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Abstract
Traditionally, autonomous cars treat human-driven vehicles like moving obstacles. They predict their future trajectories and
plan to stay out of their way. While physically safe, this results in defensive and opaque behaviors. In reality, an autonomous
car’s actions will actually affect what other cars will do in response, creating an opportunity for coordination. Our thesis is
that we can leverage these responses to plan more efficient and communicative behaviors. We introduce a formulation of
interaction with human-driven vehicles as an underactuated dynamical system, in which the robot’s actions have consequences
on the state of the autonomous car, but also on the human actions and thus the state of the human-driven car. We model these
consequences by approximating the human’s actions as (noisily) optimal with respect to some utility function. The robot uses
the human actions as observations of her underlying utility function parameters. We first explore learning these parameters
offline, and show that a robot planning in the resulting underactuated system is more efficient than when treating the person
as a moving obstacle. We also show that the robot can target specific desired effects, like getting the person to switch lanes or
to proceed first through an intersection. We then explore estimating these parameters online, and enable the robot to perform
active information gathering: generating actions that purposefully probe the human in order to clarify their underlying utility
parameters, like driving style or attention level. We show that this significantly outperforms passive estimation and improves
efficiency. Planning in our model results in coordination behaviors: the robot inches forward at an intersection to see if can
go through, or it reverses to make the other car proceed first. These behaviors result from the optimization, without relying
on hand-coded signaling strategies. Our user studies support the utility of our model when interacting with real users.

Keywords Planning for human–robot interaction · Mathematical models of human behavior · Autonomous driving

This is one of several papers published in Autonomous Robots compris-
ing the “Special Issue on Robotics Science and Systems”.

This paper combines work from Sadigh et al. (2016b, c). It adds a
general formulation of the problem as a game, discusses its
limitations, and lays out the assumptions we make to reduce it to a
tractable problem. On the experimental side, it adds an analysis of the
adaptivity of the behaviors produced to initial conditions for both
offline and active estimation, an analysis of the benefits of active
estimation on the robot’s actual reward, and results on actively
estimating user intentions as opposed to just driving style.

B Dorsa Sadigh
dorsa@cs.stanford.edu

1 Department of Computer Science, Stanford University,
Stanford, USA

1 Introduction

Currently, autonomous cars tend to be overly defensive and
obliviously opaque. When needing to merge into another
lane, they will patiently wait for another driver to pass first.
When stopped at an intersection and waiting for the driver on
the right to go, theywill sit there unable towave themby.They
are very capable when it comes to obstacle avoidance, lane
keeping, localization, active steering and braking (Urmson
et al. 2008; Levinson et al. 2011; Falcone et al. 2007, 2008,
2007; Dissanayake et al. 2001; Leonard et al. 2008). But
when it comes to other human drivers, they tend to rely on
simplistic models: for example, assuming that other drivers
will be bounded disturbances (Gray et al. 2013; Raman et al.
2015), they will keep moving at the same velocity (Vitus and
Tomlin 2013; Luders et al. 2010; Sadigh and Kapoor 2015),
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(a) (b) (c) (d) (e)

Fig. 1 We equip autonomous cars with a model of how humans will
react to the car’s actions (a). We test the planner in user studies, where
the car figures out that it can nudge into the human’s lane to check their
driving style (b, c): if it gets evidence that they are attentive it merges in
front, expecting that the human will slow down; else, it retracts back to

its lane (c). We also see coordination behavior at an intersection, with
the car planning to inch forward to find out more about how the human
will act, or even inch backwards to incentivize the human to go through
first (d)

or they will approximately follow one of a set of known
trajectories (Vasudevan et al. 2012; Hermes et al. 2009).

These models predict the trajectory of other drivers as
if those drivers act in isolation. They reduce human–robot
interaction to obstacle avoidance: the autonomous car’s task
is to do its best to stay out of the other drivers’ way. It will
not nudge into the lane to test if the other driver yields, nor
creep into the intersection to assert its turn for crossing.

In reality, the actions of an autonomous car affect the
actions of other drivers. Our goal is to leverage these
effects in planning to improve efficiency and coordina-
tion with human drivers.

We are not the first to propose that robot actions influence
human actions. Work in social navigation recognized this,
and addressed it by treating the human and the robot as being
part of a team—a team that works together to make sure
that each agent reaches their goal, and everyone avoids each
other (Trautman and Krause 2010; Trautman et al. 2013;
Trautman 2013; Kuderer et al. 2015). The robot computes
a coupled plan by optimizing the team’s objective jointly
over the human and robot plans, assuming the human will
follow their part of the plan, and re-planning at every step.
Nikolaidis et al. (2015) recognized that the humanmight stray
away from the plan that the robot computed, andmodeled the
human as switching to the robot’s plan at every time stepwith
some probability.

We propose that when people stray away from the cou-
pled plan, there is a fundamental reason for this: they have
a different objective altogether. This is particularly true in
driving, where coupled planning would assume that the per-
son is just as interested in the robot reaching its goal as they
are in themselves reaching theirs—selfish drivers are likely
just trying to get home and not get into an accident; they are
optimizing for something different.

In thiswork,we explicitly account for the robot’s influence
on the person bymodeling the person as optimizing their own

objective or utility function in response to the robot’s actions.
We develop an optimization-based method for planning an
autonomous vehicle’s behavior in a manner that is cognizant
of the effects it will have on human driver actions via this
model. This optimization leads to plans like the ones in Fig. 1.

Assuming a universal human model that the robot learns
offline, we see that the the orange car in (c) decides to cut in
front of the human driver in order to more efficiently reach
its goal. It arrives at this plan by anticipating that taking this
action will cause the human to brake and make space for it.
This comes in contrast to treating the person as an obstacle
thatmoves (b) and beingmore defensive. Since not all drivers
are the same, we also arm the robot with the ability to collect
information about the human driver online. It then decides to
nudge into the person’s lane (d) and onlymerges if it gets evi-
dence that the person is paying attention; otherwise it retreats
back to its lane.Wefind fascinating behaviors at intersections
(e): the car inches forward to test human attention, or even
inches backwards to get the person to cross first through the
intersection. These can be interpreted as signaling behaviors,
but they emerge out of optimizing to affect human actions,
without ever explicitly modeling human inferences.

We achieve this by planning in an underactuated dynami-
cal system: the robot’s actions change not only robot state, but
also influence human actions and thus human state.Wemodel
other drivers as acting approximately optimally according to
some reward function that depends on state, human actions,
as well as robot actions. We explore learning this human
reward function offline, as well as online during the inter-
action: here, the robot has the opportunity to use its own
actions to actively gather more information about the under-
lying reward. Our contributions are as follows1:

1 A preliminary version of our results was reported in Sadigh et al.
(2016a, b). This paper extends that work by providing more detailed
discussion and experiments...
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1. Formalism of Interaction with DriversWe begin by for-
malizing the interaction between a human and a robot as a
partially observable stochastic game (POSG) in Sect. 2. The
human and the robot can both act to change the state of the
world, they have partial information because they don’t know
each other’s reward functions, and they arrive at some tuple
of policies that are at an equilibrium.

This formulation has two issues: intractability, especially
in continuous state and action spaces, and failing to capture
human behavior, because humans tend to not follow Nash
equilibria in day to day tasks (Hedden and Zhang 2002).

We introduce a simplification of this formulation to an
underactuated system. We assume that the robot decides on
a trajectory uR, and the human computes a best response to
uR (as opposed to trying to influence uR as would happen in
a game). This reduction enforces turn-taking, and provides
us with a dynamics model in which the human observes (or
predicts) the robot’s actions prior to selecting her actions.
It maintains our ability to model the effects of the robot’s
actions on the human, because the robot can influence which
actions the human takes by selecting actions that force a
particular response.

2.ApproximateOptimizationSolution forKnownHuman
Model Assuming a known reward function for the human
[which we learn offline through Inverse Reinforcement
Learning (Ng et al. 2000; Abbeel and Ng 2005; Ziebart et al.
2008; Levine and Koltun 2012)], we derive an approximate
solution for our system based on Model Predictive Control
and a quasi-newton optimization in Sect. 3. At every step,
the robot replans a trajectory uR by reasoning about the opti-
mization that the human would do based on a candidate uR.
We use implicit differentiation to obtain a gradient of the
human’s trajectory with respect to the robot’s. This enables
the robot to compute a plan in close to real-time.

3. Extension to Online Inference of Human Reward The
solution based on estimating human reward offline from
training data is useful in some cases, but ultimately every
driver is different, and even the same driver is sometimes
more or less aggressive, more or less attentive, and so on. In
Sect. 6, we thus also explore estimating the human reward
function online.

This turns the problem into a partially observable Markov
decision process (POMDP), with the human reward param-
eters as the hidden state. Prior work that incorporates some
notion of human state into planning has thus far separated
estimation and planning, always using the current estimate
of the human state to determine what the robot should do
(Javdani et al. 2015; Fern et al. 2007; Bandyopadhyay et al.
2013). Although efficient, these approximations sacrifice an
important aspect of POMDPs: the ability to actively gather
information.

In recent years, many efforts have developed more effi-
cient algorithms for solving continuousPOMDPs (Chaudhari
et al. 2013; Seiler et al. 2015; Agha-Mohammadi et al. 2014);
however, computing the transition function for our POMDP
is costly as it involves solving for human’s best response.
This renders the aforementioned approaches ineffective as
they usually require either a succinct transition function or
an easily computable one.

Our work takes advantage of the underactuated system
to gather information about the human reward parameters.
Rather than relying on passive observations, the robot actu-
ally accounts for the fact that humans will react to their
actions: it uses this knowledge to select actions that will trig-
ger human reactions which in turn will clarify the internal
state. This is in line with work in active information gather-
ing in manipulation, safe exploration, or patrolling (Javdani
et al. 2013; Atanasov et al. 2014; Atanasov 2015), now used
over human state as opposed to physical state.

4. Analysis of Planning in Human–Robot Driving Sce-
narios We present the consequences of planning in this
dynamical system in Sect. 4, showcasing behaviors that
emerge when rewarding the robot for certain effects on
human state, like making the human slow down, change
lanes, or go first through an intersection. We also show
that such behaviors can emerge from simply rewarding the
robot for reaching its goal state fast—the robot becomes
more aggressive by leveraging its possible effects on human
actions. This does not happen always: in Sect. 7, we show the
robot maintains a belief over the human driver model, and
starts nudging into their lane to figure out if they are going
to let the robot merge, or inching forward at a 4-way stop.

We test the planner in two user studies in a driving sim-
ulator: one with a human reward learned offline in Sect. 5,
and one with online estimation in Sect. 8. Our results sug-
gest that despite the approximation our algorithm makes, it
significantly outperforms the “people as moving obstacles”
interaction paradigm. We find that the robot achieves signif-
icantly higher reward when planning in the underactuated
system, and that active information gathering does outper-
form passive estimation with real users.

Overall, this paper takes a step towards robots that account
for their effects on human actions in situations that are not
entirely cooperative, and leverage these effects to coordinate
with people. Natural coordination and interaction strategies
are not hand-coded, but emerge out of planning in our model.

2 General formalism for human–robot
interaction as a game

To enable a robot to autonomously generate behavior for
interaction and coordination with a human, we need to set up
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a model that goes beyond a single agent acting in the physi-
cal world among moving obstacles, and consider two-agent
models. One aspect that sets interaction with people apart
from typical multi-agent models like those used for multi-
robot planning is that we do not know or have direct control
over what the human is trying to do and how. Furthermore,
the human also does not know what the robot is trying to do
nor how the robot is going to do it.

Even the simplest formulation of the problem becomes
a two player game, and in what follows we introduce such
a formulation and expose some of its issues, including the
computational complexity of planning in such a model as
well as the model’s inaccuracy in capturing human behavior.
We then propose an approximation that simplifies planning in
the game to planning in an underactuated system: the robot
had direct control over its actions, but also has a model for
how its actions will influence those of the human.

Muchof robotics research focuses onhow to enable a robot
to achieve physical tasks, often times in the face of percep-
tion andmovement error—of partially observableworlds and
nondeterministic dynamics (Prentice and Roy 2009; Javdani
et al. 2013; Patil et al. 2015). Part ofwhatmakes human–robot
interaction difficult is that even if we assume the physical
world to be fully observable and deterministic, we are still
left with a problem as complex as an incomplete information
repeated two player game. It is a game because it involves
multiple rational (or rather, approximately rational) agents
who can take actions to maximize their own (expected) util-
ities. It is repeated because unlike single shot games, the
agents act over a time horizon. It is incomplete informa-
tion because the agents do not necessarily know each others’
reward functions (Aumann et al. 1995).

Partially Observable Stochastic Game Extrapolating from
the (PO)MDP formulation of a robot acting in isolation to
human–robot interaction, we can formulate interaction as
a special case of a Partially-Observable Stochastic Game
(POSG) (Hansen et al. 2004): there are two “players”, the
robot R and the human H; at every step t , they can apply
control inputs utR ∈ UR and utH ∈ UH; they each have a
reward function, rR and rH; and there is a state space S with
states s consisting of both the physical state x , as well as
reward parameters θR and θH .

Including the reward parameters in the state is an unusual
trick, necessary here in order to ensure that the human and the
robot do not have direct access to each others’ reward func-
tions, while maintaining a well defined POSG: R does not
observe θH, and H does not observe θR, but both agents
can technically evaluate each reward at any state-control
tuple (st , utR, utH) just because s contains the needed reward
parameter information: s = (x, θR, θH)—if an agent knew
the state, it could evaluate the other agent’s reward.

To simplify the physical world component and focus on
the interaction component, we assume fully observable phys-
ical states with deterministic dynamics. The observations
in the game are thus the physical state x and the controls
that each agent applies at each time step. The dynamics
model is deterministic, affecting x through the control inputs
and leaving the reward parameters unchanged (a reasonable
assumption for relatively short interactions).

Aside 1 The POSG above is not necessarily the most direct
extension of single-agent planning in deterministic fully
observable state spaces to interactions. Collaborative interac-
tions have been modeled simply as a centralized multi-agent
system with a shared reward function (Kuderer et al. 2015)
(i.e. rR = rH), but this reduces to treating the human
as another robot that the system has full control over—
essentially the system has more degrees of freedom to
control, and there is no difference between the human DoFs
and the robot DoFs. Unlike the POSG, it assumes that the
human and the robot know each other’s reward, and even
more, that their rewards are identical. This can be true of
specific collaborative tasks, but not of interactions in gen-
eral: robots do not know exactly what humans want, humans
do not know exactly what robots have been programmed to
optimize for, and their rewardsmight have common terms but
will not be identical. This happens when an autonomous car
interacts with other drivers or with pedestrians, and it even
happens in seemingly collaborative scenarios like rehabili-
tation, in which very long horizon rewards might be aligned
but not short-term interaction ones. The POSG formulation
captures this intricacy of general interaction.

Aside 2 The POSG above is the simplest extension of the
single-agent models to interactions between a human and
a robot that do not share a reward function or know each
others’ rewards. More complex models might include richer
state information (such as human’s beliefs about the robot,
trust, estimation of capability, mood, etc.), and might allow
it to change over time.

Limitations of the Game Formulation The POSG formu-
lation is a natural way to characterize interaction from the
perspective of MDP-like models, but is limited in two funda-
mental ways: (1) its computational complexity is prohibitive
even in discrete state and action spaces (Bernstein et al. 2002;
Hansen et al. 2004) and nomethods are known to handle con-
tinuous spaces, and (2) it is not a good model for how people
actually work—people do not solve games in everyday tasks
when they are not playing chess (Hedden and Zhang 2002).
Furthermore, solutions here are tuples of policies that are in
a Nash equilibrium, and it is not clear what equilibrium to
select.
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3 Approximate solution as an underactuated
system

To alleviate the limitations from above, we introduce an
approximate close to real-time solution, with a model of
human behavior that does not assume that people compute
equilibria of the game.

3.1 Assumptions that simplify the POSG

Our approximation makes several simplifying assumptions
that turn the game into an offline learning phase in which
the robot learns the human’s reward function, followed by
an online planning phase in which the robot is solving an
underactuated control problem:

Separation of Estimation & Control We separate the pro-
cess of computing actions for the robot into two stages. First,
the robot estimates the human reward function parameters
θH offline. Second, the robot exploits this estimate as a fixed
approximation to the human’s true reward parameters dur-
ing planning. In the offline phase, we estimate θH from user
data via Inverse Reinforcement Learning (Ng et al. 2000;
Abbeel and Ng 2005; Ziebart et al. 2008; Levine and Koltun
2012). This method relies heavily on the approximation of
all humans to a constant set of reward parameters, but we
will relax this separation of estimation and control in Sect. 6.

Model Predictive Control (MPC) Solving the POSG
requires planning to the end of the full-time horizon. We
reduce the computation required by planning for a shorter
horizon of N time steps. We execute the control only for the
first time step, and then re-plan for the next N at the next
time step (Camacho and Alba 2013).

Let x = (x1, . . . , xN )� denote a sequence of states over
a finite horizon, N , and let uH = (u1H, . . . , uN

H)� and
uR = (u1R, . . . , uN

R)� denote a finite sequence of contin-
uous control inputs for the human and robot, respectively.
We define RR as the robot’s reward over the finite MPC time
horizon:

RR(x0,uR,uH) =
N∑

t=1

rR(xt , utR, utH), (1)

where x0 denotes the present physical state at the current iter-
ation, and each state thereafter is obtained from the previous
state and the controls of the human and robot using a given
dynamics model, f .

At each iteration, we desire to find the sequence uR which
maximizes the reward of the robot, but this reward ostensibly
depends on the actions of the human. The robotmight attempt
to influence the human’s actions, and the human, optimizing
its own reward functions, might likewise attempt to influence

the actions of the robot. Despite our reduction to a finite
time horizon, the game formulation still demands computing
equilibria to the problem. Our core assumption, which we
discuss next, is that this is not required for most interactions:
that a simpler model of what the human does suffices.

Simplification of the Human Model To avoid computing
these equilibria, we propose to model the human as respond-
ing rationally to some fixed extrapolation of the robot’s
actions. At every time step, t ,H computes a simple estimate
of R’s plan for the remaining horizon, ũt+1:N

R , based on the
robot’s previous actions u0:tR . Then the human computes its
plan uH as a best response (Fudenberg and Tirole 1991) to
this estimate.We remark that with this assumption the human
is not modeled as a passive agent since the reward function
canmodel the behavior of any active agent, if allowed to have
arbitrary complexity. With this simplification, we reduce the
general game to a Stackelberg competition: the human com-
putes its best outcome while holding the robots plan fixed.
This simplification is justified in practice because usually
the agents in driving scenarios are competing with each other
rather than collaborating. Solutions to Stackelberg games are
in general more conservative in competitive regimes since
an information advantage is given to the second player. As a
result, the quality of a good solution found in a Stackelberg
game model does not decrease in practice. We additionally
use a short time horizon, so not much is lost by this approxi-
mation. But fundamentally, we do assume that people would
not try to influence the robot’s actions, and this is a limitation
when compared to solving the POSG.

Let RH be the human reward over the time horizon:

RH(x0,uR,uH) =
N∑

t=1

rH(xt , utR, utH), (2)

then we can compute the control inputs of the human from
the remainder of the horizon by:

utH(x0, u0:tR , ũt+1:N
R ) = argmaxut+1:T

H
RH(xt , ũt+1:N

R , ut+1:N
H ).

(3)

This human model would certainly not work well in adver-
sarial scenarios, but our hypothesis, supported by our results,
is that it is useful enough in day-to-day tasks to enable robots
to be more effective and more fluent interaction partners.

In our work, we propose tomake the human’s estimate ũR
equal to the actual robot control sequence uR. Our assump-
tion that the time horizon is short enough that the human
can effectively extrapolate the robot’s course of action moti-
vates this decision. With this presumption, the human’s plan
becomes a function of the initial state and robot’s true plan:
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u∗
H(x0,uR) = argmaxuH RH(xt ,uR,uH). (4)

This is now an underactuated system the robot has direct con-
trol over (can actuate) uR and indirect control over (cannot
actuate but does affect) uH. However, the dynamics model
in our setup is more sophisticated than in typical underactu-
ated systems because it models the response of the humans to
the robot’s actions. Evaluating the dynamics model requires
solving for the optimal human response, u∗

H.
The system is also a special case of anMDP, with the state

as in the POSG, the actions being the actions of the robot, and
the world dynamics being dictated by the human’s response
and the resulting change on the world from both human and
robot actions.

The robot can now plan in this system to determine which
uR would lead to the best outcome for itself:

u∗
R = argmaxuR RR

(
x0,uR,u∗

H(x0,uR)
)

. (5)

3.2 Planning with Quasi-Newton optimization

Despite the reduction to a single agent complete information
underactuated system, the dynamics remain too complex to
solve in real-time.We lack an analytical form foru∗

H(x0,uR)

which forces us to solve (4) each timewe evaluate the dynam-
ics.

Assuming a known human reward function rH [which
we will obtain later through Inverse Reinforcement Learning
(IRL), see Ng et al. (2000), Abbeel and Ng (2005), Ziebart
et al. (2008) and Levine and Koltun (2012)], we can solve (5)
locally, using gradient-basedmethods.Ourmain contribution
is agnostic to the particular optimization method, but we use
L-BFGS (Andrew and Gao 2007), a quasi-Newton method
that stores an approximate inverse Hessian implicitly result-
ing in fast convergence.

To perform the local optimization, we need the gradient
of (2) with respect to uR:

∂RR
∂uR

= ∂RR
∂uH

∂u∗
H

∂uR
+ ∂RR

∂uR
(6)

We can compute both ∂RR
∂uH and ∂RR

∂uR symbolically through
back-propagation because we have a representation of RR
in terms of uH and uR.

What remains,
∂u∗

H
∂uR , is difficult to compute because u∗

H is
technically the outcome of a global optimization. To compute
∂u∗

H
∂uR , we use the method of implicit differentiation. Since
RH is a smooth function whose minimum can be attained,
we conclude that for the unconstrained optimization in (4),
the gradient of RH with respect to uH evaluates to 0 at its
optimum u∗

H:

∂RH
∂uH

(
x0,uR,u∗

H(x0,uR)
)

= 0 (7)

Now, we differentiate the expression in (7) with respect to
uR:

∂2RH
∂u2H

∂u∗
H

∂uR
+ ∂2RH

∂uH∂uR
∂uR
∂uR

= 0 (8)

Finally, we solve for a symbolic expression of
∂u∗

H
∂uR :

∂u∗
H

∂uR
=

[
− ∂2RH

∂uH∂uR

] [
∂2RH
∂u2H

]−1

(9)

and insert it into (6), providing an expression for the gradient
∂RR
∂uR .

3.3 Offline estimation of human reward parameters

Thus far, we have assumed access to rH(xt , utR, utH). In our
implementation, we learn this reward function from human
data. We collect demonstrations of a driver in a simulation
environment, and use Inverse Reinforcement Learning (Ng
et al. 2000; Abbeel and Ng 2005; Ziebart et al. 2008; Levine
andKoltun 2012; Shimosaka et al. 2014; Kuderer et al. 2015)
to recover a reward function that explains the demonstrations.

To handle continuous state and actions space, and cope
with noisy demonstrations that are perhaps only locally opti-
mal, we use continuous inverse optimal control with locally
optimal examples (Levine and Koltun 2012).

We parametrize the human reward function as a linear
combination of features:

rH(xt , utR, utH) = θ�
Hφ(xt , utR, utH), (10)

and apply the principle of maximum entropy (Ziebart et al.
2008; Ziebart 2010) to define a probability distribution over
human demonstrations uH, with trajectories that have higher
reward being more probable:

P(uH | x0, θH) = exp
(
RH(x0,uR,uH)

)
∫
exp

(
RH(x0,uR, ũH)

)
dũH

. (11)

We then optimize the weights θH in the reward function
that make the human demonstrations the most likely:

max
θH

P
(
uH | x0, θH

)
(12)

We approximate the partition function in (11) following
(Levine and Koltun 2012), by computing a second order Tay-
lor approximation around the demonstration:
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Fig. 2 Features used in IRL for the human driven vehicle; warmer col-
ors correspond to higher reward. We illustrate features corresponding
to (a) respecting road boundaries, b holding lanes, and c avoiding col-
lisions with other cars

RH(x0,uR, ũH) � RH(x0,uR,uH) + (ũH − uH)� ∂RH
∂uH

+ (ũH − uH)� ∂2RH
∂u2H

(ũH − uH),

(13)

which results in the the integral in (11) reducing to aGaussian
integral, with a closed form solution. See Levine and Koltun
(2012) for more details.

We display a heat map of features we used in Fig. 2. The
warmer colors correspond to higher rewards. In addition to
the features shown in the figure, we include a quadratic func-
tion of the speed to capture efficiency in the objective. The
five features include:

– φ1 ∝ c1 · exp(−c2 · d2): distance to the boundaries of
the road, where d is the distance between the vehicle and
the road boundaries and c1 and c2 are appropriate scaling
factors as shown in Fig. 2a.

– φ2: distance to the middle of the lane, where the function
is specified similar to φ1 as shown in Fig. 2b.

– φ3 = (v − vmax)
2: higher speed for moving forward

through, where v is the velocity of the vehicle, and vmax

is the speed limit.
– φ4 = βH · n: heading; we would like the vehicle to have
a heading along with the road using a feature, where βH
is the heading of H, and n is a normal vector along the
road.

– φ5 corresponds to collision avoidance, and is a non-
spherical Gaussian over the distance ofH andR, whose
major axis is along the robot’s heading as shown in
Fig. 2c.

We collected demonstrations of a single human driving
for approximately an hour in an environment with multi-
ple autonomous cars, which followed precomputed routes.
Despite the simplicity of our features and robot actions during
the demonstrations, the learned human model proved suffi-
cient for the planner to producehuman-interpretable behavior
(case studies in Sect. 4), and actions which affected human
action in the desired way (user study in Sect. 5).

3.4 Implementation details

In our implementation,we used the software packageTheano
(Bergstra et al. 2010; Bastien et al. 2012) to symbolically
compute all Jacobians and Hessians. Theano optimizes the
computation graph into efficient C code, which is crucial for
real-time applications.

This implementation enables us to solve each step of the
optimization in equation (5) in approximately 0.3 s for hori-
zon length N = 5 on a 2.3 GHz Intel Core i7 processor with
16 GB RAM. Future work will focus on achieving better
computation time and a longer planning horizon.

4 Case studies with offline estimation

We noted earlier that the state of the art autonomous driv-
ing plans conservatively because of its simple assumptions
regarding the environment and vehicles on the road. In our
experiments, we demonstrate that an autonomous vehicle can
purposefully affect human drivers, and can use this ability to
gather information about the human’s driving style and goals.

In this section, we introduce 3 driving scenarios, and show
the result of our planner assuming a simulated human driver,
highlighting the behavior that emerges from different robot
reward functions. In the next section, we test the planner with
real users andmeasure the effects of the robot’s plan. Figure 3
illustrates our three scenarios, and contains images from the
actual user study data.

4.1 Conditions for analysis across scenarios

In all three scenarios, we start from an initial position of
the vehicles on the road, as shown in Fig. 3. In the control
condition, we give the car the reward function to avoid col-
lisions and have high velocity. We refer to this as Rcontrol. In
the experimental condition, we augment this reward func-
tion with a term corresponding to a desired human action
(e.g. low speed, lateral position, etc.). We refer to this as
Rcontrol + Raffect. Sections 4.3 through 4.5 contrast the two
plans for each of our three scenarios. Section 4.6 shows what
happens when instead of explicitly giving the robot a reward
function designed to trigger certain effects on the human, we
simply task the robot with reaching a destination as quickly
as possible.

4.2 Driving simulator

We use a simple point-mass model of the car’s dynamics.
We define the physical state of the system x = [x y ψ v]�,
where x , y are the coordinates of the vehicle,ψ is the heading,
and v is the speed.We let u = [u1 u2]� represent the control
input,where u1 is the steering input and u2 is the acceleration.
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(a) (b) (c)

Fig. 3 Driving scenarios. In (a), the car plans to merge in front of the
human in order to make them slow down. In (b), the car plans to direct
the human to another lane, and uses its heading to choose which lane
the human will go to. In (c), the car plans to back up slightly in order to
make the human proceed first at the intersection. None of these plans
use any hand coded strategies. They emerge out of optimizing with a

learned model of how humans react to robot actions. In the training
data for this model, the learned was never exposed to situations where
another car stopped at an orientation as in (b), or backed up as in (c).
However, by capturing human behavior in the form of a reward, the
model is able to generalize to these situations, enabling the planner to
find creative ways of achieving the desired effects

We denote the friction coefficient by μ. We can write the
dynamics model:

[ẋ ẏ ψ̇ v̇] = [v ·cos(ψ) v ·sin(ψ) v ·u1 u2−μ ·v] (14)

4.3 Scenario 1: Make human slow down

In this highway driving setting, we demonstrate that an
autonomous vehicle can plan to cause a human driver to slow
down. The vehicles start at the initial conditions depicted on
left in Fig. 3a, in separate lanes. In the experimental condi-
tion, we augment the robot’s reward with the negative of the
square of the human velocity, which encourages the robot to
slow the human down.

Figure 3a contrasts our two conditions. In the control
condition, the human moves forward uninterrupted. In the
experimental condition, however, the robot plans to move in
front of the person, anticipating that thiswill cause the human
to brake.

4.4 Scenario 2: Make human go left/right

In this scenario, we demonstrate that an autonomous vehi-
cle can plan to affect the human’s lateral location, making
the human switch lanes. The vehicles start at the initial con-
ditions depicted on left in Fig. 3b, in the same lane, with
the robot ahead of the human. In the experimental condition,
we augment the robot’s reward with the lateral position of
the human, in two ways, to encourage the robot to make the
human go either left (orange border image) or right (blue bor-

Fig. 4 Heat map of the reward functions in scenarios 2 and 3. The
warmer colors show higher reward values. In (a, b), the reward function
of the autonomous vehicle is plotted, which is a function of the human
driven vehicle’s position. In order to affect the driver to go left, the
reward is higher on the left side of the road in (a), and to affect the
human to go right in (b), the rewards are higher on the right side of the
road. In (c), the reward of the autonomous vehicle is plotted for scenario
3 with respect to the position of the human driven car. Higher rewards
correspond to making the human cross the intersection

der image). The two reward additions are shown in Fig. 4a,
b.

Figure 3b contrasts our two conditions. In the control con-
dition, the humanmoves forward, andmight decide to change
lanes. In the experimental condition, however, the robot plans
to intentionally occupy two lanes (using either a positive
or negative heading), anticipating this will make the human
avoid collision by switching into the unoccupied lane.

4.5 Scenario 3: Make human go first

In this scenario, we demonstrate that an autonomous vehicle
can plan to cause the human to proceed first at an intersection.
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The vehicles start at the initial conditions depicted on the left
in Fig. 3c, with both human and robot stopped at the 4-way
intersection. In the experimental condition, we augment the
robot’s reward with a feature based on the y position of the
human car yH relative to the middle of the intersection y0. In
particular, we used the hyperbolic tangent of the difference,
tanh(yH − y0). The reward addition is shown in Fig. 4c.

Figure 3c contrasts our two conditions. In the control
condition, the robot proceeds in front of the human. In the
experimental condition, however, the robot plans to inten-
tionally reverse slightly, anticipating that this will induce
the human cross first. We might interpret such a trajectory
as communicative behavior, but communication was never
explicitly encouraged in the reward function. Instead, the
goal of affecting human actions led to this behavior.

Reversing at an intersection is perhaps the most surpris-
ing result of the three scenarios, because it is not an action
human drivers take. In spite of this novelty, our user study
suggests that human drivers respond in the expected way:
they proceed through the intersection. Further, pedestrians
sometimes exhibit behavior like the robot’s, stepping back
from an intersection in order to let a car pass first.

4.6 Behaviors also emerge from efficiency

Thus far, we have explicitly encoded a desired effect on
human actions, and optimized it as a component of the robot’s
reward. We have also found, however, that behaviors like
those we have seen so far can emerge out of the need for
efficiency.

Figure 5 (bottom) shows the generated plan for when the
robot is given the goal to reach a point in the left lane as
quickly as possible (reward shown in Fig. 6). By modeling
the effects its actions have on the human actions, the robot
plans to merge in front of the person, expecting that they will
slow down.

Fig. 5 A time lapse where the autonomous vehicle’s goal is to reach a
final point in the left lane. In the top scenario, the autonomous vehicle
has a simple model of the human driver that does not account for the
influence of its actions on the human actions, so it actsmore defensively,
waiting for the human to pass first. In the bottom, the autonomous vehi-
cle uses the learnedmodel of the human driver, so it acts less defensively
and reaches its goal faster

Fig. 6 Heat map of reward function for reaching a final goal at the
top left of the road. As shown in the figure, the goal position is darker
showing more reward for reaching that point

In contrast, the top of the figure shows the generated plan
for when the robot uses a simple (constant velocity) model
of the person. In this case, the robot assumes that merging
in front of the person can lead to a collision, and defensively
waits for the person to pass, merging behind them.

We hear about this behavior often in autonomous cars
today: they are defensive. Enabling them to plan in a manner
that is cognizant that they can affect other driver actions can
make them more efficient at achieving their goals.

4.7 The robot behavior adapts to the situation

Throughout the case studies, we see examples of coordina-
tion behavior that emerges out of planning in our system:
going in front of someone knowing they will brake, slowing
and nudging into another lane to incentivize a lane change,
or backing up to incentivize that the human proceeds first
through an intersection. Such behaviors could possibly be
hand-engineered for those particular situations rather than
autonomously planned. However, we advocate that the need
to plan comes from versatility: from the fact that the planner
can adapt the exact strategy to each situation.

With this work, we are essentially shifting the design bur-
den from designing policies to designing reward functions.
We still need to decide on what we want the robot to do: do
we want it to be selfish, do we want it to be extra polite and
try to get every human to go first, or dowewant it to be some-
where in between? Our paper does not answer this question,
and designing good reward functions remains challenging.
However, this work does give us the tools to autonomously
generate (some of) the strategies needed to then optimize
such reward functions when interacting with people. With
policies, we’d be crafting that the car should inch forward
or backwards from the intersection, specifying by howmuch
and at what velocity, and how this depends onwhere the other
cars are, and how it depends on the type of intersection. With
this work, barring local optima issues and the fact that human
models could always be improved, all that we need to specify
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Fig. 7 The robot adapts its merging behavior depending on the relative
position of the person: it does not always cut the person off: sometimes
it merges behind the person, and if it starts too close (depending on how
the reward function is set up) it will not merge at all

is the regular reward that we would give an autonomous car,
or, if we want it to purposefully influence human behavior,
the desired outcome. The car figures out how to achieve it,
adapting its actions to the different settings.

Figure 7 shows a spectrum of behaviors for the robot
depending on where it starts relative to the human: from
merging behind the person, to not merging, to merging in
front.

5 User study with offline estimation

The previous section showed the robot’s plans when interact-
ing with a simulated user that perfectly fits the robot’s model
of the human. Next, we present the results of a user study
that evaluates whether the robot can successfully have the
desired effects on real users.

5.1 Experimental design

We use the same 3 scenarios as in the previous section.
Manipulated Factors We manipulate a single factor: the
reward that the robot is optimizing, as described in Sect. 4.1.
This leads to two conditions: the experimental condition
where the robot is encouraged to have a particular effect
on human state though the reward Rcontrol + Raffect, and
the control condition where that aspect is left out of the
reward function and the robot is optimizing only Rcontrol

(three conditions for Scenario 2, where we have two experi-
mental conditions, one for the left case and one for the right
case).
Dependent Measures For each scenario, we measure the
value along the user trajectory of the feature added to the

reward function for that scenario, Raffect. Specifically, we
measure the human’s negative squared velocity in Scenario
1, the human’s x axis location relative to center in Scenario 2,
and whether the human went first or not through the intersec-
tion in Scenario 3 (i.e. a filtering of the feature that normalizes
for difference in timing amongusers andmeasures the desired
objective directly).
Hypothesis We hypothesize that our method enables the
robot to achieve the effects it desires not only in simulation,
but also when interacting with real users:

The reward function that the robot is optimizing has a
significant effect on the measured reward during inter-
action. Specifically, Raffect is higher, as planned, when
the robot is optimizing for it.

Subject AllocationWe recruited 10 participants (2 female, 8
male). All the participants owned drivers license with at least
2 years of driving experience. We ran our experiments using
a 2D driving simulator, we have developed with the driver
input provided through driving simulator steering wheel and
pedals.

5.2 Analysis

Scenario 1A repeated measures ANOVA showed the square
speed to be significantly lower in the experimental condition
than in the control condition (F(1, 160) = 228.54, p <

0.0001). This supports our hypothesis: the human moved
slower when the robot planned to have this effect on the
human.

We plot the speed and latitude profile of the human driven
vehicle over time for all trajectories in Fig. 8. Figure 8a
shows the speed profile of the control condition trajectories in
gray, and of the experimental condition trajectories in orange.
Figure 8b shows the mean and standard error for each con-
dition. In the control condition, human squared speed keeps
increasing. In the experimental condition however, by merg-
ing in front of the human, the robot is triggering the human
to brake and reduce speed, as planned. The purple trajectory
represents a simulated user that perfectly matches the robot’s
model, showing the ideal case for the robot. The real inter-
action moves significantly in the desired direction, but does
not perfectly match the ideal model, since real users do not
act exactly as the model would predict.

The figure also plots the y position of the vehicles along
time, showing that the human has not travelled as far forward
in the experimental condition.
Scenario 2 A repeated measures ANOVA showed a sig-
nificant effect for the reward factor (F(2, 227) = 55.58,
p < 0.0001). A post-hoc analysis with Tukey HSD showed
that both experimental conditions were significantly differ-
ent from the control condition, with the user car going more
to the left than in the control condition when Raffect rewards
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(a)

(b) (d)

(c)

Fig. 8 Speed profile and latitude of the human driven vehicle for Sce-
nario 1. The first column shows the speed of all trajectorieswith itsmean
and standard errors in the bottom graph. The second column shows the
latitude of the vehicle over time; similarly, with the mean and standard
errors. The gray trajectories correspond to the control condition, and the
orange trajectories correspond to the experimental condition: the robot
decides to merge in front of the users and succeeds at slowing them
down. The purple plot corresponds to a simulated user that perfectly
matches the model that the robot is using

left user positions (p < 0.0001), and more to the right in the
other case (p < 0.001). This supports our hypothesis.

We plot all the trajectories collected from the users
in Fig. 9. Figure 9a shows the control condition trajecto-
ries in gray, while the experimental conditions trajectories
are shown in orange (for left) and blue (for right). By occu-
pying two lanes, the robot triggers an avoid behavior from
the users in the third lane. Here again, purple curves show a
simulated user, i.e. the ideal case for the robot.
Scenario 3 An ordinal logistic regression with user as a ran-
dom factor showed that significantly more users went first
in the intersection in the experimental condition than in the
baseline (χ2(1, 129) = 106.41, p < 0.0001). This supports
our hypothesis.

Figure 10 plots the y position of the human driven vehicle
with respect to the x position of the autonomous vehicle. For
trajectories that have a higher y position for the human vehi-
cle than the x position for the robot, the human car has crossed
the intersection before the autonomous vehicle. The lines cor-
responding to these trajectories travel above the origin, which
is shown with a blue square in this figure. The mean of the
orange lines travel above the origin, which means that the
autonomous vehicle has successfully affected the humans to
cross first. The gray lines travel below the origin, i.e. the
human crossed second.

(a) (b)

Fig. 9 Trajectories of the human driven vehicle for Scenario 2. The first
column a shows all the trajectories, and the second column b shows the
mean and standard error. Orange (blue) indicates conditions where the
reward encouraged the robot to affect the user to go left (right)

(a) (b)

Fig. 10 Plot of yH with respect to xR. The orange curves correspond to
when the autonomous vehicle affects the human to cross the intersection
first. The gray curves correspond to the nominal setting

Overall, our results suggest that the robot was able to affect
the human state in the desired way, even though it does not
have a perfect model of the human.

6 Extension to online estimation of the
humanmodel

We have thus far in our approximate solution treated the
human’s reward function as estimated once, offline. This has
worked well in our user study on seeking specific coordina-
tion effects on the human, like slowing down or going first
through the intersection. But in general, this is bound to run
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into problems, because not all people behave according to
the same estimated θH.

Different drivers have different driving styles. Some are
very defensive, more so than our learned model. Others are
much more aggressive, and for instance would not actually
brake when the car merges in front of them. Even for the
same driver, their style might change over time, for instance
when they get distracted on their phone.

In this section we relax our assumption of an offline esti-
mation of the human’s reward parameters θH. Instead, we
explore estimating this online. We introduce an algorithm
which maintains a belief over a space of candidate reward
functions, and enable the robot to perform inference over
this space throughout the interaction. We maintain tractabil-
ity by clustering possible θHs into a few options that the robot
maintains a belief over.

6.1 A POMDPwith human reward as the hidden
variable

The human’s actions are influenced by their internal reward
parameters θH that the robot does not directly observe. So
far, we estimated θH offline and solved an underactuated
system, a special case of an MDP. Now, we want to be able
to adapt our estimate of θH online, during interaction. This
turns the problem into a partially observablemarkov decision
process (POMDP) with θH as the hidden state. By putting
θH in the state, we now have a know dynamics model like in
the underactuated system before for the robot and the human
state, and we assume θH to remain fixed regardless of the
robot’s actions.

If we could solve the POMDP, the robot would estimate
θH from the human’s actions, optimally trading off between
exploiting it’s current belief over θH and actively taking
information gathering actions intended to cause human reac-
tions, which result in a better estimate of θH.

Because POMDPs cannot be solved tractably, several
approximations have been proposed for similar problem for-
mulations (Javdani et al. 2015; Lam et al. 2015; Fern et al.
2007). These approximations are passively estimating the
human internal state, and exploiting the belief to plan robot
actions.2

In this work, we take the opposite approach: we focus
explicitly on active information gathering Our formulation
enables the robot to choose to actively probe the human, and
thereby improve its estimate of θH. We leverage this method
in conjunction with exploitation methods, but the algorithm
we present may also be used alone if human internal state
(reward parameters) estimation is the robot’s primary objec-
tive.

2 One exception isNikolaidis et al. (2016), who propose to solve the full
POMDP, albeit for discrete and not continuous state and action spaces.

6.2 Simplification to information gathering

We denote a belief in the value of the hidden variable, θ , as
a distribution b(θ), and update this distribution according to
the likelihood of observing a particular human action, given
the state of the world and the human internal state:

bt+1(θ) ∝ bt (θ) · P(utH | xt , uR, θ). (15)

In order to update the belief b, we require an observation
model. Similar to before, we assume that actions with lower
reward are exponentially less likely, building on the principle
of maximum entropy (Ziebart et al. 2008):

P(uH | x, uR, θ) ∝ exp
(
Rθ
H(x0,uR,uH)

)
. (16)

To make explicit our emphasis on taking actions which
effectively estimate θ , we redefine the robot’s reward func-
tion to include an information gain term, i.e., the difference
between entropies of the current andupdated beliefs: H(bt )−
H(bt+1). The entropy over the belief H(b) evaluates to:

H(b) = −
∑

θ b(θ) log(b(θ))∑
θ b(θ)

. (17)

We now optimize our expected reward with respect to
the hidden state θ , and this optimization explicitly entails
reasoning about the effects that the robot actions will have
on the observations, i.e., the actions that the human will take
in response, and how useful these observations will be in
shattering ambiguity about θ .

6.3 Explore-exploit trade-off

In practice, we use information gathering in conjunctionwith
exploitation. We do not solely optimize the information gain
term H(bt )−H(bt+1), but optimize it in conjunctionwith the
robot’s actual reward function assuming the current estimate
of θ :

raugmented
R (xt ,uR,uH) = λ(H(bt ) − H(bt+1))

+ rR(xt ,uR,uH, bt ) (18)

At the very least, we do this as a measure of safety,
e.g., we want an autonomous car to keep avoiding collisions
even when it is actively probing a human driver to test their
reactions.We choose λ experimentally, though existing tech-
niques that can better adapt λ over time (Vanchinathan et al.
2014).
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(a) (b) (c)

Fig. 11 Our three scenarios, along with a comparison of robot plans for
passive estimation (gray) versus active information gathering (orange).
In the active condition, the robot is purposefully nudging in or braking

to test human driver attentiveness. The color of the autonomous car in
the initial state is yellow, but changes to either gray or orange in cases
of passive and active information gathering respectively

6.4 Solution via model predictive control

To find the control inputs for the robot we locally solve:

u∗
R = argmaxuR Eθ

[
RR

(
x0,uR,u∗,θ

H (x0,uR)
)]

(19)

over a finite horizon N , where u∗,θ
H (x0,uR) corresponds to

the actions the human would take from state x0 if the robot
executed actions uR. This objective generalizes (5) with an
expectation over the current belief over θ , b0.

We still assume that the human maximizes their own
reward function, r θ

H(xt , utR, utH); we add the superscript θ

to indicate the dependence on the hidden state. We can write
the sum of human rewards over horizon N as:

Rθ
H(x0,uR,uH) =

N−1∑

t=0

r θ
H(xt , utR, utH) (20)

Computing this over the continuous space of possible
reward parameters θ is intractable even with discretization.
Instead, we learn clusters of θs offline via IRL, and online
use estimation to figure out which cluster best matches the
human.

Despite optimizing the trade-off in (18), we do not claim
that our method as-is can better solve the general POMDP
formulation: only that it can be used to get better estimates of
human internal state. Different tradeoffs λ will result in dif-
ferent performance. Our results below emphasize the utility
of gathering information, but also touch on the implications
for active information gathering on RR.

7 Case studies with online estimation

In this section, we show simulation results that use the
method from the previous section to estimate human driver
type in the interaction between an autonomous vehicle
and a human-driven vehicle. We consider three different
autonomous driving scenarios. In these scenarios, the human
is either distracted or attentive during different driving exper-
iments. The scenarios are shown in Fig. 11, where the yellow
car is the autonomous vehicle, and the white car is the human
driven vehicle. Our goal is to plan to actively estimate the
human’s driving style in each one of these scenarios, by using
the robot’s actions.

7.1 Attentive versus distracted human drivermodels

Our technique requires reward functions r θ
H that model the

human behavior for a particular internal state θ . We obtain a
generic drivermodel viaContinuous InverseOptimalControl
with Locally Optimal Examples (Levine and Koltun 2012)
from demonstrated trajectories in a driving simulator in an
environment withmultiple autonomous cars, which followed
precomputed routes.

We then adjust the learned weights to model attentive ver-
sus distractive drivers. Specifically, we modify the weights
of the collision avoidance features, so the distracted human
model has less weight for these features. Therefore, the dis-
tracted driver is more likely to collide with the other cars
while the attentive driver has high weights for the collision
avoidance feature. In futurework,we plan to investigateways
of automatically clustering learned θHs from data from dif-
ferent users, but we show promising results even with these
simple options.
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7.2 Manipulated factors

Wemanipulate the reward function that the robot is optimiz-
ing. In the passive condition, the robot optimizes a simple
reward function for collision avoidance based on the cur-
rent belief estimate. It then updates this belief passively, by
observing the outcomes of its actions at every time step. In
the active condition, the robot trades off between this reward
function and information gain in order to explore the human’s
driving style.

We also manipulate the human internal reward parame-
ters to be attentive or distracted. The human is simulated to
follow the ideal model of reward maximization for our two
rewards.

7.3 Scenarios and qualitative results

Scenario 1: Nudging In to Explore on a Highway In this
scenario, we show an autonomous vehicle actively explor-
ing the human’s driving style in a highway driving setting.
We contrast the two conditions in Fig. 11a. In the passive
condition, the autonomous car drives on its own lane with-
out interfering with the human throughout the experiment,
and updates its belief based on passive observations gath-
ered from the human car. However, in the active condition,
the autonomous car actively probes the human by nudging
into her lane in order to infer her driving style. An attentive
human significantly slows down (timid driver) or speeds up
(aggressive driver) to avoid the vehicle, while a distracted
driver might not realize the autonomous actions and main-
tain their velocity, getting closer to the autonomous vehicle.
It is this difference in reactions that enables the robot to better
estimate θ .

Scenario 2: Braking to Explore on a Highway In the sec-
ond scenario, we show the driving style can be explored by
the autonomous car probing the human driver behind it. The
two vehicles start in the same lane as shown in Fig. 11b,
where the autonomous car is in the front. In the passive con-
dition, the autonomous car drives straight without exploring
or enforcing any interactions with the human driven vehi-
cle. In the active condition, the robot slows down to actively
probe the human and find out her driving style. An attentive
human would slow down and avoid collisions while a dis-
tracted human will have a harder time to keep safe distance
between the two cars.

Scenario 3: Nudging In to Explore at an Intersection In
this scenario, we consider the two vehicles at an intersection,
where the autonomous car actively tries to explore human’s
driving style by nudging into the intersection. The initial con-
ditions of the vehicles are shown in Fig. 11c. In the passive
condition, the autonomous car stays at its position without
probing the human, and only optimizes for collision avoid-

Fig. 12 Legends indicating active/passive robots, attentive/distracted
humans, and real user/ideal model used for all following figures

(a) (b)

(c) (d)

(e) (f)

Fig. 13 The probability that the robot assigns to attentive as a function
of time, for the attentive (left) and distracted (right). Each plot compares
the active algorithm to passive estimation, showing that active informa-
tion gathering leads to more accurate state estimation, in simulation and
with real users

ance. This provides limited observations from the human car
resulting in a low confidence belief distribution. In the active
condition, the autonomous car nudges into the intersection
to probe the driving style of the human. An attentive human
would slow down to stay safe at the intersection while a dis-
tracted human will not slow down.
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7.4 Quantitative results

Throughout the remainder of the paper, we use a common
color scheme to plot results for our experimental conditions.
We show this common scheme inFig. 12: darker colors (black
and red) correspond to attentive humans, and lighter colors
(gray and orange) correspond to distracted humans. Further,
the shades of orange correspond to active information gath-
ering, while the shades of gray indicate passive information
gathering. We also use solid lines for real users, and dotted
lines for scenarios with an ideal user model learned through
inverse reinforcement learning.

Figure 13 plots, using dotted lines, the beliefs over time for
the attentive (left) and distracted (right) conditions, compar-
ing in each the passive (dotted black and gray respectively)
with the active method (dotted dark orange and light orange
respectively). In every situation, the active method achieves
a more accurate belief (higher values for attentive on the
left, when the true θ is attentive, and lower values on the
right, when the true θ is distracted). In fact, passive esti-
mation sometimes incorrectly classifies drivers as attentive
when they are distracted and vice-versa.

The same figure also shows (in solid lines) results from
our user study of what happens when the robot no longer
interacts with an ideal model. We discuss these in the next
section.

Figures 14 and 15 plot the corresponding robot and human
trajectories for each scenario. The important takeaway from
these figures is that there tends to be a larger gap between
attentive and distracted human trajectories in the active con-
dition (orange shades) than in the passive condition (gray
shades), especially in scenarios 2 and 3. It is this difference
that helps the robot better estimate θ : the robot in the active
condition is purposefully choosing actions that will lead to
large differences in human reactions, in order to more easily
determine the human driving style.

7.5 Robot behavior adapts to the situation

As Fig. 14 suggests, active info gathering results in interest-
ing coordination behavior. In Scenario 1, the robot decides
to nudge into the person’s lane. But what follows next nicely
reacts to the person’s driving style. The robot proceeds with
the merge if the person is attentive, but actually goes back
to its lane if the person is distracted. Even more interesting
is what happens in Scenario 3 at the 4way stop. The robot
inches forward into the intersection, and proceeds if the per-
son is attentive, but actually goes back to allow the person
through if they are distracted! These all emerge as the optima
in our system.

The behavior also naturally changes as the initial state
of the system changes. Figure 16 shows different behaviors
arising from an attentive driver model but different initial

(a) (b) (c)

Fig. 14 Robot trajectories for each scenario in the active information
gathering condition. The robot acts differently when the human is atten-
tive (dark orange) versus when the human is distracted (light orange)
due to the trade-off with safety

position of the human driver. This shows that even for the
same driver model, the robot intelligently adapts its coordi-
nation behavior to the situation, sometimes deciding tomerge
but sometimes not.

This is particularly important, because it might be easy to
handcode these coordination strategies for a particular situa-
tion. Much like in the onffline estimation case, the robot not
only comes up with these strategies, but actually adapts them
depending on the situation—the driver style, the initial state,
and so on.

7.6 Active information gathering helps the robot’s
actual reward

So far, we have looked at how active information gathering
improves estimation of the driver model. This is useful in
itself in situations where human internal state estimation is
the end-goal. But it is also useful for enabling the robot to
better achieve its goal.

Intuitively, knowing the human driving style more accu-
rately should improve the robot’s ability to collect reward.
For instance, if the robot starts unsure of whether the human
is paying attention or not, but collects enough evidence that
she is, then the robot can safely merge in front of the per-
son and be more efficient. Of course, this is not always the
case. If the person is distracted, then the information gather-
ing actions could be a waste because the robot ends up not
merging anyway.

Figure 17 showswhat happens in themerging scenario: the
robot gains more reward compared to passive estimation by
doing information gathering with attentive drivers, because it
figures out it is safe tomerge in front of them; the robot looses
some reward compared to passive estimation with distracted
drivers, because it makes the effort to nudge in but has to
retreat back to its lane anyway because it cannot merge.

Of course, all this depends on choosing λ, the trade-
off between exploitation and exploration (information gain).
Figure 18 shows the effect of λ has on the robot’s goal reward
(not its information gain reward), which shows that not all λs
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(a) (b) (c)

(d) (e) (f)

Fig. 15 The user trajectories for each scenario. The gap between attentive and distracted drivers’ actions is clear in the active information gathering
case (first row)

are useful. In other situations, we would also expect to see a
large decrease in reward from too much weight on informa-
tion gain.

7.7 Beyond driving style: active intent inference

Driving style is not the only type of human internal state that
our method enables robots to estimate. If the human has a
goal, e.g. of merging into the next lane or not, or of exiting
the highway or not, the robot could estimate this aswell using
the same technique.

Each possible goal corresponds to a feature. When esti-
mating which goal the human has, the robot is deciding
among θs which place weight on only one of the possi-
ble goal features, and 0 on the others. Figure 19 shows the
behavior that emerges from estimating whether the human
wants to merge into the robot’s lane. In the passive case, the
human is side by side with the robot. Depending on the driv-
ing style, they might slow down slightly, accelerate slightly,
or start nudging into the robot’s lane, but since the obser-

Fig. 16 Effect of varying the initial condition (relative y position) in
the active merge scenario. The robot adapts to merge when feasible and
avoid otherwise. The human is attentive in all cases

vation model is noisy the robot does not get quite enough
confidence in the human’s intent early on. Depending on the
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Fig. 17 Active info gathering improves the robot’s ability to efficiently
achieve its goal in the case when the human is attentive: where a passive
estimator never gets enough information to know that the person is
paying attention, an active estimator nudges in, updates its belief, and
proceeds with the merge. At the same time, active info gathering does
not hurt too much when the person is distracted: the robot nudges in
slightly (this does decrease its reward relative to the passive case, but
not by much), updates its belief, and retreats to its lane

Fig. 18 Active information gathering behavior when the robot’s goal
is to merge into the left lane for different values of λ, together with
the reward the robot obtains. λ = 0 results in low reward because the
robot does not figure out that the person is attentive and does not merge.
A small λ hurts the reward because the information gathering costs
but does not buy anything. For higher values, the robot gets enough
information that it forces a merge in front of the human

robot’s reward, it might take a long time before the person
can merge. In the active case, the robot decides to probe the
person by slowing down and shifting away from the person
in order to make room. It then becomes optimal for the per-

(a)

(b)

Fig. 19 Actively estimating the human’s intent (whether they want to
merge in the right lane or not). The robot slows down and shifts slightly
away from the person, which wouldmake someone whowants to merge
proceed. This could be useful for robots trying to optimize for the good
of all drivers (rather than for their selfish reward function)

son wanting to merge to start shifting towards the robot’s
lane, giving the robot enough information now to update
its belief. In our experiment, we see that this is enough for
the person to be able to complete the merge faster, despite
the robot not having any incentive to help the person in its
reward.

8 User study with online estimation

In the previous section, we explored planning for an
autonomous vehicle that actively probes a human’s driv-
ing style, by braking or nudging in and expecting to cause
reactions from the human driver that would be different
depending on their style. We showed that active exploration
does significantly better at distinguishing between atten-
tive and distracted drivers using simulated (ideal) models
of drivers. Here, we show the results of a user study that
evaluates this active exploration for attentive and distracted
human drivers.

123



1422 Autonomous Robots (2018) 42:1405–1426

8.1 Experimental design

We use the same three scenarios discussed in the previous
section.
Manipulated FactorsWemanipulated the same two factors
as in our simulation experiments: the reward function that
the robot is optimizing (whether it is optimizing its reward
through passive state estimation, or whether it is trading off
with active information gathering), and the human internal
state (whether the user is attentive or distracted). We asked
our users to pay attention to the road and avoid collisions for
the attentive case, and asked our users to play a game on a
mobile phone during the distracted driving experiments.
Dependent Measure We measured the probability that the
robot assigned along the way to the human internal state.
Hypothesis The active condition will lead to more accurate
human internal state estimation, regardless of the true human
internal state.
Subject AllocationWe recruited 8 participants (2 female, 6
male) in the age range of 21–26 years old. All participants
owned a valid driver license and had at least 2 years of driving
experience.We ran the experiments using a 2D driving simu-
lator with the steering input and acceleration input provided
through a steering wheel and a pedals as shown in Fig. 1.
We used a within-subject experiment design with counter-
balanced ordering of the four conditions.

8.2 Analysis

We ran a factorial repeated-measures ANOVA on the prob-
ability assigned to “attentive”, using reward (active vs.
passive) and human internal state (attentive vs. distracted)
as factors, and time and scenario as covariates. As a manip-
ulation check, attentive drivers had significantly higher esti-
mated probability of “attentive” associated than distracted
drivers (0.66 vs 0.34, F = 3080.3, p < 0.0001). More
importantly, there was a signifiant interaction effect between
the factors (F = 1444.8, p < 0.000). We ran a post-hoc
analysis with Tukey HSD corrections for multiple compar-
isons, which showed all four conditions to be significantly
different from each other, all contrasts with p < 0.0001. In
particular, the active information gathering did end up with
higher probability mass on “attentive” than the passive esti-
mation for the attentive users, and lower probability mass
for the distracted user. This supports our hypothesis that our
method works, and active information gathering is better at
identifying the correct state.

Figure 13 compares passive (grays and blacks) and active
(light and dark oranges) across scenarios and for attentive
(left) and distracted (right) users. It plots the probability of
attentive over time, and the shaded regions correspond to
standard error. From the first column, we can see that our
algorithm in all cases detects human’s attentiveness with

much higher probably than the passive information gathering
technique shown in black. From the second column, we see
that our algorithm places significantly lower probability on
attentiveness, which is correct because those users were dis-
tracted users. These are in line with the statistical analysis,
with active information gathering doing a better job estimat-
ing the true human internal state.

Figure 14 plots the robot trajectories for the active infor-
mation gathering setting. Similar to Fig. 13, the solid lines are
the mean of robot trajectories and the shaded regions show
the standard error. We plot a representative dimension of the
robot trajectory (like position or speed) for attentive (dark
orange) or distracted (light orange) cases. The active robot
probed the user, but ended up taking different actions when
the user was attentive versus distracted in order to maintain
safety. For example, in Scenario 1, the trajectories show the
robot is nudging into the human’s lane, but the robot decides
to move back to its own lane when the human drivers are dis-
tracted (light orange) in order to stay safe. In Scenario 2, the
robot brakes in front of the human, but it brakes less when the
human is distracted. Finally, in Scenario 3, the robot inches
forward, but again it stops when if the human is distracted,
and even backs up to make space for her.

Figure 15 plots the user trajectories for both active
information gathering (first row) and passive information
gathering (second row) conditions.We compare the reactions
of distracted (light shades) and attentive (dark shades) users.
There are large differences directly observable, with user
reactions tending to indeed cluster according to their internal
state. These differences are much smaller in the passive case
(second row, where distracted is light gray and attentive is
black). For example, in Scenario 1 and 2, the attentive users
(dark orange) keep a larger distance to the car that nudges
in front of them or brakes in front of them, while the dis-
tracted drivers (light orange) tend to keep a smaller distance.
In Scenario 3, the attentive drivers tend to slow down and
do not cross the intersection, when the robot actively inches
forward. None of these behaviors can be detected clearly in
the passive information gathering case (second row). This
is the core advantage of active information gathering: the
actions are purposefully selected by the robot such that users
would behave drastically differently depending on their inter-
nal state, clarifying to the robot what this state actually is.
Overall, these results support our simulation findings, that
our algorithm performs better at estimating the true human
internal state by leveraging purposeful information gathering
actions.

9 Discussion

Summary In this paper,we took a step towards autonomously
producing behavior for interaction and coordination between
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autonomous cars and human-driven vehicles. We formulated
a dynamical system in which the robot accounts for how
its actions are going to influence those of the human as a
simplification to a partially observable stochastic game. We
introduced approximations for optimizing in the dynami-
cal system that bring the robot’s computation close to real
time (.3 s/time step). We showed in an empirical analysis
that when the robot estimates the human model offline, it
produces behavior that can purposefully modify the human
behavior: merging in front of them to get them to slow down,
or pulling back at an intersection to incentivize them to
proceed first through. We also showed that these behaviors
can emerge out of directly optimizing for the robot’s effi-
ciency.

We further introduced an online estimation algorithm in
which the robot actively uses its actions to gather informa-
tion about the human model so that it can better plan its
own actions. Our analysis again shows coordination strate-
gies arising out of planning in our formulation: the robot
nudges into someones’s lane to check if the human is pay-
ing attention, and only completes the merge if they are; the
robot inches forward at an intersection, again to check if
the human is paying attention, and proceeds if they are,
but backs up to let them through if they are not; the robot
slows down slightly and shifts in its lane away from the
human driver to check if they want to merge into its lane
or not.

Importantly, these behaviors changewith the humandriver
style andwith the initial conditions—the robot takes different
actions in different situations, emphasizing the need to start
generating such coordination behavior autonomously rather
than relying on hand coded strategies. Even more impor-
tantly, the behaviors seem to work when the robot is planning
and interacting with real users.

LimitationsAll this work happened in a simple driving sim-
ulator. To put this on the road, we will need more emphasis
on safety, as well as a longer planning horizon.

While performing these experiments, we found the robot’s
nominal reward function (trading off between safety and
reaching a goal) to be insufficient—in some cases it led to
getting dangerously close to the human vehicle and even col-
lisions, going off the road, oscillating in the lane due tominor
asymmetries in the environment, etc.

Figure 20 shows an example of such behavior that comes
from the 4way stop domain. For the most part, the car plans
to back up to incentivize the human to go through first. But
for some values of the human’s initial velocity, we observed
bad behavior, likely due to convergence to local maxima: the
car did not figure out to slow down or back up, and instead
if proceeded forward—then it tried to avoid collisions with
the person and went off the road, and in the wrong direction
(i.e. in the person’s way).

Fig. 20 Example of bad local optima occurring for certain initial veloc-
ities of the human in the 4way intersection scenario

It seems like while a reward function might be a good
enough model for the human, it might be difficult to devise
such a universal function for the robot, and the use of hard
constraints to ensure safe control would be welcome.

Another limitation is that we currently focus on a sin-
gle human driver. Looking to the interaction among multiple
vehicles is not just a computational challenge, but also amod-
eling one—it is not immediately clear how to formulate the
problem when multiple human-driven vehicles are interact-
ing and reacting to each other.
Conclusion Despite these limitations, we are encouraged to
see autonomous cars generate human-interpretable behav-
iors through optimization, without relying on hand-coded
heuristics. Even though in this work we have focused on
modeling the interaction between an autonomous car and
a human-driven car, the same framework of underactuated
systems can be applied to modeling the interaction between
humans and robots inmore general settings.We look forward
to applications of these ideas beyond autonomous driving, to
mobile robots, UAVs, and in general to human–robot inter-
active scenarios where robot actions can influence human
actions.
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