑
i=1

l(πθ(xi),ui). (2)

This sub-problem is a supervised learning problem, which
we approximately solve with a deep neural network. Other
approaches such as kernel based regression can also be
considered [31].

2) Step 2: The second step at iteration k, DAgger rolls
out the current policy, πθk , to sample states that are likely
under p(x|θk). For every state visited, DAgger requests the
supervisor to provide the appropriate control/label. Formally,
for a given sampled trajectory τ̂ = (x0,u0, ...,xT ,uT ), the
supervisor provides labels ũt, where ũt ∼ π̃(xt) + ε, where
ε is a zero mean noise term, for t ∈ {0, . . . , T}. The states
and labeled controls are then aggregated into the next data
set of demonstrations Dk+1:

Dk+1 = Dk ∪ {(xt, ũt)|t ∈ {0, . . . , T}}.

Steps 1 and 2 are repeated for K iterations or until the
robot has achieved sufficient performance on the task1.

B. DAgger with Supervisor Hierarchy
Formulating a framework for supervisor strategy selection

poses a challenging problem since no formal model for
the effect of supervisor selection on the surrogate loss
minimization is available a priori. Additionally, the neural
network policy parameters θ are changing at each step of
DAgger’s iterative training process.

One could consider learning a policy using model-free
reinforcement learning algorithms [33], where a selection
strategy will query different supervisors and learn over time
the best supervisor to select given the current policy. However,
this approach requires a substantial number of queries for
supervision of the costliest supervisor at each iteration. In
light of this, we propose a greedy allocation strategy with
respect the cost of the supervisor.

We train a policy with the cheapest supervisor S1 for
a fixed number of K1 iterations with DAgger and then
advance linearly through the hierarchy S1, . . . , SM , where
the final Neural Network Parameters θi trained using Si are
transferred to supervisor Si+1 before further training the
policy with DAgger. We initialize each DAgger iteration with
the parameters from the previous iteration as well. Each
supervisor is trained for Ki, i ∈ {1, . . . ,M} iterations in
turn.

While for large numbers of iterations, convergence tests
can be applied to determine a point of diminishing return at
which a switch to the next supervisor in the hierarchy can be

1In the original DAgger the policy rollout was stochastically mixed with
the supervisor, thus with probability β it would either take the supervisor’s
action or the robots. The use of this stochastically mix policy was for
theoretical analysis and in practice, it was recommended to set β = 0 to
avoid biasing the sampling [14], [28]
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Fig. 4: The Training objects on the right are the four objects used in training.
The test objects on the left represent objects that were added in our test
configurations. Every test configuration contained at least one of the objects
on the right.

Training Configurations Test Configurations

Fig. 5: Right: examples of training configurations we presented to the
robot. The shapes were arranged around the goal object in different poses
and in different parts of the workspace. At test time, we considered similar
configurations but added at least 1 unknown object not present in the training
set.

initiated, this approach can be challenging when only a limited
numbers of roll-outs can be afforded. In practice, we either
advanced when the surrogate loss between supervisors was
sufficiently low or when the performance on the grasping in
clutter task was not improving empirically. For crowdsourcing
in particular, we chose the second option since, due to the
large variance between demonstrations, we were not able
to determine a fixed supervisor switching threshold for the
surrogate loss. We hope to significantly scale the number of
training steps in future work to investigate various switching
criteria in full detail.

VI. EXPERIMENTS

A. Experimental Setup
For the grasping in clutter task, we consider objects made of

Medium Density Fiberboard with an average 4” diameter and
3” in height. The objects used to form clutter are red extruded
polygons while the goal object is a yellow cylinder. The
objects are light weight and have similar friction coefficients.
The robot workspace, which is green, consists of a 30” disk
region which is surrounded by an elevated plate constraining
the objects to a ring and prohibiting them from leaving the
camera’s field of view.

To test the performance of each robot policy, we created
a test set composed of 20 different configurations each
containing objects that were not in the training set. The
training objects and test objects introduced during testing are
shown in Fig. 4. The test set configurations varied by placing
test objects from Fig. 4 with objects we trained on in similar
configurations. Examples of training and test configurations

are shown in Fig. 5. During training and testing, we manually
place the objects in configurations. However, a hardware
mechanism that moves the objects around, such as a pre-
defined sweeping motion from the robot arm, could be used
in future work. We measure success by whether the object
was in the gripper at the final timestep. We define reliability
or ρ as the percentage of successful configurations.

Per iteration of Hierarchical DAgger, we collect 20
trajectories, each with T = 100 timesteps, on different
training configurations and then have a supervisor provide
20 demonstrations. We do this to sample a variety of
configurations with the current policy before updating the
weights. Thus 100 robotic trials correspond to 5 iterations of
DAgger.

B. Three Types of Supervisors
We first compare each supervisors’ performance. We train

the robot with MPIO Supervisor, Crowd-Sourced Supervisor
or the Expert Supervisor for a fixed amount of 160 demon-
strations on the training configurations. Our results in Fig. 6,
show that for our fixed budget of 160 trials the supervisors
receive a reliability of ρ = 30%, ρ = 35% and ρ = 55%,
respectively.

When testing the Crowd-Sourced Supervisor, we hired 44
AMT workers. We found only 21 AMT workers were able to
pass the quality check and continue providing demonstrations
as described in Sec. III. On average a worker would provide
8 demonstrations before choosing to not provide any more.
A single demonstration would take 50s to provide.

We are next interested in testing how the supervisors
perform in the hierarchy. We divide the original budget
of 160 demonstrations to 100 MPIO demonstrations and
60 demonstrations of a higher skill supervisor (i.e. Crowd-
Sourced or Expert). The choice of 100 demonstrations was
made due to no improvement in reward from the MPIO
Supervisor after 100 demonstrations.

Results shown in Fig. 6, suggest that a hierarchy of super-
visor with MPIO and Crowd-Sourced achieves a reliability
of ρ = 45% and MPIO and Expert achieves a reliability
of ρ = 60%. This suggests that by leveraging a hierachy
of supervisors one is able to reduce the burden on a more
skilled supervisor in the hierarchy.

It is also interesting that the hierarchy of supervisor
achieves higher reliability with the same fixed budget 10%
higher for MPIO plus Crowdsourced and 5% for MPIO and
Expert. This could suggest that it is easier for a robot to
learn core behavior, such as visual servoing in the direction
of the goal object, from a more reliable supervisor and
infrequent complex behaviors, such as pushing objects in the
environment, from a more skilled but noisy human supervisor.

C. Full Hierarchy
Given a fixed budget of 160 Expert Supervisor demonstra-

tions, which achieves 55% reliability, we are interested in
increasing relaibility by leveraging the less costly supervisors,
MPIO and Crowd-Sourced. We thus had MPIO and Crowd-
Sourced supervisor provide demonstrations until we observed
the reward achieved was not increasing. This results in the
MPIO Supervisors providing 100 demonstrations and the
Crowd-Sourced Supervisor providing 120 demonstrations.
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We then had the Expert Supervisor provide a fixed budget
of 160 demonstrations. Thus, resulting in a total of 380
demonstrations. The resulting policy had a reliability of 90%
as shown in Fig. 6.

Investigating the learned policy, we observed that it appears
to find gaps in between the clutter objects. The robot then
sweeps left to right until the objects are pushed apart and
then moves towards the goal object, as illustrated in Fig.
1. We noticed that the magnitude of the sweeping motion
appeared anti-proportional to the size of the gap in between
the cluttered objects. For example, two cluttered objects
placed close together in front of the goal object would cause
a high frequency of sweeping. While, a single object in front
of the goal object would often result in a single sweeping
motion pushing the obstacle away from the goal object. We
also noticed that the robot would in general stop once it
reached the goal object. However, it was rare to see the robot
go backwards and correct itself, despite those demonstrations
being given.

While our policy showed improved performance when
trained using a hierarchy, failure modes persisted in our
test configurations. Common failure modes are either that
the robot sweeps too far and jams the objects against the
inscribed circle around the workspace or a smaller obstacle
object was caught in the gripper while being pushed.

D. Advancing in the Hierarchy
We lastly test how to advance between supervisors in the

hierarchy. We examine the situation where the robot is first
trained with the MPIO supervisor for 100 demonstrations and
then the Expert Supervisor for 60 demonstrations.

We are interested in testing the following strategies for
changing supervisors 1) aggregating the two datasets of
the demonstrations collected with both MPIO and Expert
Supervisors 2) transferring only the weights of the neural
network policy θ to initialize training with the Expert and
not retraining on the MPIO Supervisor’s demonstrations
3) transferring only the weights of the neural network

policy but adding the values output by πθ(x) instead of
π̃m(x) in the states visited when the Expert Supervisor’s
demonstrations are similar to the output of the policy as
measured by ||π̃m(x) − πθ(x)||22 < 0.01. This acts as a
form of regularization on the optimization since part of the
stochastic gradient computed on the mini-batch would be
zero for examples where the policy trained with the MPIO
Supervisor matches that of the Expert.

Our results reported in Fig.6, show that the aggregation
strategy achieves reliability, ρ = 15%, the weight transfer
strategy achieves ρ = 60% and the regularized stochastic gra-
dient update strategy achieves ρ = 65%. Thus, suggesting that
techniques to help the policy remain close to the previously
trained supervisor are useful for effectively switching between
supervisors. In future work, we will look at other ways to
better transfer the learned information from supervisors lower
in the hierarchy.

VII. DISCUSSIONS AND FUTURE WORK

Robot grasping in clutter is a challenging problem for
automation in warehouse order assembly and home cleaning
due to the uncertainty arising from sensing and control and
the inherent complexity of push mechanics. We introduce
a version of the problem where a yellow cylinder must be
grasped by a planar robot arm amid extruded objects with a
variety of shapes and positions. Results suggest that this task
is amenable to a Learning from Demonstrations approach
such as DAgger or SHIV but can put a burden on human
experts.

To reduce the burden, we consider two alternative su-
pervisors: one is a motion planner that ignores obstacles
(MPIO) and the second is crowd-sourced workers from
Amazon Mechanical Turk who provide demonstrations using
a novel overlay interface. Results show, as expected, that
the reliability of the policies depend on the skill level of
the supervisors. We introduce a hierarchical approach where
supervisors with differing skill levels are combined. Results
suggest that staging supervisors in terms of increasing skill



level can bootstrap LfD to learn reliable policies; in this case
the robot learns a counter-intuitive policy where it sweeps
the gripper back and forth to clear obstacles before grasping.

To our knowledge this is the first study of hierarchical
supervisors for Learning from Demonstrations. In future
work, we will perform more experiments in this context
with added noise, different ratios in supervisors, and study
the sample complexity needed to learn a policy. We will
also study the comparative performance of other motion
planning-based supervisors and study how hierarchical ap-
proaches can be applied to tasks such as assembly. Further
information, videos and code can be found at the fol-
lowing http://berkeleyautomation.github.io/
HierSupCASE/.
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