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Abstract

This is the first part of a two-part paper on information-theoretically secure secret key agreement. In

this part, we study the secrecy problem under the widely studied source model. In the source model the

terminals wishing to generate a secret key, as well as the eavesdropper, receive the respective coordinates

of a block of independent and identically distributed copies of jointly distributed random variables, after

which the terminals are allowed interactive authenticatedpublic communication, at the end of which each

terminal should be able to generate the key. We derive a new upper bound on the secrecy capacity that

strictly improves the currently best upper bound, due to Renner and Wolf. Further, while the Renner-

Wolf bound is defined only in the case of two terminals, the newupper bound applies to the general

multi-terminal case. The technique used for deriving our bound is to find certain properties of functions

of joint probability distributions which will imply that they dominate the secrecy capacity, and then prove

the bound by a verification argument. We also define a problem of communication for omniscience by

a neutral observer and establish the equivalence between this new problem and the problem of secret

key agreement. This generalizes an earlier result of Csisz´ar and Narayan. Finally, we prove a new lower

bound on the secrecy capacity in the general multi-terminalcase that in the two terminal case is strictly

better than what is essentially the currently best known lower bound, namely the maximum of the two

one-way secrecy capacities.

Keywords: Secret key agreement, unconditional security, communication for omniscience, secrecy

capacity, common randomness, public discussion, source model, security.

I. INTRODUCTION

Information-theoretic security is the most desirable formof security as it does not make any assumptions

on the computational power of the adversary. Shannon was thefirst who precisely formulated the problem
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of secret key generation by multiple terminals, information-theoretically secure from an eavesdropper

[14]. Since then, the work of Shannon has been much developedand modified; see for example [1], [3]

and [8]. In an early work, Maurer [8] considered the model in which Alice can send a message over

a broadcast channel with one output at the intended recipient, Bob, and the other at the eavesdropper,

Eve. He made the interesting observation that even if the channel from Alice to Eve is stronger than the

channel from Alice to Bob, Alice and Bob may still be able to generate a common secret key that is

information-theoretically secure from Eve, in an asymptotic sense, if we allow Bob to send authenticated

but public messages to Alice. In some sense in this result thecommunication between Alice and Bob is

being used to agree about features of the noise realization in the broadcast channel that are independent

of Eve’s knowledge: this is the secret key. This observationled to the formulation of the two main

models in this area, introduced by the works of Ahlswede and Csiszár [1], Csiszár and Narayan [5] and

Maurer [8], called thesource modelandchannel model. In this paper, we focus on the source model. In

this model there arem terminals interested in secret key generation against an adversary, Eve. Them

terminals and Eve have access ton independently and identically distributed (i.i.d.) repetitions of jointly

distributed random variablesXi (i = 1, 2, ...,m) andZ respectively. Following the reception of then

i.i.d. repetitions of(X1,X2, ...,Xm, Z), in the traditional source model them terminals are allowed to

have interactive authenticated public communication. We generalize this model somewhat by allowing

such communication only among the firstu (1 ≤ u ≤ m) of the terminals; terminalsu+ 1, u+ 2, ...,m

can listen and have to participate in secret key generation,but do not talk. This generalization has the

technical advantage of putting one-way secret key generation and interactive secret key generation on

the same footing and includes the standard model as a specialone. Further, and more importantly, it

provides an approach to study the secret key rate by splitting it into parts in a sense that will become

clear after understanding the main results of this paper. Following the communication, each terminal

generates random variableSi as its secret key,i = 1, 2, 3, ...,m. All Si’s should with high probability

be equal to each other and they should be approximately independent of Eve’s whole information after

the communication, i.e. then i.i.d repetitions ofZ and the public discussion, becoming asymptotically

independent asn → ∞. The achieved secret key rate would then be roughly1
n
H(S1). The highest

achievable secret key rate, asymptotic inn, is called the secrecy capacity. For a precise formulation see

section 2.

Calculation of the exact secrecy capacity remains an unsolved problem, although some lower and upper

bounds on this quantity are known. For the case ofm = 2, the best know upper bound is that of Renner

and Wolf [12]. This bound, known as thedouble intrinsic information bound, is equal toinfU [H(U) +
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I(X1;X2 ↓ ZU)], whereI(X;Y ↓ Z) is defined asinfXY −Z−Z I(X;Y |Z) and is called theintrinsic

information [10]. The essentially best known lower bound, proved using random binning arguments,

is due to Ahlswede and Csiszár [1]: the maximum ofsupV −U−X−Y Z

(
I(U ;Y |V ) − I(U ;Z|V )

)
and

supV −U−Y −XZ

(
I(U ;X|V ) − I(U ;Z|V )

)
. 1

In some special cases, Csiszár and Narayan [5] derived a single-letter characterization of the secrecy

capacity, notably whenZ is independent of (X1, X2, X3, ..., Xm). This was done by bringing out

a connection between a problem of communication for omniscience (CFO) by the terminals and the

secret key generation problem. In the CFO problem, as definedin [5], the requirement at the end of the

communication is not a secret key, but that all the terminalsbecome approximately omniscient about

each other’s random variables. The goal is to minimize the communication rate required to achieve this.

In this paper, we also improve the above mentioned result. Wedefine a broader notion of communication

for omniscience, called the problem of communication for omniscience by a neutral observer (still

abbreviated as CFO). This includes the one of Csiszár and Narayan as a special case in the cases where

their single letter characterization of the secrecy rate isvalid. In the CFO problem, as defined in this

paper, them terminals at the end of the communication wish to create a shared random variable which

when provided to a neutral observer who has access to the i.i.d. copies ofZ seen by Eve, allows the

observer to reconstruct the i.i.d. copies of the variables(X1,X2, ...,Xu) (where1 ≤ u ≤ m is as before).

The CFO rate is the minimum conditional entropy of the communication, conditioned on the information

available to Eve, measured on a per observation basis. We prove that our CFO problem is equivalent

to the problem of secret key generation (see section 2 for theprecise formulation of the definitions and

section 3 for a precise formulation of the results). This result generalizes the one of [5] but does not

appear to lead to a single letter characterization of the secrecy rate.

Finally, in this paper we also develop a new single letter lower bound for the secrecy rate which, in the

case of two terminals, strictly improves on the one in [1], i.e. the maximum of the two one-way secret

key rates. Our bound is proved by following the interactive communication stage by stage and careful

bookkeeping of the buildup of the secret-key rate by controlling the amount of reduction of secret key

rate built-up in earlier stages due to the communication in later stages.

The outline of this paper is as follows. In section 2, we introduce the basic notation and the definitions.

1Maurer provided a different technique for deriving lower bounds on the secret key rate in [8]. He proved, for instance, that

even when the maximum of the two one-way communications vanishes, the secret key rate may be positive. This technique

however seems to give us a rather low secrecy rate in this case. A generally applicable single letter form of a lower bound based

on the ideas in [8] is not known.
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Section 3 contains the main results of this paper followed bysection 4, which gives the proofs, with

some of the details relegated to appendices II and IV. Appendix I contains an example showing that our

upper bound for secret key rate is strictly better than the currently best know upper bound from [12].

Appendix III contains a counterexample to the natural conjecture (which we believed for a long time

while working on this problem) that the CFO rate is a concave function of the underlying joint probably

distribution.

II. D EFINITIONS AND NOTATION

Throughout this paper we assumeX1, X2, ...., Xm and Z arem + 1 possibly dependent random

variables each taking values from a finite set.

We basically use the same multi-terminal model as in [5]. We however relax the uniformity condition

on the generated secret key i.e. equation (2) in [5]. Maurer in [8] argued that the assumption of uniformity

could always be added without loss of generality. We study the weak notion of secrecy throughout this

paper and assume that allm terminals are interested in secret key generation. It is known that the weak

and strong secret key rates are equal [11].

Some previous works consider secret key generation in the case where only one terminal is allowed

to participate in public discussion, called theone-way secrecy rate. Our models more generally include

the case in which only a subset of terminals is allowed to participate in the public discussion. Without

loss of generality, we assume that terminals1, 2, ..., u (1 ≤ u ≤ m) are allowed to talk while terminals

u+ 1, u+ 2, ...,m are silent.

Givenn i.i.d. repetitions of a random variableX, we denote thei-th of these byX(i). We writeX1:i

for (X(1),X(2), ...,X(i)). ForX1:n we will often instead writeXn.

Definition 1: Givenn i.i.d repetitions of the jointly distributed random variables (X1,X2, ...,Xm, Z),

the pair(n,
−→
C ), where

−→
C = (C1, C2, ..., Cr) is a finite set of discrete random variables, is considered a

valid communicationif:

• H(Ci|C1, C2, ..., Ci−1,X
n
j ) = 0 ∀j : 1 ≤ j ≤ m, i = j modulom. This means that the indexing

of the communications is done in round-robin order and each communication is adapted to the

available information of the communicator;

• For all u+ 1 ≤ r ≤ m, we haveCi = 0 ∀i : i = r modulom. This means that ther-th terminal is

not allowed to participate in the communication.

•

Please note that if(n,
−→
C ) is valid, then one hasH(

−→
C |Xn

1 ,X
n
2 , ...,X

n
m) = 0.
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Definition 2.Let n be a natural number,ǫ be a positive real number,
−→
C = (C1, C2, ..., Cr) be a finite set

of discrete random variables, andS1, S2, ...,Sm bem discrete random variables. Consider the following

conditions:

1) the pair(n,
−→
C ) is a valid communication;

2) H(Si|C1, C2, ..., Cr,X
n
i ) = 0 for all 1 ≤ i ≤ m;

3) P (S1 = S2 = S3 = ... = Sm) > 1 − ǫ;

4) 1
n
I(S1;Z

n, C1, C2, ..., Cr) < ǫ;

5) 1
n
H(Xn

1 ,X
n
2 , ...,X

n
u |Z

n, S1, S2, ..., Su) < ǫ.

The data typing condition SK(n, ǫ, S1, S2, S3, ..., Sm,
−→
C ) is said to hold iff conditions 1, 2, 3 and

4 are satisfied. To any SK data type, we assign a number called the gain of the SK data type which is

defined as1
n
H(S1).

The data typing condition CFO(n, ǫ, S1, S2, S3, ..., Sm,
−→
C ) is said to hold iff conditions 1, 2, 3 and

5 are satisfied. To any CFO data type, we assign a number calledthe costof the CFO data type which

is defined as1
n
H(

−→
C |Zn). •

A valid communication(n,
−→
C ) for which, for someǫ > 0 and some(S1, S2, . . . , Sm) the data typing

condition SK(n, ǫ, S1, S2, S3, ..., Sm,
−→
C ) holds is called acommunication for secret key generation

in the presence of an eavesdropper. The intuitive reason for this terminology should be clear from the

definition.

A valid communication(n,
−→
C ) for which, for someǫ > 0 and some(T1, T2, . . . , Tm) the data typing

condition CFO(n, ǫ, T1, T2, T3, ...,Tm,
−→
C ) holds is called acommunication for omniscience by a neutral

observer. Intuitively speaking, a communication for omniscience ( CFO) protocol works as follows. The

terminals will conduct a public discussion in order to agree, with probability close to1, on a common

randomness, but there is no secrecy constraint. We can assume that there is a neutral terminal, say Charles,

who receivesZn from Eve and the common randomness obtained by the terminals. Charles is required

to become omniscient aboutXn
1 ,X

n
2 , ...,X

n
u . The cost of the communication would be the entropy of

the overall communication conditioned onZn.

Consider the special case in whichu = m, andZ is independent of(X1,X2, . . . ,Xm). Charles will

then not learn anything aboutXn
1 ,X

n
2 , . . . ,X

n
m from Zn and thus eachTi should be approximately

equal toXn
1 ,X

n
2 , . . . ,X

n
m, meaning that each terminal has learned the random variables of all other

terminals. The communication for omniscience by a neutral observer would be transformed to a simple

communication for omniscience, as studied by Csiszár and Narayan [5]. The cost of communication in

this case is equal to the total entropy of the communication.Since without loss of generality the successive
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communications can be made independent of each other, one could have chosen them so that the cost as

we measure it is identical to the cost as measured by Csiszárand Narayan. Therefore the communication

for omniscience by a neutral observer is a generalization ofthe communication for omniscience of [5].

Definition 3: Sǫ
no−r(X1;X2;X3; ...;Xu;X

(s)
u+1; ...;X

(s)
m ‖Z), the ǫ-secret key rate when the terminals

cannot randomize, is defined as:

lim sup
n→∞

sup
SK(n,ǫ,S1,S2,S3,...,Sm

−→
C )

Gain(SK)

Please note that the superscript“(s)” is used to denote the silent terminals. Similarly,

T ǫ(X1;X2;X3; ...;Xu;X
(s)
u+1; ...;X

(s)
m ‖Z) is defined as:

lim inf
n→∞

inf
CFO(n,ǫ,T1,T2,T3,...,Tm

−→
C )

Cost(CFO)

Sno−r(X1;X2;X3; ...;Xu;X
(s)
u+1; ...;X

(s)
m ‖Z), the secret key rate when the terminals cannot randomize,

andT (X1;X2;X3; ...;Xu;X
(s)
u+1; ...;X

(s)
m ‖Z) are defined as:

Sno−r(X1;X2;X3; ...;Xu;X
(s)
u+1; ...;X

(s)
m ‖Z) = lim

ǫ→0
Sǫ

no−r(X1;X2;X3; ...;Xu;X
(s)
u+1; ...;X

(s)
m ‖Z)

T (X1;X2;X3; ...;Xu;X
(s)
u+1; ...;X

(s)
m ‖Z) = lim

ǫ→0
T ǫ(X1;X2;X3; ...;Xu;X

(s)
u+1; ...;X

(s)
m ‖Z)

S(X1;X2;X3; ...;Xu;X
(s)
u+1; ...;X

(s)
m ‖Z), the secret key rate when the terminals can randomize, is

defined as the supremum ofSno−r(X1M1;X2M2;X3M3;XuMu;X
(s)
u+1; ...;X

(s)
m ‖Z) over all

(M1,M2, ...,Mu) satisfying:

p(M1, ...,Mu,X1, ...,Xm, Z) = p(M1).p(M2)...p(Mu).p(X1, ...,Xm, Z)

•

III. STATEMENT OF THE RESULTS

In this section we state the main results of this paper. All the results are proved in detail in section 4

and the appendices. Following the formal statement of each result, a brief informal discussion is provided

to clarify the statement.

Theorem 1.Let ϕ(X1;X2;X3; ...;Xm‖Z) be a real-valued function from the set of all probability

distributions defined on(X1,X2,X3, ...,Xm, Z), whereX1,X2, ...,Xm andZ take values from arbitrary

finite sets.ϕ(X1;X2;X3; ...;Xm‖Z) is an upper bound onS(X1;X2;X3; ...;Xu;X
(s)
u+1; ...;X

(s)
m ‖Z) if
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it satisfies all of the following properties.ϕ(X1;X2;X3; ...;Xm‖Z) is an upper bound on

Sno−r(X1;X2;X3; ...;Xu;X
(s)
u+1; ...;X

(s)
m ‖Z) if it satisfies properties (1-4):

1) For any natural numbern:

nϕ(X1;X2; ...;Xm‖Z) ≥ ϕ(Xn
1 ;Xn

2 ; ...;Xn
m‖Zn) ;

2) For any random variableF such that for some1 ≤ i ≤ u we haveH(F |Xi) = 0, it holds that:

ϕ(X1;X2; ...;Xm‖Z) ≥ ϕ(X1F ;X2F ; ...;XmF‖ZF ) ;

3) For any random variablesX ′
1,X

′
2, ...,X

′
m such thatH(X ′

i|Xi) = 0 for all 1 ≤ i ≤ m, we have:

ϕ(X1;X2; ...;Xm‖Z) ≥ ϕ(X ′
1;X

′
2; ...;X

′
m‖Z) ;

4) ϕ(X1;X2; ...;Xm‖Z) ≥ H(X1|Z) −
∑m

i=2H(X1|Xi);

5) For any set of random variables(M1,M2, ...,Mu) satisfying

p(M1,M2, ...,Mu,X1,X2, ...,Xm, Z) = p(M1)p(M2)...p(Mu).p(X1,X2, ...,Xm, Z) (1)

we have

ϕ(X1;X2; ...;Xm‖Z) ≥ ϕ(X1M1;X2M2; ...;XuMu;Xu+1; ...;Xm‖Z) .

FurtherS(X1;X2;X3; ...;Xu;X
(s)
u+1; ...;X

(s)
m ‖Z) itself satisfies all of these properties; and

Sno−r(X1;X2;X3; ...;Xu;X
(s)
u+1; ...;X

(s)
m ‖Z) satisfies properties (1-4).

Discussion:The domain ofϕ in Theorem 1 is the set ofall probability distributions onall products

of m+ 1 finite sets. Condition 1 corresponds to the notion of taking blocks of observations. Condition 2

corresponds to the notion of terminali communicating over the authenticated public channel. Condition

3 corresponds to the notion of each terminal choosing to ignore part of its available information. The

right hand side of condition 4 is a choice of an easily proved and technically convenient lower bound

on the secret key rate; other such expressions could also have been used instead. Condition 5 is relevant

to the case where the speaking terminals are allowed to independently randomize. •

Theorem 2.Let ψ(X1;X2;X3; ...;Xm‖Z) be a real-valued function from the set of all probability

distributions defined on(X1,X2,X3, ...,Xm, Z), whereX1,X2, ...,Xm andZ take values from arbitrary

finite sets.ψ(X1;X2;X3; ...;Xm‖Z) is a lower bound onT (X1;X2;X3; ...;Xu;X
(s)
u+1; ...;X

(s)
m ‖Z) if it

satisfies the following properties:

1) For any natural numbern:

nψ(X1;X2; ...;Xm‖Z) ≤ ψ(Xn
1 ;Xn

2 ; ...;Xn
m‖Zn);
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2) For any random variableF such that for some1 ≤ i ≤ u we haveH(F |Xi) = 0, it holds that:

ψ(X1;X2; ...;Xm‖Z) ≤

ψ(X1F ;X2F ; ...;XmF‖ZF ) + H(F |Z) ;

3) For any random variablesX ′
1,X

′
2, ...,X

′
m such thatH(X ′

i|Xi) = 0 for all 1 ≤ i ≤ m, we have:

ψ(X1;X2; ...;Xm‖Z) ≤ ψ(X ′
1;X

′
2; ...;X

′
m‖Z) +H(X1...Xu|X

′
1...X

′
uZ);

4) ψ(X1;X2; ...;Xm‖Z) ≤ H(X2...Xu|X1Z) +
∑m

i=2H(X1|Xi).

FurtherT (X1;X2;X3; ...;Xu;X
(s)
u+1; ...;X

(s)
m ‖Z) satisfies these properties.

Discussion:As in the case ofϕ of Theorem 1, hereψ should be thought of as defined on the set of

all probability distributions onall products ofm+1 finite sets. Condition 1 corresponds to the notion of

forming blocks. Condition 2 corresponds to the notion of terminal i communicating over the authenticated

public channel and paying the costH(F |Z) for this. Condition 3 corresponds to each terminal choosing

to work with only part of its observation; intuitively the missing part can later be shared by paying a

cost of at mostH(X1X2...Xu|X
′
1X

′
2...X

′
uZ). The right hand side of condition 4 is a convenient choice

of an easily proved upper bound on the CFO rate; other such choices could also have been used instead.

It should however be noted that the choice in condition 4 is concave over probability distributions and

this was important in the proof of some additional properties of the CFO rate given in [7]. •

Theorem 3.For any joint distributionp(x1, x2, ..., xm, z), we have:

Sno−r(X1; ...;Xu;X
(s)
u+1; ...;X

(s)
m ‖Z) + T (X1; ...;Xu;X

(s)
u+1; ...;X

(s)
m ‖Z) = H(X1,X2, ...,Xu|Z).

Discussion:This establishes the equivalence between the problems of secret key generation and the

problem of communication for omniscience by a neutral observer, generalizing the result of [5]. •

Theorem 4.S(X1;X2; ...;Xu;X
(s)
u+1; ...;X

(s)
m ‖Z) is bounded above by

infJ1,J2,...,Jt
[maxi(S(X1;X2; ...;Xu;X

(s)
u+1; ...;X

(s)
m ‖Ji)) +

S(X1;X2; ...;Xu;X
(s)
u+1; ...;X

(s)
m ;J

(s)
1 ;J

(s)
2 ; ...J

(s)
t ‖Z)]

where the infimum is taken over all random variablesJ1, J2, ..., Jt and all t.

Discussion:To understand this claim, start with the caset = 1. One can think ofJ1 as trying to define

a “split” in the secret key rate: one looks for a secret key rate among them terminals that is secret from

an entity that gets i.i.d. copies ofJ1 (the first term on the right hand side of the upper bound) and then

for a secret key that is shared by a terminal getting i.i.d. repetitions ofJ1 (who is not allowed to talk)
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but is secret from the original eavesdropper (the second term on the right hand side of the upper bound).

The claim is that the true secret key can not exceed the sum of the two rates got in this “split” way. The

case of generalt can be understood in a similar way. •

Theorem 4 leads to some corollaries that appear to deserve separate statements.

Corollary 1. S(X1;X2; ...;Xu;X
(s)
u+1; ...;X

(s)
m ‖Z) is bounded above by

infJ
(
S(X1J ;X2J ; ...;XuJ ; (Xu+1J)(s); ...; (XmJ)(s)‖J) + S(X1X2...Xm;J (s)‖Z)

)
.

A single letter characterization ofS(X1J ;X2J ; ...;XuJ ; (Xu+1J)(s); ...; (XmJ)(s)‖J) is given in

Theorem 6. •

Corollary 2. Form = 2, we have

S(X;Y ‖Z) ≤ infJ
(
S(X;Y ‖J) + S(XY ;J (s)‖Z)

)
≤

infJ
(
I(X;Y |J) + S(XY ;J (s)‖Z)

)
.

This bound strictly improves the Renner-Wolf double intrinsic information upper bound. •

Corollary 3. For any random variablesJ1, J2, ..., Jt, the following inequalities hold (for the notation

valid(1,
−→
C ) used in the second and third bullets, please refer to definition 1):

• S(X1;X2; ...;Xu;X
(s)
u+1; ...;X

(s)
m ;J

(s)
1 ;J

(s)
2 ; ...J

(s)
t ‖Z) ≥

supX′

1
...X′

m:p(ZJ1...JtX1...Xm,X′

1
,...,X′

m)=p(ZJ1...JtX1...Xm)p(X′

1
|X1)...p(X′

m|Xm)[

S(X ′
1;X

′
2; ...;X

′
u;X

′(s)
u+1; ...;X

′(s)
m ‖Z) − maxi(S(X ′

1;X
′
2; ...;X

′
u;X

′(s)
u+1; ...;X

′(s)
m ‖Ji))];

• S(X1;X2; ...;Xu;X
(s)
u+1; ...;X

(s)
m ;J

(s)
1 ;J

(s)
2 ; ...J

(s)
t ‖Z) ≥

sup
valid(1,

−→
C )

[S(X1
−→
C ;X2

−→
C ; ...;Xu

−→
C ; (Xu+1

−→
C )(s); ...; (Xm

−→
C )(s)‖Z

−→
C ) −

maxi(S(X1
−→
C ;X2

−→
C ; ...;Xu

−→
C ; (Xu+1

−→
C )(s); ...; (Xm

−→
C )(s)‖Ji

−→
C ))];

• S(X1;X2; ...;Xu;X
(s)
u+1; ...;X

(s)
m ;J

(s)
1 ;J

(s)
2 ; ...J

(s)
t ‖Z) ≥

sup
valid(1,

−→
C ),X′

1
...X′

m:p(
−→
C ZJ1...JtX1...Xm,X′

1
,...,X′

m)=p(
−→
C ZJ1...JtX1...Xm)p(X′

1
|X1

−→
C )...p(X′

m|Xm

−→
C )

[

S(X ′
1

−→
C ;X ′

2

−→
C ; ...;X ′

u

−→
C ; (X

′

u+1

−→
C )(s); ...; (X

′

m

−→
C )(s)‖Z

−→
C ) −

maxi(S(X ′
1

−→
C ;X ′

2

−→
C ; ...;X ′

u

−→
C ; (X

′

u+1

−→
C )(s); ...; (X

′

m

−→
C )(s)‖Ji

−→
C ))].

Discussion:For the special case ofu = m = t = 1, the last formula suggests the inequality:

S(X;Y (s)‖Z) ≥ sup−→
C−X′

−→
C−X−Y Z

[S(X ′−→C ‖Z
−→
C ) − S(X ′−→C ‖Y

−→
C )].

S(X‖Z) is not well-defined but if defined asH(X|Z), we get the tight inequality

S(X;Y (s)‖Z) ≥ sup−→
C−X′

−→
C−X−Y Z

[H(X ′|Z
−→
C ) −H(X ′|Y

−→
C )]

and the above formula can be understood as a generalization of this lower bound on the (one-way)

secrecy rate. •

A variant of Corollary 1 can be proved by the verification technique that was used to prove Theorem

1. This is stated as the next result.
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Theorem 5.Let R≥0 denote the set of nonnegative real numbers. Letf : R≥0 7→ R≥0 be a strictly

increasing convex function and let thef -one-way secrecy ratebe defined as

Sf−one−way(X;Y (s)‖Z) = supV −U−X−Y Z [f(H(U |ZV )) − f(H(U |Y V ))].

ThenS(X1;X2; ...;Xu;X
(s)
u+1; ...;X

(s)
m ‖Z) is bounded above by

infJ f
−1{f(S(X1;X2; ...;Xu; (Xu+1)

(s); ...; (Xm)(s)‖J)) + Sf−one−way(X1X2...Xm;J (s)‖Z)}.

This upper bound is in turn bounded above by

infJ f
−1

(
f(S(X1J ; ...;XuJ ; (Xu+1J)(s); ...; (XmJ)(s)‖J)) + Sf−one−way(X1X2...Xm;J (s)‖Z)

)
.

Discussion:The upper bound given in Theorem 5 reduces to that of Corollary 1 in the special case

of f(x) = x. We don’t know if this bound strictly improves that of Corollary 1. The weaker form of the

bound given in the statement of the theorem is useful becausethere is a single letter characterization for

S(X1J ;X2J ; ...;XuJ ; (Xu+1J)(s); ...; (XmJ)(s)‖J), given in Theorem 6. •

Theorem 6.Let [m] and [u] respectively denote the sets{1, 2, ...,m}, {1, 2, ..., u}. The following

formula on the secret key rate holds:

S(X1Z;X2Z; ...;XuZ; (Xu+1Z)(s); ...; (XmZ)(s)‖Z) =

H(X1X2...Xu|Z) − min(R1,R2,...,Ru)∈ℜ(
∑u

i=1Ri)

where:

ℜ = {(R1, ..., Ru) : ∀B : B ⊂ [m], B
⋂

[u] 6= ∅, B 6= [m] :
∑

j∈B
T

[u]Rj ≥ H(XB
T

[u]|XBcZ)}.

Discussion:This claim is best understood in conjunction with Theorem 3 as giving a natural Slepian-

Wolf type characterization of the CFO rate in this special case. Whenu = m it reduces to the known

result proved in [5]. •

Theorem 7.S(X1;X2; ...;Xu; (Xu+1)
(s); ...; (Xm)(s)‖Z) is bounded below by

∑p
j=q[min1≤r≤m I(Uj ;Xr|U1:j−1) − I(Uj ;Z|U1:j−1)]

for everyq ≤ p, and(U1, U2, ..., Up) satisfying the following constraints:

• Ui (i = 1, 2, ..., p) takes values from a finite set;

• p(U1, U2, ..., Up|X1,X2,X3, ...,Xm, Z) =
∏p

i=1 p(Ui|U1:i−1Xi mod m);

• For all r > u, we haveUi = 0 ∀i : i− r ≡m 0.

This lower bound strictly improves what is essentially the currently best known lower bound, namely

the maximum of the two one-way secrecy rates.

Discussion:The property that(U1, ..., Up) should satisfy is equivalent to the following condition:

I(Ui;X[m]−{j}|U1:i−1Xj) = 0 ∀i, j : 1 ≤ j ≤ m, i− j ≡m 0.

Intuitively, assuming that all theXi’s andZ have learntU1:i−1, the(i mod m)-th terminal can create

Ui. The individual terms in the lower bound can be understood from the form of the one-way secrecy
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rate. •

IV. PROOFS OFTHEOREMS1-7

Proof of Theorem 1.Fix a probability distributionp(x1, x2, ..., xm, z) on (X1,X2, ...,Xm, Z) and

assume thatX1,X2, ...,Xm andZ take values in the discrete finite sets∆i, i = 1...m+1. We prove that

ϕ(X1;X2;X3; ...;Xm‖Z) is an upper bound onS(X1;X2;X3; ...;Xu;X
(s)
u+1; ...;X

(s)
m ‖Z) if it satisfies

all the properties. Proving thatϕ(X1;X2;X3; ...;Xm‖Z) would be an upper bound on

Sno−r(X1;X2;X3; ...;Xu;X
(s)
u+1; ...;X

(s)
m ‖Z) if it satisfies properties (1-4) is similar.

For everyδ > 0, ǫ > 0 andM1, M2, ...,Mu (satisfying (1)), one can find data type SK(n, ǫ, S1, S2,

S3,..., Sm,
−→
C ) whose gain is withinδ of

Sǫ
no−r(X1M1;X2M2; ...;XuMu;X

(s)
u+1; ...;X

(s)
m ‖Z). We have:

nϕ(X1;X2;X3; ...;Xm‖Z) ≥i

ϕ(Xn
1 ;Xn

2 ;Xn
3 ; ...;Xn

m‖Zn) ≥ii

ϕ(Xn
1M1;X

n
2M2;X

n
3M3; ...;X

n
uMu;Xn

u+1...;X
n
m‖Zn) ≥iii

ϕ(Xn
1M1C1;X

n
2M2C1; ...;X

n
uMuC1;X

n
u+1C1; ...;X

n
mC1‖Z

nC1) ≥
iv

ϕ(Xn
1M1C1C2;X

n
2M2C1C2; ...;X

n
uMuC1C2;X

n
u+1C1C2; ...;X

n
mC1C2‖Z

nC1C2)... ≥
v

ϕ(Xn
1M1

−→
C ;Xn

2M2
−→
C ; ...;Xn

uMu
−→
C ;Xn

u+1

−→
C ; ...;Xn

m

−→
C ‖Zn−→C ) ≥vi

ϕ(S1;S2; ...;Sm‖Zn−→C ) ≥vii

H(S1|Z
n−→C ) −

∑m
j=2H(S1|Sj) ≥

viii

nSǫ
no−r(X1M1;X2M2; ...;XuMu;X

(s)
u+1; ...;X

(s)
m ‖Z)} − nδ − (m− 1)[h(ǫ) + ǫ.n log

∏m
i=1 |∆i|]

Inequalitiesi, ii, iii, iv, v, vi, vii are true respectively because of the properties 1, 5, 2, 2, 2,3, 4.

Inequalityviii is true because of the Fano inequality, and the fact that the gain of SK(n, ǫ, S1, S2, S3,...,

Sm,
−→
C ) is within δ of Sǫ

no−r(X1M1;X2M2; ...;XuMu;X
(s)
u+1; ...;X

(s)
m ‖Z).

Therefore we get

ϕ(X1;X2;X3; ...;Xm‖Z) ≥

Sǫ
no−r(X1M1;X2M2; ...;XuMu;X

(s)
u+1; ...;X

(s)
m ‖Z) − δ − m−1

n
[h(ǫ) + ǫ.n log

∏m
i=1 |∆i|].

The theorem is proved by taking the limit asǫ and δ go to zero and noting that the choice ofM1,

M2, ...,Mu was arbitrary.

S(X1;X2;X3; ...;Xu;X
(s)
u+1; ...;X

(s)
m ‖Z) andSno−r(X1;X2;X3; ...;Xu;X

(s)
u+1; ...;X

(s)
m ‖Z) them-

selves satisfy the five (respectively the first four) properties.

S(X1;X2;X3; ...;Xu;X
(s)
u+1; ...;X

(s)
m ‖Z) satisfies properties 1, 2, 3 and 5 and

Sno−r(X1;X2;X3; ...;Xu;X
(s)
u+1; ...;X

(s)
m ‖Z) satisfies properties 1, 2 and 3 because every valid SK data
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type for the right hand side of the inequalities can be converted to one for the left hand side. In 1, the

terminals observing(X1,X2, ...,Xm) can first observen i.i.d. copies of their random variables and then

simulate the SK data type for the right hand side. In 2, they can take i.i.d repetitions ofF by i-th terminal

as the first non-trivial communication and then simulate theSK data type for the right hand side. In 3,

they can createX ′
i’s first and then simulate the SK data type for the right hand side. In 5, the terminals

1 ≤ i ≤ u can respectively createM1,M2, . . . ,Mu first and then simulate the SK data type for the right

hand side.

For property 4, note that bothS(X1;X2;X3; ...;Xu;X
(s)
u+1; ...;X

(s)
m ‖Z) and

Sno−r(X1;X2;X3; ...;Xu;X
(s)
u+1; ...;X

(s)
m ‖Z) are greater than or equal to the one way secret key rate from

X1 toX2,X3, ...,Xm in the presence ofZ which in turn is greater than or equal tomin2≤i≤m(I(X1;Xi)−

I(X1;Z)). This expression is greater than or equal to the right hand side of 4. •

Proof of Theorem 2.Fix the probability distributionp(x1, x2, ..., xm, z) on (X1,X2, ...,Xm, Z) and

assume that(X1,X2, ...,Xm, Z) take values in the discrete finite sets∆i, i = 1...m + 1. For every

δ > 0 and ǫ > 0, one can find data type CFO(n, ǫ, S1, S2, S3,..., Sm,
−→
C ) whose cost is withinδ of

T ǫ(X1;X2;X3; ...;Xu;X
(s)
u+1; ...;X

(s)
m ‖Z). We have:

nψ(X1;X2;X3; ...;Xm‖Z) ≤i

ψ(Xn
1 ;Xn

2 ;Xn
3 ; ...;Xn

m‖Zn) ≤ii

ψ(Xn
1 C1;X

n
2 C1; ...;X

n
mC1‖Z

nC1) +H(C1|Z
n) ≤iii

ψ(Xn
1 C1C2;X

n
2 C1C2; ...;X

n
mC1C2‖Z

nC1C2) +H(C1C2|Z
n)... ≤iv

ψ(Xn
1

−→
C ;Xn

2

−→
C ; ...;Xn

m

−→
C ‖Zn−→C ) +H(

−→
C |Zn) ≤v

ψ(S1;S2; ...;Sm‖Zn−→C ) +H(Xn
1X

n
2 ...X

n
u |S1S2...SuZ

n) +H(
−→
C |Zn) ≤vi

H(S2S2...Su|S1Z
n−→C ) +

∑m
j=2H(S1|Sj) +H(Xn

1X
n
2 ...X

n
u |S1S2...SuZ

n) +H(
−→
C |Zn) ≤vii

h(ǫ) + ǫ.n log
∏u

i=1 |∆i| + (m− 1)[h(ǫ) + ǫ.n log
∏m

i=1 |∆i|]+

+ nǫ+ nT ǫ(X1;X2;X3; ...;Xu;X
(s)
u+1; ...;X

(s)
m ‖Z) + nδ

Inequalitiesi, ii, iii, iv, v, vi are true respectively because of the properties 1, 2, 2, 2, 3,4. Inequality

vii is true due to the Fano inequality, and the fact that the cost of CFO(n, ǫ, S1, S2, S3,..., Sm,
−→
C ) is

within δ of T ǫ(X1;X2;X3; ...;Xu;X
(s)
u+1; ...;X

(s)
m ‖Z).

Therefore we get

ψ(X1;X2;X3; ...;Xm‖Z) ≤

T ǫ(X1;X2;X3; ...;Xu;X
(s)
u+1; ...;X

(s)
m ‖Z) + δ + m

n
[h(ǫ) + ǫ.n log

∏m
i=1 |∆i|] + ǫ.

The theorem is proved by taking the limit asǫ andδ go to zero.
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T (X1;X2;X3; ...;Xu;X
(s)
u+1; ...;X

(s)
m ‖Z) itself satisfies the four properties.

For property 1, note that the terminals observing(X1,X2, ...,Xm) can first observen i.i.d. copies of

their random variables and then pretend that they are in the situation on the right hand side of 1. For

property 2, they can take i.i.d repetitions ofF by i-th terminal as the first non-trivial communication,

and then pretend that they are in the situation corresponding to the first term on the right hand side of 2.

The total cost would be the sum ofH(F |Z) and the remaining cost of communication of the CFO data

type of the left hand side.

Regarding property number 3, we first intuitively sketch theproof: one possible communication for

omniscience for(X1,X2, ...,Xm, Z) is to first conduct a communication for omniscience for

(X ′
1,X

′
2, ...,X

′
m, Z). The terminal who wants to become omniscient, Charles, would be able to approx-

imately learn(X ′
1,X

′
2, ...,X

′
u, Z) with the cost ofT (X ′

1;X
′
2;X

′
3; ...;X

′
u;X

′(s)
u+1; ...;X

′(s)
m ‖Z). If Charles

exactly knew(X ′
1,X

′
2, ...,X

′
u, Z), theu terminals could use a Slepian-Wolf type communication scheme

to revealH(X1X2...Xu|X
′
1X

′
2...X

′
uZ) bits on the public channel, thereby enabling Charles to receive

these bits as a common randomness and become omniscient. Thetotal communication cost is no more than

T (X ′
1;X

′
2;X

′
3; ...;X

′
u;X

′(s)
u+1; ...;X

′(s)
m ‖Z)+H(X1X2...Xu|X

′
1X

′
2...X

′
uZ). Even though Charles does not

exactly know(X ′
1,X

′
2, ...,X

′
u;Z), this Slepian-Wolf algorithm still works.

We now prove the property more precisely. Fixǫ > 0 andδ > 0. T ǫ(X1;X2; ...;Xu;X
(s)
u+1; ...;X

(s)
m ‖Z)

is defined as:

lim inf
n→∞

inf
CFO(n,ǫ,T1,T2,T3,...,Tm,

−→
C )

Cost(CFO)

Therefore we can find a large enoughn such that the following requirements are satisfied:

• There is a valid CFO(n, ǫ, S1, S2, S3,..., Sm,
−→
C ) within δ of

T ǫ(X ′
1;X

′
2;X

′
3; ...;X

′
u;X

′(s)
u+1; ...;X

′(s)
m ‖Z);

• There is a communication with the total entropy of at mostn(H(X1....Xu|X
′
1X

′
2...X

′
uZ) + δ) for

the Slepian-Wolf type problem in whichu terminals having i.i.d. repetitions ofX1, X2, ..., Xu

want to transmit their information to a receiver who has i.i.d. repetitions ofX ′
1X

′
2...X

′
uZ as a side

information. In this Slepian-Wolf type problem, it is desired to have

1
n
H(Xn

1 ....X
n
u |X

′n
1 X

′n
2 ...X

′n
u Z

n, Communication) ≤ δ.

The terminals first follow CFO(n, ǫ, S1, S2, S3,..., Sm,
−→
C ) and then theu terminalsX1, X2, ...,Xu

insert the corresponding communications for the Slepian-Wolf problem, on the public channel. Let
−→
C ′

denote thewholecommunication (
−→
C ′ includes

−→
C ).

We prove that the CFO(n, ǫ+ δ, S1

−→
C ′, S2

−→
C ′, S3

−→
C ′,..., Sm

−→
C ′,

−→
C ′) is valid and further the cost of this
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CFO is less than or equal to

T ǫ(X ′
1;X

′
2;X

′
3; ...;X

′
u;X

′(s)
u+1; ...;X

′(s)
m ‖Z) +H(X1....Xu|X

′
1X

′
2...X

′
uZ) + 2δ

Using the inequalityH(X|Y W ) ≤ H(X|ZW )+H(Z|Y W ) for any four random variablesX,Y,Z,W ,

we have

1
n
H(Xn

1 ....X
n
u |S1S2...Su

−→
C ′Zn) ≤ 1

n
H(Xn

1 ....X
n
u |X

′n
1 X

′n
2 ...X

′n
u

−→
C ′Zn) +

1
n
H(X

′n
1 X

′n
2 ...X

′n
u |S1S2...Su

−→
C ′Zn) ≤ δ + ǫ

The other requirements for CFO to be valid can be easily checked.

The cost of the CFO, i.e.1
n
H(

−→
C ′|Zn) is bounded above by

1
n
H(

−→
C |Zn) + 1

n
H(

−→
C ′|

−→
C ) ≤

T ǫ(X ′
1;X

′
2; ...;X

′
u;X

′(s)
u+1; ...;X

′(s)
m ‖Z) + δ +H(X1X2...Xu|X

′
1X

′
2...X

′
uZ) + δ.

For property number 4, the idea is that, in the first phase, thefirst terminal transmits messages

to other terminals enabling them findX1 with high probability. The entropy of the communication

from 1st terminal to i-th terminal would be roughlynH(X1|Xi), and this is an upper bound for the

conditional entropy of the communication givenZn. Now, since all the terminals can includeX1 as a

common randomness, Charles would be able to calculateX1Z. In the second stage, the firstu terminals

reveal roughlyn.H(X1X2...Xu|X1Z) bits on the public channel. Since this now becomes a common

randomness, this can be passed to Charles, enabling him to learn X1X2...Xu. The total cost of this

communication scheme would be bounded above by
∑
H(Xi|X1) + H(X1X2...Xu|X1Z) on a per

observation basis, asymptotically asn→ ∞. •

Proof of Theorem 3.It can be easily shown thatψ(X1;X2;X3; ...;Xm‖Z) satisfies the four properties

of Theorem 2 if and only ifH(X1X2...Xu|Z) − ψ(X1;X2;X3; ...;Xm‖Z) satisfies the four properties

of Theorem 1.

T (X1;X2;X3; ...;Xu;X
(s)
u+1; ...;X

(s)
m ‖Z) itself satisfies the four properties of Theorem 2. Hence

H(X1X2...Xu|Z) − T (X1;X2; ...;Xu;X
(s)
u+1; ...;X

(s)
m ‖Z) ≥

Sno−r(X1;X2; ...;Xu;X
(s)
u+1; ...;X

(s)
m ‖Z).

Further sinceSno−r(X1;X2; ...;Xu;X
(s)
u+1; ...;X

(s)
m ‖Z) itself satisfies the four properties of Theorem

1, we get

H(X1X2...Xu|Z) − Sno−r(X1;X2;X3; ...;Xu;X
(s)
u+1; ...;X

(s)
m ‖Z) ≤

T (X1;X2;X3; ...;Xu;X
(s)
u+1; ...;X

(s)
m ‖Z).

ThereforeH(X1X2...Xu|Z) =

Sno−r(X1;X2;X3; ...;Xu;X
(s)
u+1; ...;X

(s)
m ‖Z) + T (X1;X2;X3; ...;Xu;X

(s)
u+1; ...;X

(s)
m ‖Z). •
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Proof of Theorem 4.It is enough to prove that

ϕ(X1;X2;X3; ...;Xm‖Z) = infJ1,J2,...,Jt
[maxi(S(X1;X2; ...;Xu;X

(s)
u+1; ...;X

(s)
m ‖Ji)) +

S(X1;X2; ...;Xu;X
(s)
u+1; ...;X

(s)
m ;J

(s)
1 ;J

(s)
2 ; ...J

(s)
t ‖Z)]

satisfies the five properties of Theorem 1.

Property number1: It is enough to prove that for anyJ1, J2, ..., Jt, there existsJ ′
1, J

′
2, ..., J

′
t such that:

n maxi(S(X1;X2; ...;Xu;X
(s)
u+1; ...;X

(s)
m ‖Ji))+S(X1;X2; ...;Xu;X

(s)
u+1; ...;X

(s)
m ;J

(s)
1 ;J

(s)
2 ; ...J

(s)
t ‖Z)

≥ maxi(S(Xn
1 ;Xn

2 ; ...;Xn
u ; (Xn

u+1)
(s); ...; (Xn

m)(s)‖J ′
i)) +

S(Xn
1 ;Xn

2 ; ...;Xn
u ; (Xn

u+1)
(s); ...; (Xn

m)(s);J
′(s)
1 ;J

′(s)
2 ; ...;J

′(s)
t ‖Zn).

We takeJ ′
i to beJn

i for 1 ≤ i ≤ t. The inequality holds since the secret key function itself satisfies

the first property of Theorem 1.

Property number2: Let H(F | Xi) = 0, where 1 ≤ i ≤ u. It is enough to prove that for any

J1, J2, ..., Jt, there existsJ ′
1, J

′
2, ..., J

′
t such that:

maxi(S(X1;X2; ...;Xu;X
(s)
u+1; ...;X

(s)
m ‖Ji)) + S(X1;X2; ...;Xu;X

(s)
u+1; ...;X

(s)
m ;J

(s)
1 ;J

(s)
2 ; ...J

(s)
t ‖Z)

≥ maxi(S(X1F ;X2F ; ...;XuF ;X
(s)
u+1F ; ...;X

(s)
m F‖J ′

i)) +

S(X1F ;X2F ; ...;XuF ; (Xu+1F )(s); ...; (XmF )(s);J
′(s)
1 ;J

′(s)
2 ; ...;J

′(s)
t ‖ZF ).

We takeJ ′
i to beJiF for 1 ≤ i ≤ t. The inequality holds since the secret key function itself satisfies

the second property of Theorem 1.

The proof for property3 is similar to that for the two preceding properties, and is left to the reader.

Property number4: It is enough to prove that for anyJ1, J2, ..., Jt,

maxi(S(X1;X2; ...;Xu;X
(s)
u+1...;X

(s)
m ‖Ji)) + S(X1;X2; ...;Xu;X

(s)
u+1; ...;X

(s)
m ;J

(s)
1 ;J

(s)
2 ; ...J

(s)
t ‖Z)

is greater than or equal toH(X1|Z) −
∑m

k=2H(X1|Xk)

We have:

S(X1;X2; ...;Xu;X
(s)
u+1; ...;X

(s)
m ;J

(s)
1 ;J

(s)
2 ; ...J

(s)
t ‖Z) ≥

S(X1;X
(s)
2 ;X

(s)
3 ; ...;X

(s)
m ;J

(s)
1 ;J

(s)
2 ; ...J

(s)
t ‖Z) ≥

min(min1≤i≤t I(X1;Ji),min2≤k≤m I(X1;Xk)) − I(X1;Z)

Since the secret key function itself satisfies the fourth property of Theorem 1, we have:

S(X1;X2; ...;Xu;X
(s)
u+1; ...;X

(s)
m ‖Ji) ≥ H(X1) − I(X1;Ji) −

∑
k H(X1|Xk).

This implies that

maxi S(X1;X2; ...;Xu;X
(s)
u+1; ...;X

(s)
m ‖Ji) ≥ H(X1) − mini I(X1;Ji) −

∑m
k=2H(X1|Xk)

There are two cases:

• If mini I(X1;Ji) ≤ mink I(X1;Xk) :

We have:
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S(X1;X2; ...;Xu;X
(s)
u+1; ...;X

(s)
m ;J

(s)
1 ;J

(s)
2 ; ...J

(s)
t ‖Z) ≥

mini I(X1;Ji) − I(X1;Z) = H(X1) − maxiH(X1|Ji) − I(X1;Z).

Therefore

maxi S(X1; ...;Xu;X
(s)
u+1; ...;X

(s)
m ‖Ji) + S(X1; ...;Xu;X

(s)
u+1; ...;X

(s)
m ;J

(s)
1 ; ...J

(s)
t ‖Z) ≥

H(X1) − I(X1;Z) −
∑m

k=2H(X1|Xk) = H(X1|Z) −
∑m

k=2H(X1|Xk).

• If mini I(X1;Ji) > min2≤k≤m I(X1;Xk) :

We have:

S(X1;X2; ...;Xu;X
(s)
u+1; ...;X

(s)
m ;J

(s)
1 ;J

(s)
2 ; ...J

(s)
t ‖Z) ≥

min2≤k≤m I(X1;Xk) − I(X1;Z) ≥

H(X1) −
∑m

k=2H(X1|Xk) − I(X1;Z) = H(X1|Z) −
∑m

k=2H(X1|Xk).

Property number5: It is enough to prove that for anyJ1, J2, ..., Jt, there existsJ ′
1, J

′
2, ..., J

′
t such that:

maxi(S(X1;X2; ...;Xu;X
(s)
u+1; ...;X

(s)
m ‖Ji)) +

S(X1;X2; ...;Xu;X
(s)
u+1; ...;X

(s)
m ;J

(s)
1 ;J

(s)
2 ; ...J

(s)
t ‖Z) ≥

maxi(S(X1M1;X2M2; ...;XuMu;X
(s)
u+1; ...;X

(s)
m ‖J ′

i)) +

S(X1M1;X2M2; ...;XuMu;X
(s)
u+1; ...;X

(s)
m ;J

′(s)
1 ;J

′(s)
2 ; ...J

′(s)
t ‖Z).

We defineJ ′
1, J

′
2, ..., J

′
t such that:

• For everyx1, ..., xm, z, j1, ..., jt,

p(J ′
1 = j1, ..., J

′
t = jt|X1 = x1, ...,Xm = xm, Z = z) =

p(J1 = j1, ..., Jt = jt|X1 = x1, ...,Xm = xm, Z = z);

• p(M1, ...,Mu,X1, ...,Xm, Z, J
′
1..., J

′
t) = p(M1).p(M2)...p(Mu).p(X1, ...,Xm, Z, J

′
1..., J

′
t).

The proof would be done by noting that the secret key functionitself satisfies the fifth property of

Theorem 1. •

Proof of Corollary 1.We get the desired result by applying Theorem 4 for the case oft = 1 and

noting that

S(X1;X2; ...;Xu;X
(s)
u+1; ...;X

(s)
m ‖J) ≤ S(X1J ;X2J ; ...;XuJ ; (Xu+1J)(s); ...; (XmJ)(s)‖J)

and

S(X1;X2; ...;Xu;X
(s)
u+1; ...;X

(s)
m ;J (s)‖Z) ≤ S(X1X2...Xm;J (s)‖Z). •

Proof of Corollary 2.This is a straightforward special case of Corollary 1. In thecase of two terminals

we have:

S(X;Y ‖Z) ≤ infJ
(
S(X;Y ‖J) + S(XY ;J (s)‖Z)

)
≤ infJ

(
S(XJ ;Y J‖J) + S(XY ;J (s)‖Z)

)
.

We get the desired upper bound by noting thatS(XJ ;Y J‖J) = I(X;Y |J).
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I(X;Y |J)+S(XY ;J (s)‖Z) could be further bounded above byinfJ
(
I(X;Y |J)+I(XY ;J |Z)

)
. It is

enough to prove thatinfJ
(
I(X;Y |J)+ I(XY ;J |Z)

)
strictly improves the Renner-Wolf double intrinsic

information upper bound. In order to prove that the new boundis not worse than the double intrinsic

information bound, it is sufficient to prove that for any random variableU , there is a random variableJ

such thatI(X;Y |J)+I(XY ;J |Z) ≤ [H(U)+minZ:X−Y −ZU−Z I(X;Y |Z)]. ChoosingJ = Z, we will

haveI(X;Y |J) = I(X;Y |Z) and alsoI(XY ;J |Z) = I(XY ;U |Z)− I(XY ;U |ZJ) ≤ I(XY ;U |Z) ≤

H(U). ThereforeinfJ
(
I(X;Y |J) + I(XY ;J |Z)

)
is no worse than the double intrinsic information

bound. Appendix I contains an example for whichinfJ
(
I(X;Y |J)+ I(XY ;J |Z)

)
is strictly better than

the double intrinsic information bound. •

Proof of Corollary 3.The inequality can be proved by noting that for any(X ′
1...X

′
m) such that

p(ZJ1...JtX1...Xm,X
′
1, ...,X

′
m) = p(ZJ1...JtX1...Xm)p(X ′

1|X1)...p(X
′
m|Xm)

we have

S(X1;X2; ...;Xu;X
(s)
u+1; ...;X

(s)
m ;J

(s)
1 ;J

(s)
2 ; ...J

(s)
t ‖Z) ≥

S(X ′
1;X

′
2; ...;X

′
u;X

′(s)
u+1; ...;X

′(s)
m ;J

(s)
1 ;J

(s)
2 ; ...J

(s)
t ‖Z)

which is true because reducing information can not increasethe secret key rate. •

Proof of Theorem 5.Without loss of generality we can assumef(0) = 0, because for any positive

constantc, g(x) = f(x) + c satisfies the following equations:

• Sg−one−way(X;Y (s)‖Z) = Sf−one−way(X;Y (s)‖Z);

• g−1
(
g(a) + b) = f−1

(
f(a) + b) for any non-negativea andb.

Since

S(X1J ;X2J ; ...;XuJ ; (Xu+1J)(s); ...; (XmJ)(s)‖J) ≥ S(X1;X2; ...;Xu; (Xu+1)
(s); ...; (Xm)(s)‖J)

and f is increasing, it suffices to prove the first bound in the statement of the theorem. In order to

show this, it is sufficient to verify the five conditions of Theorem 1. This is done in appendix II. The

proof uses the standard fact that the convexity off implies that it is continuous and thatf(x+a)−f(x)

is an increasing function inx for any fixeda.

•

Proof of Theorem 6.

We first prove that for any(R1, R2, ..., Ru) ∈ ℜ, there are SK data types whose gains asymptotically

approachH(X1X2...Xu|Z) −
∑u

i=1Ri. In order to show this, it is enough to prove that for anyǫ > 0,

there isn large enough such that the firstu terminals, after observingXn
i Z

n (1 ≤ i ≤ u), can insert

messages of entropyn(Ri + ǫ) on the public channel such that all them terminals would be able

to calculateXn
1 ,X

n
2 , ...,X

n
u , Z

n with probability at least1 − ǫ: (X1,X2, ...,Xu, Z) will be a common
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randomness for them terminals, and Eve’s whole information about this common randomness is bounded

above by the summation of the entropy ofZ and the entropy of the communication (i.e.n(Ri + ǫ)).

We use the technique used in appendix A of [5] and apply Theorem 1.1.14 of [4]. We define a normal

source network (NSN) without helper as follows: There arem source andm dummy nodes in the first

layer of our NSN. The2i-th and(2i−1)-th node are both connected toXiZ. The second layer comprises

of m+u encoders. The firstu encoders are connected to the first2i-th nodes fori = 1, 2, ..., u. The rest

of them encoders are connected to(2i − 1)-th nodes fori = 1, 2, ...,m. The output rates of the first

u+m encoders areR1, R2, ...,Ru, H(X1), H(X2), ...,H(Xm). The third layer includesm decoders.

The i-th decoder is connected to the(u+ i)-th and the firstu nodes of the second layer.

It can be shown that the conditions imposed by Theorem 1.1.14of [4] would be satisfied if

(R1, R2, ..., Ru) is in ℜ. This result makes intuitive sense because for every setB, the overall commu-

nication of those of theu terminals that are inB is at least equal to their uncertainty with respect to

those outsideB.

For the converse part, takeu arbitrary random variablesM1,M2, ...,Mu jointly independent of each self

and of(X1,X2, ...,Xm, Z). For convenience, let us writẽXi for XiZ for the rest of the proof,1 ≤ i ≤ m.

Take a valid SK(n, ǫ, S1, S2, S3,...,Sm,
−→
C ) for (X̃1M1, X̃2M2, ..., X̃uMu, X̃u+1, ..., X̃m, Z). The proof

technique is similar to one used in Lemma 2 of [5].

H(X̃n
1M

n
1 ...X̃

n
uM

n
u |Z

n) = H(X̃n
1M

n
1 ...X̃

n
uM

n
u

−→
CS1|Z

n) =
∑

iH(
−→
C i|

−→
C 1:i−1Z

n)+H(S1|
−→
CZn)+

∑u
i=1H(X̃n

i M
n
i |X̃

n
1M

n
1 X̃

n
2M

n
2 ...X̃

n
i−1M

n
i−1

−→
CS1Z

n)

LetR′
j = 1

n

∑
i:i−j≡m0H(

−→
C i|

−→
C 1:i−1Z

n)+ 1
n
H(X̃n

j M
n
j |X̃

n
1M

n
1 X̃

n
2M

n
2 ...X̃

n
j−1M

n
j−1

−→
CS1Z

n)−H(Mj)

for j = 1, 2, ..., u.

Based on this choice ofR′
j ’s, one can observe that

∑u
j=1R

′
j = H(X̃1...X̃u|Z) − 1

n
H(S1|

−→
CZn).

Let Rj = R′
j + ǫ log(|S1|)+h(ǫ)

n
. We prove that(R1, R2, ..., Ru) ∈ ℜ.

Let B be some subset of[m] whose intersection with[u] is nonempty and such thatB 6= [m]. By

conditioning on((X̃n
j , j ∈ Bc)(Mn

j , j ∈ [u] −B)), we get:

H(X̃n
1M

n
1 ...X̃

n
uM

n
u |Z

n(X̃n
j , j ∈ Bc)(Mn

j , j ∈ [u] −B)) =
∑

iH(
−→
C i|

−→
C 1:i−1Z

n(X̃n
j , j ∈ B

c)(Mn
j , j ∈ [u] −B)) +

H(S1|
−→
CZn(X̃n

j , j ∈ Bc)(Mn
j , j ∈ [u] −B)) +

∑u
i=1H(X̃n

i Mi|X̃
n
1M

n
1 X̃

n
2M

n
2 ...X̃

n
i−1M

n
i−1

−→
CS1(X̃

n
j , j ∈ Bc)(Mn

j , j ∈ [u] −B)Zn)

Noting that

H(
−→
C i|

−→
C 1:i−1Z

n(X̃n
j , j ∈ Bc)(Mn

j , j ∈ [u] −B)) = 0 for i ∈ ([m] − [u])
⋃

([u] −B)
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and

H(X̃n
i Mi|X̃

n
1M

n
1 X̃

n
2M

n
2 ...X̃

n
i−1M

n
i−1

−→
CS1(X̃

n
j , j ∈ B

c)(Mn
j , j ∈ [u]−B)Zn) = 0 for i ∈ [u]−B

we can rewrite the above expression as:

H(X̃n
1M

n
1 ...X̃

n
uM

n
u |Z

n(X̃n
j , j ∈ Bc)(Mn

j , j ∈ [u] −B)) =
∑

i mod m∈B
T

[u]H(
−→
C i|

−→
C 1:i−1Z

n(X̃n
j , j ∈ Bc)(Mn

j , j ∈ [u] −B)) +

H(S1|
−→
CZn(X̃n

j , j ∈ Bc)(Mn
j , j ∈ [u] −B)) +

∑
i∈B

T
[u]H(X̃n

i Mi|X̃
n
1M

n
1 X̃

n
2M

n
2 ...X̃

n
i−1M

n
i−1

−→
CS1(X̃

n
j , j ∈ Bc)(Mn

j , j ∈ [u] −B)Zn).

Hence:

H((X̃n
i , i ∈ B

⋂
[u])(Mn

i , i ∈ B
⋂

[u])|Zn(X̃n
j , j ∈ Bc)(Mn

j , j ∈ [u] −B))

≤
∑

i mod m∈B
T

[u]H(
−→
C i|

−→
C 1:i−1Z

n) +H(S1|
−→
CZn(X̃n

j , j ∈ Bc)(Mn
j , j ∈ [u] −B)) +

∑
i∈B

T
[u]H(X̃n

i Mi|X̃
n
1M

n
1 X̃

n
2M

n
2 ...X̃

n
i−1M

n
i−1

−→
CS1)

But

H((X̃n
i , i ∈ B

⋂
[u])(Mn

i , i ∈ B
⋂

[u])|Zn(X̃n
j , j ∈ Bc)(Mn

j , j ∈ [u] −B)) =

H((X̃n
i , i ∈ B

⋂
[u])|Zn(X̃n

j , j ∈ Bc)) + nH((Mn
i , i ∈ B

⋂
[u])).

By simplifying the above expression, we get:
∑

j∈B
T

[u]R
′
j ≥ H(X̃B

T
[u]|ZX̃Bc) − 1

n
H(S1|SBc)

Using Fano inequality, we can upper bound1
n
H(S1|SBc) and show that

∑
j∈B

T
[u]Rj ≥ H(X̃B

T
[u]|ZX̃Bc)

We have GainSK = H(X1X2...Xu|Z) −
∑u

j=1R
′
j . Letting ǫ go to zero (for any fixedM1, ...,Mu),

we get that

Sno−r(X̃1M1; X̃2M2; ...X̃uMu; X̃
(s)
u+1; ...; X̃

(s)
m ‖Z) ≤

H(X1X2...Xu|Z) − min(R1,R2,...,Ru)∈ℜ(
∑u

i=1Ri).

Therefore

S(X̃1; X̃2; ...; X̃u; X̃
(s)
u+1; ...; X̃

(s)
m ‖Z) ≤

H(X1X2...Xu|Z) − min(R1,R2,...,Ru)∈ℜ(
∑u

i=1Ri). •

Proof of Theorem 7.It is enough to prove the lower bound for the special case ofq = 1. This is

becauseS(X1;X2; ...;Xu;X
(s)
u+1; ...;X

(s)
m ‖Z) can be bounded below by

S(X1U1:q−1;X2U1:q−1; ...;XuU1:q−1; (Xu+1U1:q−1)
(s); ...; (XmU1:q−1)

(s)‖ZU1:q−1)

since them terminals can collaboratively createi.i.d. repetitions ofU1:q−1. Here we are using the

following inequality fork = 1, 2, ..., q − 2:

S(X1U1:k−1;X2U1:k−1; ...;XuU1:k−1; (Xu+1U1:k−1)
(s); ...; (XmU1:k−1)

(s)‖ZU1:k−1) ≥

S(X1U1:k;X2U1:k; ...;XuU1:k; (Xu+1U1:k)
(s); ...; (XmU1:k)

(s)‖ZU1:k)
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We proceed with the assumptionq = 1.

For any sequence(a1, a2, ..., as), let (a1, a2, ..., ai−1,
︷︸︸︷
ai , ai+1, ..., as) refers to the subsequence in

which ai is removed. Applying Lemma A4.1 of the appendix IV to them+ 1-tuple:

(Ui,X1U1:i−1, ...,X(i−1) mod mU1:i−1,
︷ ︸︸ ︷
Xi mod mU1:i−1,X(i+1) mod mU1:i−1, ...,XmU1:i−1, ZU1:i−1)

for i = 1, 2, ..., p, one can conclude existence of a natural numbern and random variablesC1:p satisfying

the following four properties (here we useUn
1:i−1 as a shorthand forUn

1 U
n
2 U

n
3 ...U

n
i−1, n i.i.d repetitions

of U1U2...Ui−1):

• Ci is a function ofUn
i , i = 1, 2, 3..., p;

• Un
i could be reconstructed fromCi andXn

j U
n
1:i−1 for all j with probability1− ǫ for i = 1, 2, 3..., p;

•
1
n
I(Ci;Z

nUn
1:i−1) < ǫ+max[0, I(Ui;ZU1:i−1)−minj I(Ui;XjU1:i−1)] = ǫ+max[0, I(Ui;Z|U1:i−1)−

minj I(Ui;Xj |U1:i−1)];

•
1
n
H(Un

i |CiZ
nUn

1:i−1) ≥ max[0,minj I(Ui;XjU1:i−1) − I(Ui;ZU1:i−1)] − ǫ =

max[0,minj I(Ui;Xj |U1:i−1) − I(Ui;Z|U1:i−1)] − ǫ.

Assume that them terminals observen i.i.d repetition of their random variables. At thei-th stage,

Un
i andCi are created by the(i mod m)-th terminal.Ci is then communicated to other terminals and

thereby enabling the otherm− 1 terminals to createUn
i with probability 1− ǫ. The probability that after

p stages, allm terminals can not agree on the common randomnessUn
1 U

n
2 U

n
3 ...U

n
p will therefore be at

most(m− 1)pǫ. In other words, if we letGi represent thei-th terminal’s guess ofUn
1:p, we will have:

P (G1 = ... = Gm = Un
1:p) = 1 − (m− 1)pǫ.

We can bound from belowS(X1;X2; ...;Xu;X
(s)
u+1; ...;X

(s)
m ‖Z) by

1
n
S(G1;G2; ...;Gu;G

(s)
u+1; ...;G

(s)
m ‖C1:pZ

n) ≥

1
n
[H(G1|C1:pZ

n) −
∑m

i=2H(G1|Gi)].

The last inequality was derived using the property 4 of theorem 1. Since

P (G1 = ... = Gm = Un
1:p) = 1 − (m− 1)pǫ

we can work out the last expression as follows:

1
n
[H(G1|C1:pZ

n) −
∑m

i=2H(G1|Gi)] ≥

1
n
[H(Un

1:p|C1:pZ
n) −H(Un

1:p|G1) −
∑m

i=2H(G1|Gi)] ≥

1
n
H(Un

1:p|C1:pZ
n) −m(h((m− 1)pǫ) + (m− 1)pǫ.c)

wherec is the sum of the logarithm of the alphabet sizes ofUi andh(.) is the binary entropy function.

We prove that1
n
H(Un

1:p|C1:pZ
n) is at least

∑p
i=1[min1≤j≤m I(Ui;Xj |U1:i−1) − I(Ui;Z|U1:i−1)] − 2pǫ.

If we can show this, the proof would be finished by lettingǫ tend zero.
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H(Un
1:p|C1:pZ

n) =
∑p

i=1H(Un
i |C1:pZ

nUn
1:i−1) =

∑p
i=1H(Un

i |C1:iZ
nUn

1:i−1) −
∑p−1

i=1 I(U
n
i ;Ci+1:p|C1:iZ

nUn
1:i−1) =

∑p
i=1H(Un

i |CiZ
nUn

1:i−1) −
∑p−1

i=1 I(U
n
i ;Ci+1:p|C1:iZ

nUn
1:i−1).

Starting with the second term,
∑p−1

i=1 I(U
n
i ;Ci+1:p|C1:iZ

nUn
1:i−1) =

∑
1≤i<j≤p I(U

n
i ;Cj |C1:j−1Z

nUn
1:i−1) =

∑p
j=2 I(U

n
1:j−1;Cj |C1:j−1Z

n) ≤
∑p

j=2 I(U
n
1:j−1C1:j−1Z

n;Cj) =
∑p

j=2 I(U
n
1:j−1Z

n;Cj) ≤
∑p

j=2 n.
(
ǫ+ max[0, I(Uj ;Z|U1:j−1) − minr I(Uj ;Xr|U1:j−1)]

)
.

Where we have used the third above-mentioned property ofCj ’s in the last step.

The first term in the above expansion ofH(Un
1:p|C1:pZ

n) can be bounded below using the fourth

property ofCi’s:
∑p

i=1H(Un
i |CiZ

nUn
1:i−1) ≥ n.

∑p
i=1

(
max[0,minj I(Ui;Xj |U1:i−1) − I(Ui;Z|U1:i−1)] − ǫ

)
.

Therefore

H(Un
1:p|C1:pZ

n) ≥

n.
∑p

i=1

(
max[0,minj I(Ui;Xj |U1:i−1) − I(Ui;Z|U1:i−1)]

)
−

n.
∑p

i=2

(
max[0, I(Ui;Z|U1:i−1) − minj I(Ui;Xj |U1:i−1)]

)
− 2npǫ.

Since for every real numbera, max[0, a] − max[0,−a] ≥ a, we can conclude:

1
n
H(Un

1:p|C1:pZ
n) ≥

∑p
j=1[min1≤r≤m I(Uj ;Xr|U1:j−1) − I(Uj ;Z|U1:j−1)] − 2pǫ.

It remains to prove that, in the case of two terminals, the newlower bound strictly improves the

maximum of the two one way secrecy rates. Sincem = 2, for simplicity we use the notationX, Y

instead ofX1 andX2 for the rest of the proof. We note that for any arbitrary random variablesV1 and

V2 satisfying the Markov chainV2 − V1 − X − Y Z, the choice ofp = q = 3 andU1 = V2, U2 = 0,

U3 = V1 would achieveI(V2;Y |V1) − I(V2;Z|V1). Therefore the new lower bound is no worse than

the maximum of the two one way secrecy rates. We use the example and proof technique provided by

Ahlswede and Csiszár in [1] to show that there are cases in which the new lower bound outperforms the

maximum of the two one way secrecy rates. Assume thatX1 andX2 are independent binary random

variables. The joint conditional distribution ofY1, Y2, Z1, Z2 givenX1 andX2 is defined in figure 1. Let

X = (X1,X2), Y = (Y1, Y2), Z = (Z1, Z2). Assume further thatX1 has a uniform distribution.

The upper boundI(X;Y |Z) = I(X1;Y1|Z1) + I(X2;Y2|Z2) is also a lower bound onS(X;Y ‖Z).

This is because the above expression is achievable with the choice of U1 = X1, U2 = Y2. But

this can not be achieved by either of the one-way secrecy rates. As pointed out in [1], the one way

secrecy rateS(X;Y (s)‖Z) depends only onp(X,Y ) and p(X,Z). But p((X1,X2), (Y1, Y2)) is the
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Fig. 1. The conditional distribution of(Y1, Y2, Z1, Z2) given X1 andX2.

same asp((X1,X2), (Y1, T2)). Further(X1,X2)− (Y1, T2)− (Z1, Z2) forms a Markov chain. Therefore

S(X;Y (s)‖Z) = I(X1;Y1|Z1) + I(X2;T2|Z2) < I(X1;Y1|Z1) + I(X2;Y2|Z2). The last inequality is

becauseI(Y2;Z2) = 0.9I(X2;Z2) < I(X2;Z2).

Similarly,S(X(s);Y ‖Z) < I(X;Y |Z) becausep((Y1, Y2), (X1,X2)) is the same asp((Y1, Y2), (T1,X2))

asX1 has a uniform distribution, and also becauseI(X1;Z1) < I(Y1;Z1). The latter inequality is valid

becauseH(Z1|X1) = h(0.95ǫ, 1 − ǫ, 0.05ǫ) > H(Z1|Y1) = 0.9h(ǫ, 1 − ǫ) + 0.1h(0.5ǫ, 1 − ǫ, 0.5ǫ).

•

V. D ISCUSSION

We have derived a new upper bound on the secret key rate which generalizes and improves the double

intrinsic information bound of [12] to the multi-terminal case. We have also strengthened the results of

[5] via a newly formulated problem of communication for omniscience by a neutral observer.

Table (I) contains some properties ofSno−r(.) andT (.) suggesting a duality. The inequalities men-

tioned in each section could be derived from each other by thefollowing transformation:

T (X1;X2;X3; ...;Xu;X
(s)
u+1; ...;X

(s)
m ‖Z) =

H(X1,X2,X3, ...,Xu|Z) − Sno−r(X1;X2;X3; ...;Xu;X
(s)
u+1; ...;X

(s)
m ‖Z)

In a recent conference paper [7] we proved that

T (X1;X2;X3; ...;Xm‖Z) = infr
1
r
Tc(X

r
1 ;Xr

2 ;Xr
3 ; ...;Xr

m‖Zr)

whereTc(X1;X2;X3; ...;Xm‖Z) is the concave hull of{T (X1;X2;X3; ...;Xm‖Z)} (this is where the

concavity of the choice of the right hand side of condition 4 of Theorem 2 was important). In appendix

III, we prove thatT (X1;X2;X3; ...;Xm‖Z) is not always concave.
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TABLE I

SOME DUAL PROPERTIES OFT (.) AND Sno−r(.)

Sno−r(.): S..(X1; ...; X
(s)
m ‖ZU) ≤ S..(X1U ; ...; X

(s)
m U‖ZU)

T (.): T (X1; ...; X
(s)
m ‖ZU) ≥ T (X1U ; ...; X

(s)
m U‖ZU)

Sno−r(.): S..(X1; ...; X
(s)
m ‖Z) ≥ S..(X1; ...; X

(s)
m ‖ZU)

T (.): T (X1; ...; X
(s)
m ‖Z) ≤ T (X1; ...; X

(s)
m ‖ZU)+

I(X1...Xu; U |Z)

Sno−r(.): S..(X1; ...; X
(s)
m ‖Z) ≤ S..(X1; ...; X

(s)
m ‖ZU)+

I(X1...Xu; U |Z)

T (.): T (X1; ...; X
(s)
m ‖Z) ≥ T (X1; ...; X

(s)
m ‖ZU)

VI. A PPENDIX

A. Appendix I

In this appendix we prove existence of a joint probability distribution onX,Y,Z for which the new

bound is strictly better than the double intrinsic information bound. In this appendix, we use the notation

ℑ(X) to refer to the law of the random variableX.

We need the following Lemmas which we will prove at the end of this appendix:

Lemma A1.1Assume thatinfU [H(U) + I(X;Y ↓ ZU)] = minJ [I(X;Y |J) + I(XY ;J |Z)], then

there is a sequence of random variablesUi, i = 1, 2, ... taking values in finite setsΩi, and a sequence of

positive real numbersδi converging to zero, such that:

1) H(Ui) + I(X;Y ↓ ZUi) → infU [H(U) + I(X;Y ↓ ZU)] as i→ ∞

2) H(Ui|XY Z) → 0 as i→ ∞

3) I(Ui;Z) → 0 as i→ ∞

4) |p(Ui = uj |X = x, Y = y, Z = z) − 1
2 | ≥

1
2 − δi ∀uj ∈ Ωi, (x, y, z) : p(x, y, z) > 0

5) The variational distanced(ℑ(Ui|Z = zi),ℑ(Ui|Z = zj)) → 0 as i → ∞ ∀zi, zj : p(Z = zi) >

0, p(Z = zj) > 0

• Lemma A1.2Continuity of I(X;Y ↓ Z): ∀ξ > 0,∃δ > 0 such that for all random variablesT having

entropy less thanδ, we have|I(X;Y ↓ ZT ) − I(X;Y ↓ Z)| < ξ. •

January 23, 2008 DRAFT



24

TABLE II

JOINT PROBABILITY DISTRIBUTION OF X AND Y

X

Y 0 1 2 3

0 1
8

1
8

0 0

1 1
8

1
8

0 0

2 0 0 1
4

0

3 0 0 0 1
4

We will perturb the example provided by Renner and Wolf in order to prove that their bound is better

than the intrinsic information bound. Table (II) shows the joint probability distribution betweenX and

Y in that example.Z is defined as:

Z =





(X + Y ) mod 2 if X ∈ {0, 1}

X mod 2 if X ∈ {2, 3}

Renner and Wolf proved that for the choice ofU = ⌊X
2 ⌋, one has

I(X;Y ↓ Z) =
3

2
I(X;Y ↓ ZU) = 0

And therefore their bound would be less than or equal toH(U) + I(X;Y ↓ ZU) = 1, while

I(X;Y ↓ Z) = 3
2 > 1.

Let V be a binary random variable, satisfying theV − U − XY Z Markov property and defined as

follows:

p(U = 0|V = 0) = α1 p(U = 1|V = 0) = 1 − α1

p(U = 0|V = 1) = α2 p(U = 1|V = 1) = 1 − α2

Clearly, there existsα1 andα2 such that:

• {0, α1, 1 − α1,
1
2α1, 1 − 1

2α1, 1}
⋂

{0, α2, 1 − α2,
1
2α2, 1 − 1

2α2, 1} = {0, 1}
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If the constraint is not satisfied for someα1 andα2, then it would be enough to perturbα1 or α2 by

a tiny amount.

Let X̃ = X, Ỹ = Y, Z̃ = (Z, V ). We would like to prove that the new bound is strictly better than the

double intrinsic information bound for the triple(X̃, Ỹ , Z̃).

We have:

p(X = x, Y = y|Z̃ = (0, 0)) =

1
2α111[(x, y) = (0, 0)] + 1

2α111[(x, y) = (1, 1)] + (1 − α1)11[(x, y) = (2, 2)]

and,

p(X = x, Y = y|Z̃ = (0, 1)) =

1
2α211[(x, y) = (0, 0)] + 1

2α211[(x, y) = (1, 1)] + (1 − α2)11[(x, y) = (2, 2)]

Assuming that the new bound is not better than the double intrinsic information bound, we can apply

Lemma A1.1 to get a sequenceUi having the five properties given in Lemma A1.1. Using the property

number 4, we have

|p(Ui = u|X̃ = 0, Ỹ = 0, Z̃ = (0, 0)) −
1

2
| ≥

1

2
− δi

|p(Ui = u|X̃ = 1, Ỹ = 1, Z̃ = (0, 0)) −
1

2
| ≥

1

2
− δi

|p(Ui = u|X̃ = 2, Ỹ = 2, Z̃ = (0, 0)) −
1

2
| ≥

1

2
− δi

Thereforep(Ui = u|Z̃ = (0, 0)) is within the3δi distance of a point in the set

{0, α1, 1 − α1,
1
2α1, 1 − 1

2α1, 1}.

Similarly, p(Ui = u|Z̃ = (0, 1)) is within the3δi distance of a point in the set

{0, α2, 1 − α2,
1
2α2, 1 − 1

2α2, 1}.

Now, as the variational distance between the distribution of ℑ(Ui|Z̃ = (0, 0)) andℑ(Ui|Z̃ = (0, 1))

should converge to zero, and as the intersection between thesets{0, α2, 1 − α2,
1
2α2, 1 − 1

2α2, 1} and

{0, α1, 1 − α1,
1
2α1, 1 − 1

2α1, 1} is just {0, 1}, one can conclude that there is somei0 ∈ ℵ so that for

∀ i > i0, ∀u ∈ Ωi, the probabilities

p(Ui = u|X̃ = 0, Ỹ = 0, Z̃ = (0, 0)),

p(Ui = u|X̃ = 1, Ỹ = 1, Z̃ = (0, 0)),

p(Ui = u|X̃ = 2, Ỹ = 2, Z̃ = (0, 0))

are either all less than12 or all greater than12 .

Let h(x) = x log( 1
x
). We would like to bound from above the entropy of the distribution of ℑ(Ui|Z̃ =

(0, 0)) in terms of h
(
p(Ui = u|X̃ = 0, Ỹ = 0, Z̃ = (0, 0))

)
, h

(
p(Ui = u|X̃ = 1, Ỹ = 1, Z̃ =
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(0, 0))
)
, h

(
p(Ui = u|X̃ = 2, Ỹ = 2, Z̃ = (0, 0))

)
. Since entropy is a concave function, we can not use

Jensen inequality to bound from aboveH
(
ℑ(Ui|Z̃ = (0, 0))

)
which is a convex combination of these

probabilities. However, noting that the three mentioned probabilities are all on the same side of1
2 , and

that h(x) is monotonic for allx < 1
2 and for allx > 1

2 , we can derive the following bound:

H
(
ℑ(Ui|Z̃ = (0, 0)))

)
<

max
(
h
(
p(Ui = u|X̃ = 0, Ỹ = 0, Z̃ = (0, 0))

)
,

h
(
p(Ui = u|X̃ = 1, Ỹ = 1, Z̃ = (0, 0))

)
,

h
(
p(Ui = u|X̃ = 2, Ỹ = 2, Z̃ = (0, 0))

))
<

h
(
p(Ui = u|X̃ = 0, Ỹ = 0, Z̃ = (0, 0))

)
+

h
(
p(Ui = u|X̃ = 1, Ỹ = 1, Z̃ = (0, 0))

)
+

h
(
p(Ui = u|X̃ = 2, Ỹ = 2, Z̃ = (0, 0))

)

Therefore
∑

u h
(
p(Ui|Z̃ = (0, 0))

)
<

∑
u h

(
p(Ui = u|X̃ = 0, Ỹ = 0, Z̃ = (0, 0))

)
+

∑
u h

(
p(Ui = u|X̃ = 1, Ỹ = 1, Z̃ = (0, 0))

)
+

∑
u h

(
p(Ui = u|X̃ = 2, Ỹ = 2, Z̃ = (0, 0))

)
=

H(Ui|X̃ = 0, Ỹ = 0, Z̃ = (0, 0)) +

H(Ui|X̃ = 1, Ỹ = 1, Z̃ = (0, 0)) +H(Ui|X̃ = 2, Ỹ = 2, Z̃ = (0, 0)) → 0 as i→ ∞.

ThereforeH(Ui|Z̃ = (0, 0)) → 0 as i→ ∞. Similarly, H(Ui|Z̃ = (0, 1)) → 0 , etc. Thus,

H(Ui|Z̃) → 0 as i→ ∞.

But the property number 3 of Lemma A1.1 states thatI(Ui; Z̃) → 0 as i → ∞. Thus, we conclude

thatH(Ui) → 0 as i→ ∞.

Hence, the limit ofH(Ui)+I(X;Y ↓ ZUi) is the same as that ofI(X;Y ↓ ZUi). The property number

1 of Lemma A1.1 states that the series converges to the doubleintrinsic information upper bound which

is assumed to be equal tominJ [I(X̃ ; Ỹ |J) + I(X̃Ỹ ;J |Z̃)].

Evaluating the expression atJ = Z̃U , gives us0 + I(XY ;UZV |ZV ) = I(XY ;U |ZV ) ≤ 1

Therefore we should have:limi→∞ I(X;Y ↓ ZUi) ≤ 1. On the other hand, Renner and Wolf have

shown thatI(X;Y ↓ Z) = 3
2 . But this is in contradiction with Lemma A1.2 noting thatH(Ui) → 0 as

i→ ∞. •

Now, we prove the Lemmas mentioned at the beginning of this appendix:

Proof of Lemma A1.1: Take a sequenceU1, U2, ... such that

H(Ui) + I(X;Y ↓ ZUi) → infU [H(U) + I(X;Y ↓ ZU)].
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For everyUi, there existsJi such thatI(X;Y ↓ ZUi) = I(X;Y |Ji), and alsoXY −ZUi−Ji forming

a Markov chain.

We have:

I(XY ;Ji|Z) = I(XY ;Ui|Z) − I(XY ;Ui|ZJi) ≤

I(XY ;Ui|Z) = H(Ui|Z) −H(Ui|XY Z) = H(Ui) − I(Ui;Z) −H(Ui|XY Z).

Hence

H(Ui) + I(X;Y ↓ ZUi) ≥ [I(Ui;Z) +H(Ui|XY Z)] + [I(X;Y |Ji) + I(XY ;Ji|Z)] ≥

[I(Ui;Z) +H(Ui|XY Z)] + minJ [I(X;Y |J) + I(XY ;J |Z)] =

[I(Ui;Z) +H(Ui|XY Z)] + infU [H(U) + I(X;Y ↓ ZU)].

Taking the limit asi → ∞, we conclude that[I(Ui;Z) + H(Ui|XY Z)] → 0 as i → ∞. Therefore

property number 2 and 3 are proved.

SinceH(Ui|XY Z) → 0, so should doH(Ui|X = x, Y = y, Z = z) for all (x, y, z) : p(x, y, z) > 0.

Therefore for allu ∈ Ωi p(Ui = u|X = x, Y = y, Z = z) log 1
p(Ui=u|X=x,Y =y,Z=z) should go to zero.

Therefore property number 4 is proved.

In order to prove property number 5, we note that

I(Ui;Z) =
∑

z:p(z)>0 p(z).D(ℑ(Ui|Z = z)‖ℑ(Ui)) → 0.

Therefore ifp(z1) andp(z2) are positive, bothD(ℑ(Ui|Z = z1)‖ℑ(Ui)) andD(ℑ(Ui|Z = z2)‖ℑ(Ui))

converge to zero. The Pinsker inequality,D(p‖q) ≥ 1
2 ln(2)d

2(p, q) implies that bothd(ℑ(Ui|Z =

z1),ℑ(Ui)) andd(ℑ(Ui|Z = z2),ℑ(Ui)) converge to zero, and therefore the variational distance between

d(ℑ(Ui|Z = z1),ℑ(Ui|Z = z2)) should also go to zero. •

Proof of Lemma A1.2: Assume thatI(X;Y ↓ ZT ) = I(X;Y |J) for someXY − ZT − J .

H(T ) > H(T |Z) > p(Z = z)H(T |Z = z). Therefore

H(T |Z = z) < δ
min(p(z):p(z)>0)

.
= Q.

The denominator,min(p(z) : p(z) > 0), is a fixed constant depending on “z”. Intuitively, since

H(T |Z = z) is small, with high probability it will be a constant. More precisely, assume that

p(T = Tz|Z = z) ≥ p(T = t|Z = z) for all t.

SinceH(T |Z = z) ≥ h(p(T = Tz|Z = z)), we haveh(p(T = Tz|Z = z)) ≤ Q. Let c1 ≤ 1
2 and

c2 = 1− c1 be the two solutions of the equationh(x) = Q in the interval[0, 1]. c2 goes to one asδ goes

to zero.h(p(T = Tz|Z = z)) ≤ Q implies p(T = Tz|Z = z) ≤ c1 or p(T = Tz|Z = z) ≥ c2.

If p(T = Tz|Z = z) ≤ c1, we will havep(T = t|Z = z) ≤ c1 for all t. Therefore

H(T |Z = z) ≥ log 1
c1

.

We also haveH(T |Z = z) < δ
min(p(z):p(z)>0) . If δ goes to zero,1

c1

goes to infinity, but δ
min(p(z):p(z)>0)
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converges zero. Hence, for small enoughδ, we must havep(T = Tz|Z = z) ≥ c2.

Define a random variableJ ′ taking values on the same set asJ is taking value on, such that

• XY − Z − J ′ forms a Markov chain

• p(J ′ = j|Z = z) = p(J = j|Z = z, T = Tz)

We can furthermore coupleJ andJ ′ so thatP (J 6= J ′) ≤ 1− c2 by first drawingJ ′ and then changing

it with probability 1 − c2. Let V be the indicator function of the eventJ = J ′.

|I(X;Y |JJ ′) − I(X;Y |J)| = |I(X;Y |JJ ′V ) − I(X;Y |J)| ≤

|I(X;Y |JJ ′V ) − I(X;Y |JV )| +H(V ) =

p(V = 0)|I(X;Y |JJ ′V = 0) − I(X;Y |JV = 0)| +H(V ) ≤

2p(V = 0)H(XY ) +H(V )

Similarly, we can show that

|I(X;Y |JJ ′) − I(X;Y |J ′)| ≤ 2p(V = 0)H(XY ) +H(V )

These two inequalities show that|I(X;Y |J ′)− I(X;Y |J)| ≤ 4p(V = 0)H(XY )+2H(V ). p(V = 0)

andH(V ) converge to zero asδ goes to zero, we have:∀ξ > 0,∃δ > 0 such that for all random variables

T having entropy less thanδ, we haveI(X;Y ↓ Z) − I(X;Y ↓ ZT ) < ξ.

It would be enough to prove thatI(X;Y ↓ ZT ) ≤ I(X;Y ↓ Z) to complete the proof. AssumeJ

satisfies the Markov chain propertyXY −Z−J . Define a random variableJ ′ taking values on the same

set asJ is taking value on, such that

• p(J ′ = j|X = x, Y = y, Z = z, T = t) = p(J = j|X = x, Y = y, Z = z)

We haveI(J ′;T |XY Z) = 0, andI(J ′;XY |Z) = I(J ;XY |Z) = 0. Therefore

I(J ′;XY T |Z) = I(J ′;XY |Z) + I(J ′;T |XY Z) = 0.

SinceI(J ′;XY T |Z) = I(J ′;T |Z) + I(J ′;XY |ZT ), we haveI(J ′;XY |ZT ) = 0 and therefore the

following Markov chain holds:

XY − ZT − J ′.

Furthermore, we haveI(X;Y |J ′) = I(X;Y |Z). This proves that

I(X;Y ↓ ZT ) ≤ I(X;Y ↓ Z). •

B. Appendix II

In this appendix, we verify that

infJ f
−1

(
f(S(X1;X2; ...;Xu; (Xu+1)

(s)...; (Xm)(s)‖J)) +

Sf−one−way(X1X2...Xm;J (s)‖Z)
)
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satisfies the five conditions of Theorem 1.

Property number 1.

It is enough to show that for anyJ , there exists someJ ′ such that

n.f−1{f(S(X1;X2; ...;Xu;X
(s)
u+1; ...;X

(s)
m ‖J)) + Sf−one−way(X1X2...Xm;J (s)‖Z)} ≥

f−1{f(S(Xn
1 ;Xn

2 ; ...;Xn
u ; (Xn

u+1)
(s); ...; (Xn

m)(s)‖J ′)) + Sf−one−way(X
n
1X

n
2 ...X

n
m;J

′(s)‖Zn)}

We prove thatJ ′ = Jn is an appropriate choice.

We will first prove that we will be done if we can prove that

n.Sf−one−way(X1X2...Xm;J (s)‖Z) ≥ Sf−one−way(X
n
1X

n
2 ...X

n
m; (Jn)(s)‖Zn).

Let

s = S(X1;X2; ...;Xu;X
(s)
u+1; ...;X

(s)
m ‖J),

b = Sf−one−way(X1X2...Xm;J (s)‖Z), and

c = Sf−one−way(X
n
1X

n
2 ...X

n
m; (Jn)(s)‖Zn) ≤ nb.

We have:

f−1{f(ns) + c} ≤ f−1{f(ns) + nb}

It suffices to prove that:

nf−1{f(s) + b} ≥ f−1{f(ns) + nb} or equivalently

f(nf−1{f(s) + b}) ≥ f(ns) + nb.

Let t = f−1{f(s)+ b}− s. We can then write this inequality as:f(ns+nt) ≥ f(ns)+nb. According

to the definition oft, we haveb = f(s+ t) − f(s). Thus, we can rewrite the inequality as

f(ns+ nt) − f(ns) ≥ n.(f(s+ t) − f(s)).

This inequality holds becausef is increasing and convex.

It remains to show that

n.Sf−one−way(X1X2...Xm;J (s)‖Z) ≥ Sf−one−way(X
n
1X

n
2 ...X

n
m; (Jn)(s)‖Zn).

Take some arbitraryU , andV satisfyingV −U −Xn
1X

n
2 ...X

n
m −JnZn. We will prove that there exist

Ũ , and Ṽ satisfying

Ṽ − Ũ − X̃1X̃2...X̃m − J̃ Z̃

such that(X̃1, X̃2, ..., X̃m, J̃ , Z̃) has the same joint distribution as(X1,X2, ...,Xm, J, Z) and

f(H(U |ZnV )) − f(H(U |JnV )) = n.
[
f(H(Ũ |Z̃Ṽ )) − f(H(Ũ |J̃ Ṽ ))

]
.

We start with the left hand side:

f(H(U |ZnV )) − f(H(U |JnV )) =
∑n

i=1 f(H(U |Zi+1:nJ1:i−1V Z(i))) − f(H(U |Zi+1:nJ1:i−1V J(i)))

By letting Vi = Zi+1:nJ1:i−1V andUi = (U, Vi) for i = 1...n, we can write the above equality as:
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f(H(U |ZnV )) − f(H(U |JnV )) =
∑n

i=1 f(H(Ui|ViZ(i))) − f(H(Ui|ViJ(i)))

For everyi, we haveVi−Ui−X1(i)X2(i)...Xm(i)−J(i)Z(i). We would like to define an appropriate

(Ũ , Ṽ , X̃1, X̃2, ..., X̃m, J̃ , Z̃) whosef(H(Ũ |Z̃Ṽ )) − f(H(Ũ |J̃ Ṽ )) is

1
n
(
∑n

i=1 f(H(Ui|ViZ(i)) − f(H(Ui|ViJ(i)))).

This would be possible if the following region is convex:

{r ∈ R|∃U, V satisfying(V −U−X1X2...Xm−JZ) such thatr = f(H(U |ZV ))−f(H(U |JV ))}.

Since we can continuously move fromV1 − U1 −X1X2...Xm − JZ to V2 − U2 −X1X2...Xm − JZ

while having the expressionsH(U |ZV ) = H(UV Z) −H(ZV ) andH(U |JV ) = H(UJV ) −H(JV )

change continuously, the above region has to be convex (the entropy function is continuous in the whole

probability simplex). The proof for this part is now completed.

Property number 2.

Let H(F |Xi) = 0, where1 ≤ i ≤ m. It is enough to show that for anyJ , the following inequality

holds:

f−1{f(S(X1;X2; ...;Xu;X
(s)
u+1; ...;X

(s)
m ‖J)) + Sf−one−way(X1X2...Xm;J (s)‖Z)} ≥

f−1{f(S(X1F ; ...;XuF ; (Xu+1F )(s); ...; (XmF )(s)‖JF ))+Sf−one−way(X1X2...XmF ; (JF )(s)‖ZF )}

It is clear that

S(X1;X2; ...;Xu;X
(s)
u+1; ...;X

(s)
m ‖J) ≥

S(X1F ; ...;XuF ; (Xu+1F )(s); ...; (XmF )(s)‖JF )

because the secret key rate itself satisfies the second property of Theorem 1. It remains to show that

Sf−one−way(X1X2...Xm;J (s)‖Z) ≥ Sf−one−way(X1X2...XmF ; (JF )(s)‖ZF ).

SinceH(F |Xi) = 0, we can rewrite the last inequality as:

Sf−one−way(X1X2...Xm;J (s)‖Z) ≥ Sf−one−way(X1X2...Xm; (JF )(s)‖ZF )

Take some arbitraryU and V satisfyingV − U − X1X2...Xm − JZF . It can be verified that for

Ũ = UF and Ṽ = V F , the Markov propertỹV − Ũ −X1X2...Xm − JZ holds. For this choice of̃V

and Ũ :

f(H(Ũ |Ṽ Z)) − f(H(Ũ |Ṽ J)) =

f(H((UF )|(V F )Z)) − f(H((UF )|(V F )J)) = f(H(U |V (ZF ))) − f(H(U |V (JF ))).

The proof for this part is now complete.

Property number 3.

By taking an approach similar to the one we took in the proof ofthe second condition, it would suffice

to show that

Sf−one−way(X1X2...Xm;J‖Z) ≥ Sf−one−way(X
′
1X

′
2...X

′
m;J‖Z).
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TakeU andV satisfyingV − U −X ′
1X

′
2...X

′
m − JZ. DefineU1 andV1 in the following way:

p(U1, V1,X1,X2, ...,Xm, Z, J) =

p(V1|U1).p(U1|X
′
1,X

′
2, ...,X

′
m).p(X1,X2, ...,XmZJ), p(V1|U1) = p(V |U)

and

p(U1|X
′
1,X

′
2, ...,X

′
m) = p(U |X ′

1,X
′
2, ...,X

′
m).

It can be proved thatV1−U1−X1X2...Xm−JZ and that(V1, U1, J, Z) has the same joint distribution

as (V,U, J, Z) implying f(H(U1|V1Z)) − f(H(U1|V1J)) = f(H(U |V Z)) − f(H(U |V J)). The proof

for this part is now complete.

Property number 4.

We need to prove that

f−1{f(S(X1;X2; ...;Xm‖J)) + Sf−one−way(X1X2...Xm;J‖Z)} ≥

H(X1|Z) −
∑m

i=2H(X1|Xi).

If H(X1|Z) ≤
∑m

i=2H(X1|Xi), the inequality clearly holds. So we assume

H(X1|Z) >
∑m

i=2H(X1|Xi).

Using the fact thatS(X1,X2, ...,Xm‖J) itself satisfies property 4 of Theorem 1, and the definition of

Sf−one−way, one can lower bound

f−1{f(S(X1;X2; ...;Xm‖J)) + Sf−one−way(X1X2...Xm;J‖Z)}

by

f−1{f(max[0,H(X1|J) −
∑m

i=2H(X1|Xi)]) + max[0, f(H(X1|Z)) − f(H(X1|J))]}.

Having assumed thatH(X1|Z) >
∑m

i=2H(X1|Xi), one of the following three cases must occur. In

each case, we will prove that

f−1{f(S(X1, ...,Xm‖J)) + Sf−one−way(X1...Xm;J‖Z)} ≥ H(X1|Z) −
∑m

i=2H(X1|Xi).

1) H(X1|Z) ≤ H(X1|J): In this case,

f(H(X1|J) −
∑m

i=2H(X1|Xi)) ≥ f(H(X1|Z) −
∑m

i=2H(X1|Xi)) > 0.

Therefore the lower bound

f−1{f(max[0,H(X1|J) −
∑m

i=2H(X1|Xi)]) + max[0, f(H(X1|Z)) − f(H(X1|J))]}

equals

f−1{f(H(X1|J) −
∑m

i=2H(X1|Xi))}

and is itself bounded below by

f−1{f(H(X1|Z) −
∑m

i=2H(X1|Xi))} = H(X1|Z) −
∑m

i=2H(X1|Xi).

2) H(X1|Z) >
∑m

i=2H(X1|Xi) ≥ H(X1|J): In this case, the lower bound

f−1{f(max[0,H(X1|J) −
∑m

i=2H(X1|Xi)]) + max[0, f(H(X1|Z)) − f(H(X1|J))]}
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equals

f−1{f(H(X1|Z)) − f(H(X1|J))}.

But since

f(H(X1|Z)) − f(H(X1|Z) −H(X1|J)) ≥

f(H(X1|J)) − f(0), f−1{f(H(X1|Z)) − f(H(X1|J))}

can be bounded below byH(X1|Z) −H(X1|J) which in turn can be bounded below by

H(X1|Z) −
∑m

i=2H(X1|Xi).

3) H(X1|Z) > H(X1|J) >
∑m

i=2H(X1|Xi): In this case the lower bound

f−1{f(max[0,H(X1|J) −
∑m

i=2H(X1|Xi)]) + max[0, f(H(X1|Z)) − f(H(X1|J))]}

equals

f−1{f(H(X1|J) −
∑m

i=2H(X1|Xi)) + f(H(X1|Z)) − f(H(X1|J))}.

Since

H(X1|Z) > H(X1|J), f(H(X1|Z)) − f(H(X1|Z) −
∑m

i=2H(X1|Xi)) ≥

f(H(X1|J)) − f(H(X1|J) −
∑m

i=2H(X1|Xi)).

Therefore

f(H(X1|J) −
∑m

i=2H(X1|Xi)) + f(H(X1|Z)) − f(H(X1|J)) ≥

f(H(X1|Z) −
∑m

i=2H(X1|Xi)).

Therefore:

f−1{f(H(X1|J) −
∑m

i=2H(X1|Xi)) + f(H(X1|Z)) − f(H(X1|J))} ≥

f−1{f(H(X1|Z) −
∑m

i=2H(X1|Xi))} = H(X1|Z) −
∑m

i=2H(X1|Xi).

In all the three cases we have proved that

f−1{f(S(X1, ...,Xm‖J)) + Sf−one−way(X1...Xm;J‖Z)} ≥ H(X1|Z) −
∑m

i=2H(X1|Xi).

The proof for this part is now complete.

Property number 5.

It is enough to show that for anyJ , there existsJ ′ such that the following inequality holds:

f−1{f(S(X1;X2; ...;Xu;X
(s)
u+1; ...;X

(s)
m ‖J)) +

Sf−one−way(X1X2...Xm;J (s)‖Z)} ≥

f−1{f(S(X1M1; ...;XuMu;X
(s)
u+1; ...;X

(s)
m ‖J ′)) +

Sf−one−way(X1M1...XuMuXu+1...Xm;J
′(s)‖Z)}

Take an arbitraryJ jointly distributed with(X1,X2, ...,Xm, Z), and defineJ ′ so that a)

p(J ′X1,X2, ...,Xm, Z,M1, ...,Mu) = p(J ′X1,X2, ...,Xm, Z).p(M1, ...,Mu)

and b)
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TABLE III

JOINT PROBABILITY DISTRIBUTION OF X1, X2, X3

X1X2

X3 00 01 10 11

0 1
4

0 1
4
0.3 1

4
0.7

1 1
4
0.7 1

4
0.3 0 1

4

p(J ′|X1,X2, ...,Xm, Z) = p(J |X1,X2, ...,Xm, Z).

It is clear that

S(X1; ...;Xu;X
(s)
u+1; ...; (Xm)(s)‖J) ≥

S(X1M1; ...;XuMu;X
(s)
u+1; ...;X

(s)
m ‖J ′)

becausep(J ′|X1,X2, ...,Xm, Z) = p(J |X1,X2, ...,Xm, Z)

and the secret key rate itself satisfies property number 5 of Theorem 1. It remains to show that

Sf−one−way(X1X2...Xm;J (s)‖Z) ≥ Sf−one−way(X1M1X2M2....XuMuXu+1...Xm;J
′(s)‖Z).

Take someU and V satisfyingV − U − X1X2...XmM1...Mu − J ′Z. SinceM1, M2, ..., Mu are

independent of(X1,X2, ...,Xm, Z, J
′), M1,M2, ...,Mu can be thought of as playing the role of an

external randomness employed byX1X2...Xm to createU andV . Thus, if we let

p(Ṽ , Ũ |X1X2...XmJZ) = p(V,U |X1X2...XmJ
′Z)

Ṽ , Ũ will satisfy Ṽ − Ũ −X1X2...Xm − JZ. For this choice of̃V and Ũ :

f(H(Ũ |Ṽ Z)) − f(H(Ũ |Ṽ J)) = f(H(U |V Z)) − f(H(U |V J)).

The proof for this part is now complete. •

C. Appendix III

In this appendix, we prove thatT (.) is not a concave function. Tables (III) and (IV) define probably

distribution of binary random variablesX1,X2,X3,X
′
1,X

′
2,X

′
3.

Let (Y1, Y2, Y3) = 0.5(X1,X2,X3) + 0.5(X ′
1,X

′
2,X

′
3).

A simple calculation shows thatT (X1,X2,X3‖∅) = T (X ′
1,X

′
2,X

′
3‖∅)

∼= 2.27.

T (Y1, Y2, Y3‖∅) ∼= 2.25 < 2.27 = 0.5T (X1,X2,X3‖∅) + 0.5T (X ′
1,X

′
2,X

′
3‖∅). ThereforeT (.) is not

a concave function.
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TABLE IV

JOINT PROBABILITY DISTRIBUTION OF X ′

1, X
′

2, X
′

3

X ′

1X
′

2

X ′

3 00 01 10 11

0 1
4

0 1
4
0.7 1

4
0.3

1 1
4
0.3 1

4
0.7 0 1

4

D. Appendix IV

Lemma A4.1For any random variablesX1,X2, ...,Xm andZ taking value from setsχ1, χ2, χ3, ...,

χm+1 and for anyǫ > 0, there exist a natural numberM such that for anyn ≥M , there exists random

variableC such that

• H(C|Xn
1 ) = 0;

• Xn
1 could be reconstructed fromC andXn

j for all j with probability 1 − ǫ;

•
1
n
I(C;Zn) < ǫ+ max(0, I(X1;Z) − minj I(X1;Xj));

•
1
n
H(Xn

1 |CZ
n) ≥ max[0,minj I(X1;Xj) − I(X1;Z) − ǫ].

Proof:

We will find a mappingf : χn
1 7→ {1, 2, 3, ..., 2n(maxj H(X1|Xj)+cǫ)} such thatC = f(Xn

1 ) satisfies the

required properties.c < 1 is a small constant that will be specified during the proof.

We consider two cases: In the first case we assumeI(X1;Z) − minj I(X1;Xj) ≥ 0. In other words

maxj H(X1|Xj) ≥ H(X1|Z). Consider the scenario in which the first terminal wants to enable the

terminalsX2, X3, ..., Xm andZ to recover his message with probability at least1 − cǫ. Slepian-Wolf

tells us that there is a natural numberM such that for anyn ≥ M , there exists random variable

C = f(Xn
1 ) of entropyn[maxj H(X1|Xj) + cǫ] that would work. Among the four properties thatC has

to satisfy, all but the third one are trivial. Regarding the third inequality one can write:

I(Xn
1 ;Zn) = I(C;Zn) + I(Xn

1 ;Zn|C) = I(C;Zn) +H(Xn
1 |C) −H(Xn

1 |CZ
n).

According to the Fano inequality,H(Xn
1 |CZ

n) is of ordern(h(cǫ) + cǫ log |∆1|) sinceXn
1 can be

recovered fromCZn with probability 1 − cǫ and the logarithm of the support set of these random

variables is of ordern where ∆1 is the alphabet set ofX1. The constantc can be chosen so that

h(cǫ) + cǫ log |∆1| ≤ ǫ.
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We get the desired bound onI(C;Zn) by noting thatH(Xn
1 |C) = H(Xn

1 ) −H(C) = n[H(X1) −

maxj H(X1|Xj)] = n.minj I(X1;Xj).

For the second case, we assume thatI(X1;Z) − minj I(X1;Xj) < 0, or in other words

maxj H(X1|Xj) < H(X1|Z).

Slepian-Wolf shows the existence of a natural numberM such that for anyn ≥ M , there are random

variablesC = f(Xn
1 ) of entropyn[maxj H(X1|Xj) + cǫ], andC ′ = g(Xn

1 ) of entropyn[H(X1|Z) −

maxj H(X1|Xj) + cǫ] such thatXn
1 is recoverable from (C, C ′,Zn) with probability 1 − cǫ, and from

(C, Xn
j ) for any j with probability 1 − cǫ. Now,

I(Xn
1 ;CC ′Zn) = I(Xn

1 ;Zn) +H(CC ′|Zn).

On the other hand,

I(Xn
1 ;CC ′Zn) = H(Xn

1 ) −H(Xn
1 |CC

′Zn) = H(Xn
1 ) − n(h(cǫ) + cǫ. log |∆1|).

The constantc can be chosen so thath(cǫ) + cǫ. log |∆1| = ǫ. ThereforeH(CC ′|Zn) = H(Xn
1 ) −

I(Xn
1 ;Zn) − nǫ ≥ H(C) +H(C ′) − nǫ. In the last inequality we have used the fact that the values of

H(C) andH(C ′) are known.

But sinceH(CC ′|Zn) = H(C|Zn) +H(C ′|CZn), we can conclude1
n
I(C;Zn) + 1

n
I(C ′;CZn) = ǫ.

This proves the third property thatC has to satisfy, i.e.1
n
I(C;Zn) ≤ ǫ. The fourth property can be

proved by noting that

1
n
H(Xn

1 |CZ
n) ≥ 1

n
H(C ′|CZn) ≥ 1

n
[H(C ′) − I(C ′;CZn)] ≥

minj I(X1;Xj) − I(X1;Z) − ǫ. •
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