Today’s Outline

• Problem Statement

• Functional Gradient Descent

• CHOMP: Covariant Hamiltonian Optimization for Motion Planning

• Next Lecture: Non-Euclidean Inner Product

6.1 Problem Statement

• Trajectory (function) $\xi : [0, T] \rightarrow \mathbb{C}$

• Cost (functional) $U : \Xi \rightarrow \mathbb{R}^+$

• Optimization Problem:

$$\xi^* = \arg\min_{\xi \in \Xi} U(\xi)$$

subject to

$$\xi(0) = q_s,$$

$$\xi(T) = q_g$$

• Update Equation (functional gradient descent):

$$\xi_{i+1} \leftarrow \xi_i - \frac{1}{\alpha} \nabla_{\xi} U(\xi_i)$$

$\nabla_{\xi} U(\xi_i)$: also a function of time
• Ξ is a Hilbert space, a complete vector space with an inner product.

• Inner product:
 For this lecture, we assume a particular Hilbert space specified by the Euclidean inner product. Given two trajectories $\xi_1, \xi_2 \in \Xi$, the Euclidean inner product is
 \[<\xi_1, \xi_2> = \int_0^T \xi_1(t)^T \xi_2(t) dt \]

In discrete time, $\xi = [q_1, ..., q_N]^T$, thus $<\xi_1, \xi_2> = \xi_1^T \xi_2$.

Properties of inner products:

 - **Symmetry:** $<\xi_1, \xi_2> = <\xi_2, \xi_1>$
 - **Positive definite:** $\forall \xi, <\xi, \xi> \geq 0; <\xi, \xi> = 0 \iff \xi = 0$

 ($\xi = 0$ is the zero trajectory that always maps time to the zero configuration.)
 - **Linearity in the first argument:**

 $<\xi_1 + \xi_2, \xi_3> = <\xi_1, \xi_3> + <\xi_2, \xi_3>$

 (The same holds true for the second argument by symmetry.)

6.2 Functional Gradient Descent

We use calculus of variation in computing the derivatives of a functional.

• **Euler-Lagrange Equation:**

 If
 \[<\xi_1, \xi_2> = \int_0^T \xi_1(t)^T \xi_2(t) dt \]
(i.e. $Ξ$ is a Hilbert space with the Euclidean inner product) and

$$U[ξ] = \int_0^T F(t, ξ(t), ξ'(t)) dt$$

then

$$\nabla_ξ U(t) = \frac{∂F}{∂ξ(t)}(t) - \frac{d}{dt} \frac{∂F}{∂ξ'(t)}(t)$$

Note that $\nabla_ξ U(t) \in Ξ$

• Example:
 Consider the example where you minimize the squared norm of velocity in trajectory subject to starting at q_s and ending at q_g:

$$U[ξ] = \frac{1}{2} \int_0^T \|ξ'(t)\|^2 dt$$

The optimal trajectory has

Shape: straight line. Intuitively, in the same amount time, a trajectory traversing a longer path needs a faster velocity, thus has higher cost.

Timing: constant velocity. Intuitively, in discrete time with T time steps, $U[ξ^*] < U[ξ]$
Apply Euler-Lagrange equation,

\[\nabla_{\xi} U(t) = 0 - \frac{d}{dt} \xi'(t) = -\xi''(t) \]

Since \(U \) is quadratic/convex, to find \(\xi \) that minimizes cost \(U \), we set the gradient to 0, and solve for \(\xi^* \), which is global minimum.

\[\xi''(t) = 0 \]
\[\xi'(t) = a \]

shows that optimal trajectory has constant velocity.

\[\xi(t) = at + b \]

shows that optimal trajectory is a straight line.

Then to solve for \(a \) and \(b \) in \(\xi^* \), we use constraints \(\xi(0) = q_s \) and \(\xi(T) = q_g \).

• Proof:
 First order Taylor series expansion (relates \(f \) to \(f' \))
 \[f : \mathbb{R} \rightarrow \mathbb{R}, \]
 \[f(x + \epsilon) \approx f(x) + \epsilon f'(x) \]
 \[f'(x) = \lim_{\epsilon \to 0} \frac{f(x + \epsilon) - f(x)}{\epsilon} \]

 \(U : \Xi \rightarrow \mathbb{R}^+, \)
 \[U[\xi + \epsilon \eta] \approx U[\xi] + \epsilon < \nabla_{\xi} U, \eta > \]
 smooth disturbance \(\eta \in \Xi \) s.t. \(\eta(0) = \eta(T) = 0 \)

 arbitrary small \(\epsilon \in \mathbb{R} \)

 \[< \nabla_{\xi} U, \eta > = \lim_{\epsilon \to 0} \frac{U[\xi + \epsilon \eta] - U[\xi]}{\epsilon} \]
 \[(1) \]
 \[< \nabla_{\xi} U, \eta > = \int_0^T \nabla_{\xi} U(t)^T \eta(t)dt \]
 \[(2) \]

We are going to massage equation (1) to equation (2) and term match to find \(\nabla_{\xi} U \).

Let \(\phi(\epsilon) = U[\xi + \epsilon \eta], \)

\[< \nabla_{\xi} U, \eta > = \lim_{\epsilon \to 0} \frac{\phi(\epsilon) - \phi(0)}{\epsilon} \]
\[
\frac{d\phi}{d\epsilon}
\]

\[
= \frac{d}{d\epsilon} \int_0^T F[t, \xi(t) + \epsilon \eta(t), \xi'(t) + \epsilon \eta'(t)] dt \bigg|_{\epsilon = 0}
\]

Exchange differentiation with integration,

\[
= \int_0^T \frac{d}{d\epsilon} F[t, \xi(t) + \epsilon \eta(t), \xi'(t) + \epsilon \eta'(t)] dt \bigg|_{\epsilon = 0}
\]

Change of variables, denote \(x(\epsilon) = \xi(t) + \epsilon \eta(t) \) and \(y(\epsilon) = \xi'(t) + \epsilon \eta'(t) \), then apply chain rule,

\[
= \int_0^T \left(\frac{\partial F[t, x(\epsilon), y(\epsilon)]}{\partial x} \right) T \frac{dx}{d\epsilon} + \left(\frac{\partial F[t, x(\epsilon), y(\epsilon)]}{\partial y} \right) T \frac{dy}{d\epsilon} dt \bigg|_{\epsilon = 0}
\]

Evaluate at \(\epsilon = 0 \),

\[
= \int_0^T \left(\frac{\partial F[t, \xi(t), \xi'(t)]}{\partial \xi(t)} \right) T \eta(t) + \left(\frac{\partial F[t, \xi(t), \xi'(t)]}{\partial \xi'(t)} \right) T \eta'(t) dt
\]

Write in compact form,

\[
= \int_0^T \left(\frac{\partial F}{\partial \xi(t)} \right) T \eta(t) + \left(\frac{\partial F}{\partial \xi'(t)} \right) T \eta'(t) dt
\]

Apply integration by parts to solve \(\int_0^T \left(\frac{\partial F}{\partial \xi'(t)} \right) T \eta'(t) dt \),

\[
\int_0^T \left(\frac{\partial F}{\partial \xi'(t)} \right) T \eta'(t) dt \bigg|_{0}^{T} - \int_0^T \frac{d}{dt} \left(\frac{\partial F}{\partial \xi'(t)} \right) T \eta(t) dt
\]

By definition, \(\eta(0) = \eta(T) = 0 \),

\[
= - \int_0^T \frac{d}{dt} \left(\frac{\partial F}{\partial \xi'(t)} \right) T \eta(t) dt
\]

Thus,

\[
< \nabla_{\xi} U, \eta >= \int_0^T \left(\frac{\partial F}{\partial \xi(t)} - \frac{d}{dt} \frac{\partial F}{\partial \xi'(t)} \right) T \eta(t) dt = \int_0^T \nabla_{\xi} U(t) T \eta(t) dt
\]

for every \(\eta \)

Therefore,

\[
\nabla_{\xi} U(t) = \frac{\partial F}{\partial \xi(t)}(t) - \frac{d}{dt} \frac{\partial F}{\partial \xi'(t)}(t)
\]

\(\square \)
6.3 CHOMP: Covariant Hamiltonian Optimization for Motion Planning

CHOMP instantiates functional gradient descent for cost

$$U[\xi] = U_{\text{smooth}}[\xi] + \lambda U_{\text{obs}}[\xi]$$

Smoothness cost is defined as in our example

$$U_{\text{smooth}}[\xi] = \frac{1}{2} \int_0^T \| \xi'(t) \|^2 dt$$

Obstacle cost is defined as

$$U_{\text{obs}}[\xi] = \int \int \int \int c(\phi_u(\xi(t))) : \left\| \frac{d}{dt} \phi_u(\xi(t)) \right\| du dt$$

Understanding $U_{\text{obs}}[\xi]$:

- Define a cost function in W, $c : W \rightarrow \mathbb{R}$ that uses a signed distance field to compute distance to the closest obstacle, and returns a higher cost the closer the point is.
- Then for each time point along the trajectory (thus the integral over time), look at the configuration $\xi(t)$.
- For each body point on the robot u (thus the integral over body points), apply for forward kinematics mapping ϕ_u to get the xyz locations of the points when the robot is in configuration $\xi(t)$.
- For each body point location, compute the cost c.

The second term in the integral (the norm of the velocity) is there to create a path integral formulation.