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Abstract

This is the first part of a two-part paper on information-ttetizally secure secret key agreement. In
this part, we study the secrecy problem under the widelyistigsburce modelin the source model the
terminals wishing to generate a secret key, as well as thesdawpper, receive the respective coordinates
of a block of independent and identically distributed cepié jointly distributed random variables, after
which the terminals are allowed interactive authenticateiolic communication, at the end of which each
terminal should be able to generate the key. We derive a n@&rupund on the secrecy capacity that
strictly improves the currently best upper bound, due torieerand Wolf. Further, while the Renner-
Wolf bound is defined only in the case of two terminals, the ngper bound applies to the general
multi-terminal case. The technique used for deriving owsrabis to find certain properties of functions
of joint probability distributions which will imply that #y dominate the secrecy capacity, and then prove
the bound by a verification argument. We also define a probleoommunication for omniscience by
a neutral observer and establish the equivalence betwéemdiv problem and the problem of secret
key agreement. This generalizes an earlier result of @sesad Narayan. Finally, we prove a new lower
bound on the secrecy capacity in the general multi-terndnaé that in the two terminal case is strictly
better than what is essentially the currently best knowrelolound, namely the maximum of the two

one-way secrecy capacities.

Keywords Secret key agreement, unconditional security, commtinicafor omniscience, secrecy

capacity, common randomness, public discussion, sourakeinsecurity.

. INTRODUCTION

Information-theoretic security is the most desirable fafrsecurity as it does not make any assumptions

on the computational power of the adversary. Shannon wa#shevho precisely formulated the problem
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of secret key generation by multiple terminals, informattbeoretically secure from an eavesdropper
[14]. Since then, the work of Shannon has been much develapeédnodified; see for example [1], [3]
and [8]. In an early work, Maurer [8] considered the model ihichh Alice can send a message over
a broadcast channel with one output at the intended re¢jdgob, and the other at the eavesdropper,
Eve. He made the interesting observation that even if tharaigrom Alice to Eve is stronger than the
channel from Alice to Bob, Alice and Bob may still be able tongeate a common secret key that is
information-theoretically secure from Eve, in an asymipteense, if we allow Bob to send authenticated
but public messages to Alice. In some sense in this resultdh@munication between Alice and Bob is
being used to agree about features of the noise realizatitimei broadcast channel that are independent
of Eve’s knowledge: this is the secret key. This observatamh to the formulation of the two main
models in this area, introduced by the works of Ahlswede asidZar [1], Csiszar and Narayan [5] and
Maurer [8], called thesource mode&nd channel modelin this paper, we focus on the source model. In
this model there aren terminals interested in secret key generation against aarsary, Eve. Then
terminals and Eve have accessitindependently and identically distributed (i.i.d.) repens of jointly
distributed random variableX; (: = 1,2,...,m) and Z respectively. Following the reception of the
i.i.d. repetitions of(X;, X, ..., X;,, Z), in the traditional source model the terminals are allowed to
have interactive authenticated public communication. \Weegalize this model somewhat by allowing
such communication only among the fitst(1 < v < m) of the terminals; terminalg + 1,u + 2,...,m
can listen and have to participate in secret key generaliohdo not talk. This generalization has the
technical advantage of putting one-way secret key gemerand interactive secret key generation on
the same footing and includes the standard model as a smpewalFurther, and more importantly, it
provides an approach to study the secret key rate by sglittiinto parts in a sense that will become
clear after understanding the main results of this papdtowimg the communication, each terminal
generates random variabl as its secret key, = 1,2,3,...,m. All S;’s should with high probability
be equal to each other and they should be approximately émtlgmt of Eve’s whole information after
the communication, i.e. the i.i.d repetitions ofZ and the public discussion, becoming asymptotically
independent ass — oo. The achieved secret key rate would then be rou%ﬂ(&). The highest
achievable secret key rate, asymptoticinis called the secrecy capacity. For a precise formulatemn s
section 2.

Calculation of the exact secrecy capacity remains an uadgvoblem, although some lower and upper
bounds on this quantity are known. For the casenof 2, the best know upper bound is that of Renner

and Wolf [12]. This bound, known as tt@ouble intrinsic information bounds equal toinfy [H(U) +
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I(X1; X, | ZU)], whereI(X;Y | Z) is defined asnfy, , - I(X;Y|Z) and is called thentrinsic
information [10]. The essentially best known lower bound, proved usiagdom binning arguments,
is due to Ahlswede and Csiszar [1]: the maximumsaby _y;_y_y, (I(U;Y|V) — I(U; Z|V)) and
SUpy y-y-xz (I(U§X\V) - I(U; Z\V))- !

In some special cases, Csiszar and Narayan [5] derivedgéedetter characterization of the secrecy
capacity, notably wher? is independent of X7, X», X3, ..., X;;,). This was done by bringing out
a connection between a problem of communication for omasm (CFO) by the terminals and the
secret key generation problem. In the CFO problem, as definfs], the requirement at the end of the
communication is not a secret key, but that all the termitelsome approximately omniscient about
each other’s random variables. The goal is to minimize thmmanication rate required to achieve this.

In this paper, we also improve the above mentioned resuldé&fiae a broader notion of communication
for omniscience, called the problem of communication forn@uience by a neutral observer (still
abbreviated as CFO). This includes the one of Csiszar amdylda as a special case in the cases where
their single letter characterization of the secrecy ratgai&d. In the CFO problem, as defined in this
paper, them terminals at the end of the communication wish to create aesh@ndom variable which
when provided to a neutral observer who has access to tbedapies ofZ seen by Eve, allows the
observer to reconstruct the i.i.d. copies of the variablés Xo, ..., X;,) (wherel < u < m is as before).
The CFO rate is the minimum conditional entropy of the comitation, conditioned on the information
available to Eve, measured on a per observation basis. We phat our CFO problem is equivalent
to the problem of secret key generation (see section 2 foptbeise formulation of the definitions and
section 3 for a precise formulation of the results). Thisultegeneralizes the one of [5] but does not
appear to lead to a single letter characterization of theesgaate.

Finally, in this paper we also develop a new single letterdoiaound for the secrecy rate which, in the
case of two terminals, strictly improves on the one in [14, the maximum of the two one-way secret
key rates. Our bound is proved by following the interactioenenunication stage by stage and careful
bookkeeping of the buildup of the secret-key rate by colmtigplithe amount of reduction of secret key
rate built-up in earlier stages due to the communicatioratarl stages.

The outline of this paper is as follows. In section 2, we idtroe the basic notation and the definitions.

"Maurer provided a different technique for deriving lowetuhds on the secret key rate in [8]. He proved, for instanca, th
even when the maximum of the two one-way communicationsstesi, the secret key rate may be positive. This technique
however seems to give us a rather low secrecy rate in this Aagenerally applicable single letter form of a lower bourabéd

on the ideas in [8] is not known.
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Section 3 contains the main results of this paper followedségtion 4, which gives the proofs, with
some of the details relegated to appendices Il and V. Appencbntains an example showing that our
upper bound for secret key rate is strictly better than theeotly best know upper bound from [12].
Appendix Il contains a counterexample to the natural ccoje (which we believed for a long time
while working on this problem) that the CFO rate is a concaweftion of the underlying joint probably

distribution.

[I. DEFINITIONS AND NOTATION

Throughout this paper we assumg, Xo, ...., X,, and Z are m + 1 possibly dependent random
variables each taking values from a finite set.

We basically use the same multi-terminal model as in [5]. \Wedver relax the uniformity condition
on the generated secret key i.e. equation (2) in [5]. Maurg8]iargued that the assumption of uniformity
could always be added without loss of generality. We studywieak notion of secrecy throughout this
paper and assume that all terminals are interested in secret key generation. It isvknthat the weak
and strong secret key rates are equal [11].

Some previous works consider secret key generation in tee where only one terminal is allowed
to participate in public discussion, called tbhee-way secrecy rat®Our models more generally include
the case in which only a subset of terminals is allowed toigpédte in the public discussion. Without
loss of generality, we assume that terminglg, ...,u (1 < u < m) are allowed to talk while terminals
u+1,u+2,...,m are silent.

Givenn i.i.d. repetitions of a random variabl§, we denote thé-th of these byX (7). We write X!
for (X (1), X(2), ..., X(7)). For X we will often instead writeX™.

Definition 1: Givenn i.i.d repetitions of the jointly distributed random vareb (X, Xo, ..., X, Z),
the pair(n,a), where C' = (C1,Cy,...,C,) is a finite set of discrete random variables, is considered a
valid communicationif:

o H(OZ-|CI,02,...,C’¢_1,XJ’.‘) =0 Vj:1<j<m, i=j modulom. This means that the indexing
of the communications is done in round-robin order and eawhneunication is adapted to the
available information of the communicator;

o Forallu+1<r <m, we haveC; = 0 V::i=r modulom. This means that the-th terminal is

not allowed to participate in the communication.

Please note that i¢n,5>) is valid, then one haH(ZﬂX{L,XgL, X)) =0.
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Definition 2.Let n be a natural numbet,be a positive real numbeﬁ> = (C4,Cy,...,C,) be afinite set
of discrete random variables, asd, Ss, ..., S,, bem discrete random variables. Consider the following
conditions:

1) the pair(n, 6) is a valid communication;

2) H(S;|Cy,Cq,...,Cr, X)) =0forall 1 <i<m;

3) P(S1=8=S3=..=5,)>1—¢

4) %[(Sl;ZH,C:[,CQ, . Cr) <€

5) LH(XP, XZ,...,XZ", 51,5, ..., 54) <e.

The data typing condition SK( ¢, S1, So2, S3, ..., S, 8) is said to hold iff conditions 1, 2, 3 and
4 are satisfied. To any SK data type, we assign a number céléeglain of the SK data type which is
defined ast H(S1).

The data typing condition CF@( ¢, Sy, Sa2, S3, .-y S, 8) is said to hold iff conditions 1, 2, 3 and
5 are satisfied. To any CFO data type, we assign a number ¢hbarbstof the CFO data type which
is defined as H(C'|2"). o

A valid communication(n, 8) for which, for somee > 0 and some(Sy, Sa, ..., Sy,) the data typing
condition SK@, €, S1, S, S3, ..., Sm, 8) holds is called a&communication for secret key generation
in the presence of an eavesdropp€&he intuitive reason for this terminology should be cleanf the
definition.

A valid communication(n,a) for which, for somee > 0 and somg1y, 15, ...,T,,) the data typing
condition CFO{, ¢, T1, To, T3, ..., Ty, 8) holds is called &ommunication for omniscience by a neutral
observer Intuitively speaking, a communication for omniscienceR@) protocol works as follows. The
terminals will conduct a public discussion in order to agmih probability close tol, on a common
randomness, but there is no secrecy constraint. We can agkanbthere is a neutral terminal, say Charles,
who receivesZ™ from Eve and the common randomness obtained by the termi@hksles is required
to become omniscient abol’, X7, ..., X;7. The cost of the communication would be the entropy of
the overall communication conditioned Gff'.

Consider the special case in whieh=m, and Z is independent of X1, Xo, ..., X,,). Charles will
then not learn anything abouty, X3,..., X, from Z" and thus eaclf; should be approximately
equal to X7, X7,..., X", meaning that each terminal has learned the random vasialflell other
terminals. The communication for omniscience by a neutbsleover would be transformed to a simple
communication for omniscience, as studied by Csiszar amdan [5]. The cost of communication in

this case is equal to the total entropy of the communicasamce without loss of generality the successive
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communications can be made independent of each other, aihe ltave chosen them so that the cost as

we measure it is identical to the cost as measured by CsaiswhNarayan. Therefore the communication

for omniscience by a neutral observer is a generalizatioin@fcommunication for omniscience of [5].
Definition 3: S¢

no—r

(X71; X5 X35 ...;XU;Xﬂl; ...;X,(,f)HZ), the e-secret key rate when the terminals

cannot randomize, is defined as:

lim sup sup Gain(SK)
N0 SK (n,6,51,52,55,.,8m C )

Please note that the superscrigt)” is used to denote the silent terminals. Similarly,

T¢(X1; Xo; Xa; i X X130 X5 2) is defined as:

lim inf inf _, Cost(CFO)
e CFO(n7E7T17T27T'37"meC)

Sno—r(X1; Xo; X355 Xu; Xfﬁzl; o X,(,f) || Z), the secret key rate when the terminals cannot randomize,

andT'(X1; Xo; X3; ...;Xu;Xﬂl; ...;Xﬁ,f)||Z) are defined as:

Sor(X1; Xo; Xz; .05 X X 15 X1 2) = lim S5, (X1; Xo; X e X XU LX) 2)

no—r
T(X1; Xo; Xa; o X X 15 X 2) = lim 7(X1; Xo; X3; s X X X)) 2)

S(Xl;Xg;Xg;...;Xu;Xgl;...; ,S‘?HZ), the secret key rate when the terminals can randomize, is
defined as the supremum SLO_T(XlMl;XgMg;XgMg;XuMu;Xﬁl; ...;X,(,f)HZ) over all

(My, My, ..., M,,) satisfying:

p(Ml, ceey Mu,Xl, ...,Xm, Z) = p(M1).p(Mg)...p(Mu).p(Xl, ...,Xm, Z)

I1l. STATEMENT OF THE RESULTS

In this section we state the main results of this paper. Adlridssults are proved in detail in section 4
and the appendices. Following the formal statement of eesiitr a brief informal discussion is provided
to clarify the statement.

Theorem 1l.Let p(X;; X9; X3;...; Xin||Z) be a real-valued function from the set of all probability
distributions defined o(X 1, Xs, X3, ..., X;n, Z), WhereX, X, ..., X,,, andZ take values from arbitrary
finite sets.p(X1; Xo; X3;...; X || Z) is an upper bound oS(Xl;Xg;Xg;...;Xu;Xiil;...;Xﬁ,f)\|Z) if
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it satisfies all of the following properties:(X1; Xo; X3;...; X;,||Z) is an upper bound on
Sno—r(X1; Xo; X3; ...;Xu;XfﬁZl; ...;X,(,f)HZ) if it satisfies properties (1-4):

1) For any natural numbet:
ne(Xy; Xos s X | Z) = o(XT5 X955 X1 27) 5
2) For any random variablé' such that for somé < i < u we haveH (F|X;) = 0, it holds that:
o(X1; Xo; s Xin |1 Z) > o(Xq F; XoF; .. X F|| ZF)
3) For any random variableX/, X7, ..., X/, such thatH (X/|X;) =0 for all 1 <i < m, we have:
P(X13 Xoi -3 X | Z) = o(X15 X555 X1 Z)

4) o(X1; Xo; s X[ 2) > H(X112) = Y%y H(X1]X5);
5) For any set of random variablés/,, M, ..., M,,) satisfying

p(M17 M27 ceey MU7X17X27 "'JXmJ Z) = p(Ml)p(MZ)p(Mu)p(XlaX27 "'JXWH Z) (1)

we have
(X715 Xo;oo; X || Z) > (X1 My; Xo Mo .o Xy My Xoy1; -5 Xim|| Z)
FurtherS(X1; Xo; X3; ...;Xu;Xff;zl; o ,(;f)HZ) itself satisfies all of these properties; and

Sno—r(X1; Xo; X3; ...;Xu;XfﬁZl; ...;X,(,f)HZ) satisfies properties (1-4).

Discussion:The domain ofp in Theorem 1 is the set d@dll probability distributions orall products
of m + 1 finite sets. Condition 1 corresponds to the notion of takitogks of observations. Condition 2
corresponds to the notion of terminatommunicating over the authenticated public channel. @iond
3 corresponds to the notion of each terminal choosing torgympart of its available information. The
right hand side of condition 4 is a choice of an easily provaed technically convenient lower bound
on the secret key rate; other such expressions could alsobie®n used instead. Condition 5 is relevant
to the case where the speaking terminals are allowed to @mtigmtly randomize. °

Theorem 2.Let ¢(X1; Xo; X3;...; X ||Z) be a real-valued function from the set of all probability
distributions defined o(X1, X5, X3, ..., X;n, Z), Where X, X, ..., X,,, and Z take values from arbitrary
finite setsay)(X1; Xo; X3;...; X || Z) is a lower bound o7’ (X1; Xo; X3; ...;XU;Xﬁzl; ...;X,(,f)HZ) if it
satisfies the following properties:

1) For any natural numbet:
n(X; Xos .3 X || 2) < (X7 X555 X1 27);
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2) For any random variabl& such that for somé < i < u we haveH (F'|X;) = 0, it holds that:

(X3 X3 X Z) <

V(X XoFs s X FIZF) + H(F|Z) ;

3) For any random variableX/, X/, ..., X/ such thatH (X/|X;) = 0 for all 1 < < m, we have:

(X715 Xo; oo X || Z) < (X5 Xh5 05 XN Z) + H(Xy .. X | X XL Z);

4) (X5 Xo5 s X[l Z) < H(X2.. Xy | X1 2) + 3770 H(X1|X5).

FurtherT'(X1; Xo; X3;...; Xu; Xﬁl; o Xﬁ,f) ||Z) satisfies these properties.

Discussion:As in the case ofp of Theorem 1, here) should be thought of as defined on the set of
all probability distributions orall products ofm + 1 finite sets. Condition 1 corresponds to the notion of
forming blocks. Condition 2 corresponds to the notion ofrieial : communicating over the authenticated
public channel and paying the cagt F'|Z) for this. Condition 3 corresponds to each terminal choosing
to work with only part of its observation; intuitively the ssing part can later be shared by paying a
cost of at mostH (X, X»...X,| X| X}...X! Z). The right hand side of condition 4 is a convenient choice
of an easily proved upper bound on the CFO rate; other sucicehicould also have been used instead.
It should however be noted that the choice in condition 4 iscewe over probability distributions and
this was important in the proof of some additional properti¢ the CFO rate given in [7]. °

Theorem 3For any joint distributionp(z1, z2, ..., z,,, 2), We have:

Snor (X1 Xy X0 s XS 2) + T(X0; o5 X X5 s X1\ 2) = H(X), X,y X | Z).

Discussion:This establishes the equivalence between the problemscoétdeey generation and the
problem of communication for omniscience by a neutral olaseigeneralizing the result of [5]. e

Theorem 4.5(X1; Xo; ...;XU;Xﬁzl; ol ,(ﬁ)HZ) is bounded above by

inf g, g, maxi(S(X1; Xoj s X X5 X9 100)) +
S(X15 Xai s Xy X33t X5 795000501 2)]

where the infimum is taken over all random variablgs.Js, ..., J; and allt.

Discussion:To understand this claim, start with the case 1. One can think of/; as trying to define
a “split” in the secret key rate: one looks for a secret keg mhong then terminals that is secret from
an entity that gets i.i.d. copies df (the first term on the right hand side of the upper bound) aed th

for a secret key that is shared by a terminal getting i.i.@etéions of J; (who is not allowed to talk)
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but is secret from the original eavesdropper (the secomal ter the right hand side of the upper bound).
The claim is that the true secret key can not exceed the suirediro rates got in this “split” way. The
case of general can be understood in a similar way. °
Theorem 4 leads to some corollaries that appear to desepagate statements.
Corollary 1. S(X1; Xo; ...;Xu;XfﬁZl; ...;X,(,f)HZ) is bounded above by
inf; (S(X1J; X2 J; .o Xy T3 (X1 )S; o (X )| T) + S(X1 X2 Xin; T3 2)).
A single letter characterization of(X;.J; Xo.J;...; XoJ; (Xui1 D). (X J)®)||J) is given in
Theorem 6. °
Corollary 2. Form = 2, we have
S(X;Y||Z) <inf; (S(X;Y||J) + S(XY;J®)||2)) <
inf; (I(X;Y|J) + S(XY;J®)|2)).
This bound strictly improves the Renner-Wolf double irgininformation upper bound. °
Corollary 3. For any random variableg;, .Jo, ..., J;, the following inequalities hold (for the notation

valid(1, 6’)) used in the second and third bullets, please refer to defnit):

o S(X1; Xoi s Xy X5 X8 g0 0 g9 2) >

SUPx;.. X! :p(ZJr...Je X1.. Xm,Xl, ,X V=p(ZJ1... Je X1 X )P( X} | X 1) p( X0 | X )[

S(XY; Xhi oy X0 X5 s X \|Z)—maxi(S(X{;X§7.. X2 X 8 1))
o S(X15 Xos X X5 X,(,f), f’,J(S,... N2) >

Squalid(l,E’)[ Xm C)(S ”ZC)

S(X18§X2C§---§ ( u+10) o
— — — —
max;(S(X1C; XoC5..; X, O (Xyp1 C’)(S g (X s ||JiC'))];
o S(Xy;Xy; "';XU;X’E;Z:L; ...;X,(,f); 1( ); J(S); ...Jt(s)HZ) >

SUP atid(1,C), X1 .. m'p(BZ T X1 X X X )_p(CZJ1 J,Xl...Xm)p(X{|X18)...p(Xjn\Xm8)[

— — —
S(X1C; X505 X, O ( u+10)” (X, O 2C) -
— , = —

maxi(S(X{C;XéC SXL (X, OO (X, YOI O))).
Discussion:For the special case of = m =t = 1, the last formula suggests the inequality:
. (S) > /—) — ,—) —
S(XYWINZ) Zsupa_ vz SXCZC) = S(X'CIY C)].
S(X||Z) is not well-defined but if defined aH (X|Z), we get the tight inequality

— —
S(X;YW|2) 2 supg_ vy y,[HX'|ZC) - HX'|Y C)]

and the above formula can be understood as a generalizdtittrisdower bound on the (one-way)
secrecy rate. °

A variant of Corollary 1 can be proved by the verification teicfue that was used to prove Theorem

1. This is stated as the next result.
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Theorem 5Let R>( denote the set of nonnegative real numbers. LetR>, — R>( be a strictly
increasing convex function and let thfeone-way secrecy ratee defined as
S} -one-way(X: YOI Z) = supy_y_x_y,[f(H(U|ZV)) = f(HUYV)).
ThenS(X1; Xo; ...;XU;Xﬂl; ol ,(;f)HZ) is bounded above by
infy F7HF(S(X 15 Xo; s Xus (K1) @505 (X)) + St —one—way (X1 Xowo. Xn; T Z) ).
This upper bound is in turn bounded above by
inf; f7H(F(S(X1T;5 e Xu s (Xus1 ) o (X D)) + Sy —one—way (X1 X2 Xm; T 2)).
Discussion:The upper bound given in Theorem 5 reduces to that of Coyollain the special case
of f(x) = z. We don’t know if this bound strictly improves that of Comty 1. The weaker form of the
bound given in the statement of the theorem is useful bedhiese is a single letter characterization for
S(X1J; XoJ; .. Xud; (Xug1J)®); s (X J) )| J), given in Theorem 6. °
Theorem 6.Let [m] and [u] respectively denote the sefd,2,...,m}, {1,2,...,u}. The following
formula on the secret key rate holds:
S(X12; X275 ... XuZ; (X1 2)); s (Xin 2)9)| Z) =
H(X1X>..Xu|Z) — ming, g, r)er(ie) Ri)
where:
R = {(Bu, s R) : VB 2 B C ], B[l £ 0,8 # ] : ¥y B = H(Xp gl Xp-2)}-
Discussion:This claim is best understood in conjunction with Theorens3y&ing a natural Slepian-
Wolf type characterization of the CFO rate in this speciaecaVhenu = m it reduces to the known
result proved in [5]. °
Theorem 7.5(X1; Xo;...; Xu; (Xuy1)®;...; (Xim)®)||Z) is bounded below by
L gmini << I(Uj; Xi |[Uj-1) = 1(Uj; Z|Ut;j-1)]
for everyq < p, and(Uy, Us, ..., U,) satisfying the following constraints:
o U; (i=1,2,...,p) takes values from a finite set;
o p(U1,Us, .., Up| X1, Xo, X3, o0; Xiny Z) = TTP—; (Uil Ui -1 X5 mod m);
e Forallr >u, we havelU; =0Vi:i—r ="0.
This lower bound strictly improves what is essentially therently best known lower bound, namely
the maximum of the two one-way secrecy rates.
Discussion:The property thatU, ..., U,) should satisfy is equivalent to the following condition:
I(Ui; Xy (531011 X5) =0 Vi, j: 1< j<m, i —j =" 0.
Intuitively, assuming that all th&’;’s and Z have learnt/;.;_1, the (¢ mod m)-th terminal can create

U;. The individual terms in the lower bound can be understoothfthe form of the one-way secrecy
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rate. ®

IV. PROOFS OFTHEOREMS1-7

Proof of Theorem 1Fix a probability distributionp(z1,x2, ..., 2m, 2) on (X1, Xo, ..., X;,,, Z) and
assume thak, X, ..., X;;, andZ take values in the discrete finite se\s, i = 1...m + 1. We prove that
©(X7; Xo; X35 ...; Xin||Z) is an upper bound o(Xy; Xo; X3;...; Xy, Xff_zl;.. ;X,(;f)HZ) if it satisfies
all the properties. Proving that(X;; Xo; X3;...; X, |Z) would be an upper bound on
Sno—r(X1; Xo; X3; ...;Xu;XfﬁZl; ...;X,(,f)HZ) if it satisfies properties (1-4) is similar.

For everys > 0, e > 0 and My, M, ..., M,, (satisfying (1)), one can find data type SKg, Si, Sa,
S3yeees Sty 6”) whose gain is withiny of
S0 (X1 My; XoMy; s Xy My; X515 X511 Z). We have:

np(X1; Xo; X335 X[ Z) >
P(XT5 X35 X35 X[ 27) >
O(XTMy; X3 Moy X3 Mz .; XMy Xty X Z7) >t
O(XTMCy; X3 MoCrs s X My, Cr X7 Crs s X C1|| Z7Ch) >t
(X7 M1C1Co; X3 MoC1Cy; ...; X0V M, C1 Co; X 1C1C0; e X CLCo|| 2 CLCy)... =Y
(XM C; XPMy C s XPM, C3 X, O X0.C | 27 C) >V
(813 823 .. 8| 27T ) 27
H($1|27C) = Y0y H(S1]S;) ="
S5, (X1 My; XoMa; .. X My; X&) 1 X5 2)} = né — (m — 1)[h(e) + enlog [T, |A]

no— T(

Inequalitiess, 4, it, v, v, vi, vii are true respectively because of the properties 1, 5, 2, 3, 2,
Inequalityviii is true because of the Fano inequality, and the fact thataire @ SK, €, S1, S2, Ss,...,
S, C) is within & of S¢,_ (X1 My; XoMy; ..; X, My; X0 X521 2).
Therefore we get
(X1 Xo; X355 X | Z) >
S (X1 My; XoMys oo; Xy My XU s X311 2) — 6 — =L [(e) + enlog T |A])-
The theorem is proved by taking the limit asand é go to zero and noting that the choice bf,
Moy, ..., M,, was arbitrary.
S(X1; Xo; X oo; Xy X1 X011 2) @and Sy (X5 Xo; X505 X X150 X521 2) them-
selves satisfy the five (respectively the first four) proipsert

S(X1; X905 X355 Xy Xff;zl, . ;X,Sf)HZ) satisfies properties 1, 2, 3 and 5 and

Sno—r(X1; Xo; X355 Xy; Xﬂl; sl Xf,f)”Z) satisfies properties 1, 2 and 3 because every valid SK data
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type for the right hand side of the inequalities can be cdedeto one for the left hand side. In 1, the
terminals observingX;, Xo, ..., X;,,) can first observe: i.i.d. copies of their random variables and then
simulate the SK data type for the right hand side. In 2, theyta&e i.i.d repetitions of" by i-th terminal
as the first non-trivial communication and then simulate $ikedata type for the right hand side. In 3,
they can createX]’s first and then simulate the SK data type for the right hadé.sin 5, the terminals
1 <i < u can respectively creat®f;, Mo, ..., M, first and then simulate the SK data type for the right
hand side.

For property 4, note that botb(X7; X2; X3; ...;Xu;Xﬂl; ...;Xﬁ,f’HZ) and
Sno—r(X1; Xo; X35 .5 Xu; Xﬁl; s Xf,f) ||Z) are greater than or equal to the one way secret key rate from
X to Xy, X3, ..., X;, in the presence of which in turn is greater than or equaliting<;<,, (1(X1; X;)—
I(X1; Z)). This expression is greater than or equal to the right hatel af 4. °

Proof of Theorem 2Fix the probability distributionp(z1, x2, ..., 2, z) on (X1, Xa, ..., X;,,, Z) and
assume that X, X, ..., X;,, Z) take values in the discrete finite sets, i = 1...m + 1. For every
0 > 0 ande > 0, one can find data type CF@\(e, S1, S2, S3,..., S, 5)) whose cost is withind of
T(X1; Xo; X35 o0; X X1 X5 2). We have:

) (X1; Xo; X33 X[ Z) <
Y(XT5 X XY Xl Z7) <0
Y(XTC; XPO; .. X CL|| Z7Ch) + H(Cy|Z™) <P
Y(XPC1Co; XFC1Cy;..; X1 CLCo|| ZC1Co) + H(C1 0| Z™)... <P
W(XPC; X2 Cs . X0 C |27 C) + H(C|Z7) <V
(S1; S2;..; S || Z™C )+H(X"Xg...X"|Slsg...SuZ")+H(5>|Z") <vi

H(S255...8,912"C) + X0y H(S11S)) + H(XPXJ...X]}[5152...5,2") + H(C |Z") <
h(e) + enlog [T |A:] + (m —1)[h(e) + enlog [Tin, |Ail]+
+ ne+ nT(Xq; Xo; X35 .. Xy Xiil? o x® |1Z) + no

Inequalitiess, i1, iit, iv, v, vi are true respectively because of the properties 1, 2, 2, 2, Biequality
vii is true due to the Fano inequality, and the fact that the cb&tF®O(n, ¢, S1, S2, S3,.--; Spn, 6”) is
within & of T(X1; Xo; X35 ...; X3 X150 X1 2).
Therefore we get
P(X1; Xo; X355 X | Z) <
T(X1; Xo; X5 00; X X015 X911 2) 4+ 6 + 2 [h(e) + enlog [T, | Al + €

The theorem is proved by taking the limit asndd go to zero.
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T(X1; Xo; X355 Xy, Xff;zl, ...;X,Sf)HZ) itself satisfies the four properties.

For property 1, note that the terminals observidg , Xo, ..., X,,) can first observe: i.i.d. copies of
their random variables and then pretend that they are initbatisn on the right hand side of 1. For
property 2, they can take i.i.d repetitions Bf by i-th terminal as the first non-trivial communication,
and then pretend that they are in the situation correspgrtdithe first term on the right hand side of 2.
The total cost would be the sum &f(F'|Z) and the remaining cost of communication of the CFO data
type of the left hand side.

Regarding property number 3, we first intuitively sketch pgreof: one possible communication for
omniscience for( X, Xo, ..., X;, Z) is to first conduct a communication for omniscience for
(X1, X5,..., X/, Z). The terminal who wants to become omniscient, Charles, dvbel able to approx-
imately learn(X7{, X%, ..., X}, Z) with the cost ofT'(X{; X}; X%;...; X/ Xu(_i)p ...;X;,Ef)HZ). If Charles
exactly knew(X|, X}, ..., X,,, Z), theu terminals could use a Slepian-Wolf type communication sehe
to reveal H(X; X,... X, |X| X}...X|, Z) bits on the public channel, thereby enabling Charles toivece
these bits as a common randomness and become omnisciembtdl@mmunication cost is no more than
T(X5 X Xbs s X0 X, X081 2) + H (X1 X ... X, | X} X}...X/, 7). Even though Charles does not
exactly know(X7, X}, ..., X!,; Z), this Slepian-Wolf algorithm still works.

We now prove the property more precisely. Eix 0 andd > 0. T¢(X7; Xo; ...; Xy; Xﬁl; s Xf,:f)HZ)

is defined as:

lim inf inf Cost(CFO)
e CFO(n7E7T17T27T’37"'}Tm76})

Therefore we can find a large enoughsuch that the following requirements are satisfied:

o There is a valid CFO{ ¢, S1, So, S3,.--, S, 8) within ¢ of
T(X}; Xb; Xhs s X3 X005 s XA 2);

« There is a communication with the total entropy of at me§t (X;....X, | X| X}.. X/ Z) + ¢§) for
the Slepian-Wolf type problem in which terminals having i.i.d. repetitions ok, X, ..., Xy,
want to transmit their information to a receiver who hasli.repetitions ofX; X/... X! Z as a side
information. In this Slepian-Wolf type problem, it is de=irto have

LH(X7. . XPX{"X ... X" Z", Communicatiof < §.
The terminals first follow CFO, €, S1, S2, S3,---, S, 8) and then the: terminals X7, Xo, ..., X,
insert the corresponding communications for the Slepiat-\Woblem, on the public channel. Lgt’
denote thewhole communication (F’ includesa).

— — — — —
We prove that the CF@( ¢ + 6, S1C’, S2C’, S3C’,..., S,,C’, C") is valid and further the cost of this
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CFO is less than or equal to

TE(XY; Xb; Xhs oo X005 X055 X0 Z) + H(X 1 X | X XD XL Z) + 26

Using the inequality? (X |YW) < H(X|ZW)+H(Z|Y W) for any four random variableX, Y, Z, W,
we have
- ’ ’ ’ -
LH(Xp .. X]8152...8,C"Z2") < LH(X].. XD X" X .. X"C'Z™) +

1
" ’ ’ ’ -
L(Xn X5 . X,S152..8,C'Z") < 6 + ¢

n

The other requirements for CFO to be valid can be easily aubck
The cost of the CFO, i.e}gH(c_*;\Z") is bounded above by
LH(Clzm) + LH(C|C) <
TE(X}; Xb; s X0 X0 X081 2) + 6 + H(X) Xo.. Xy | X} X5 X1 Z) + 6.

For property number 4, the idea is that, in the first phase,fitise terminal transmits messages
to other terminals enabling them find; with high probability. The entropy of the communication
from 1% terminal toi-th terminal would be roughly:H(X1|X;), and this is an upper bound for the
conditional entropy of the communication giveff. Now, since all the terminals can includg, as a
common randomness, Charles would be able to calcaté. In the second stage, the firstterminals
reveal roughlyn.H (X X5...X,|X1Z) bits on the public channel. Since this now becomes a common
randomness, this can be passed to Charles, enabling himaio 38 X,...X,,. The total cost of this
communication scheme would be bounded abovedby (X;|X;) + H(X1X5...X,|X1Z) on a per
observation basis, asymptotically as— oc. °

Proof of Theorem 3t can be easily shown that(X;; Xs; X3;...; X,,,||Z) satisfies the four properties
of Theorem 2 if and only ifH (X1 X5...X,|Z) — (X1; Xo; X35 ...; X, || Z) satisfies the four properties
of Theorem 1.

T(X7; Xo; X35 ...;XU;XQ(LS_EI; ...;X,(i)HZ) itself satisfies the four properties of Theorem 2. Hence

H(X) X Xy |Z) = T(X1; X oo; X X0 X501 2) >
Snomr(X15 Xos s Xos XI5 X311 2).
Further sinceS,,,—,(X1; Xo; ...;XU;XQ(LS_EI; ...;X,(;f)HZ) itself satisfies the four properties of Theorem

1, we get
H(X1 X0 Xu|Z) = Spor(X1; Xo3 X s X X0 X0 2) <
T(X1; Xo; Xa; s X X 15 X)) 2).

ThereforeH (X1 X5..X,|Z) =

Sno—r(X1; Xo; X355 Xu?Xz([:Zl; ...;X,(;z) |1Z) + T'(X71; Xo2; X3; '"?Xu?Xz(jZl? o Xy(,f)HZ). °

DRAFT January 23, 2008



15

Proof of Theorem 4lt is enough to prove that

O(X15 Xo; Xas s Xon[|Z) = inf g, g, g [ma; (S(X1; X oo; Xos X015 X |100)) +

S(X15 Xojoo; Xos X s X505 08 08 091 2)

satisfies the five properties of Theorem 1.
Property numbet: It is enough to prove that for any, .J, ..., J;, there exists/|, .J;, ..., J| such that:
n ma;(S(X15 Xos oo Xo; X s s XSS (X015 Xagoos X X1 XG5 00 089509 2)

> manx; (S (X5 X33 oo X33 (X0 y) @5 s (X O]T1) +

S(XP3 X35 X025 (X0 )@ (X)) 1O 1 0, 20,
We takeJ! to be J* for 1 < i < t. The inequality holds since the secret key function itsatisfies
the first property of Theorem 1.
Property number2: Let H(F | X;) = 0, wherel < ¢ < w. It is enough to prove that for any
Ji, Ja, ..., Jy, there exists]|, J5, ..., J| such that:
max; (5(X1; Xa; oo; X X5t X)) 4+ S(X05 X oo; X X1 XE5 05 089509 2)
> max; (S(X1 F; XoF; .. X, F; XU Py XEVF|JD) +
S(X1F; Xo F s Xy F; (X1 F) ;s (X )05 195 1) 9| 2 ).
We takeJ! to be J;F for 1 < i < t. The inequality holds since the secret key function itsetfsdies
the second property of Theorem 1.
The proof for property3 is similar to that for the two preceding properties, and fs e the reader.
Property numbed#: It is enough to prove that for any,, Js, ..., J;,
max; (S(X1; Xa; s Xos X s XE 1 J0)) 4+ S(X15 Xos oo Xy X5 X005 09 080091 2)

is greater than or equal t(X:|Z) — > ,-, H(X1|Xk)
We have:

S(X15 Xoj oo X X1 X005 78 089,091 2) >

S X x s x T g g2y >

min(min; <j<¢ I(X1; J;), mino<g<pm, 1(X1; Xi)) — I(X1; 2)
Since the secret key function itself satisfies the fourthpprty of Theorem 1, we have:

S(X1; Xoioo; X X s XN 00) > H(X0) = T(X0500) — X0, H(X0 | Xp).
This implies that

max; S(X15 Xoj o Xo; X500 XS 0) > H(X0) — ming 1(X13 Ji) — S0, H(X: | Xp)
There are two cases:
o If min; I(Xy;J;) < ming I(Xy; Xy) :

We have:
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S(X15 Xojoos X X301 X005 78 089,091 2) >
min; I(X1;J;) — I(X1; Z) = H(X1) — max; H(X1|J;) — I(X1; Z).
Therefore
max; S(X15 s Xos X1 XKW 4+ (X050 X X1 X85 005091 2) >
H(X1) = I(X1; Z) = 330, H(Xq|Xy) = H(X1]Z) — 3030, H(X1| X))
o If min; I(Xy;J;) > ming<p<pm 1(X1; Xi) ¢
We have:
S(X15 Xojoos X X1 X005 78 089,91 2) >
ming<p<m 1(X1; Xy) — 1(X1;Z2) >
H(X1) = 3 2hls H(X1|Xk) — I(X13 Z2) = H(X1]Z) — 3005 H(X1| X).
Property numbes: It is enough to prove that for any, .Js, ..., J;, there exists/{, J;, ..., J; such that:
masc;(S(X1; Xos i X3 X3 .--;X(S’IIJ-))

S(X15 Xoj oo X X X0 79 g8 09 2) >
max;(S(X) My; XoMy; ...; X Mu,X£+17..., D10) +
S(X1 My; XaMoso; X My X315 X005 15 1909 2).

We defineJi, Ji, ..., J/ such that:

o FOreveryzy, ... xm, 2,51, Jts
p(Ji =j1, i =0l Xi=21,... Xpn =2, Z =2) =
p(J1 =J1, 0 e = jt| Xa =21, oo, Xon = 2, Z = 2);
o p(My, .oy My, Xq, oo, Xpn, Z, J1 oy J) = p(M).p(Mz)...p(My).p( X1, ooy Xomy Z, J1 .oy JY).
The proof would be done by noting that the secret key funciiself satisfies the fifth property of
Theorem 1. °
Proof of Corollary 1.We get the desired result by applying Theorem 4 for the case-efl and
noting that
S(X1; X oo; Xos X1 XENT) < (X0 T3 Xo oo XT3 (X1 ) s (X ) O[|T)
and
S(X15 X3 0 Xy X150 X005 T 2) < S(X1 X X IO 2). .
Proof of Corollary 2.This is a straightforward special case of Corollary 1. In¢hee of two terminals
we have:
S(X;Y|Z) <infy (S(X;Y||J) + S(XY;J9|2)) < infy (S(XT; Y T|J) + S(XY;J@)|2)).
We get the desired upper bound by noting tRéX .J; Y J||.J) = I(X;Y|J).
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I(X;Y|J)+S(XY;J®)|Z) could be further bounded above by, (I(X;Y|J)+I(XY;J|Z)). Itis
enough to prove thahf; (1(X;Y|J)+1(XY;J|Z)) strictly improves the Renner-Wolf double intrinsic
information upper bound. In order to prove that the new boisndot worse than the double intrinsic
information bound, it is sufficient to prove that for any rand variableU, there is a random variablé
such thatl (X;Y'|J)+ I(XY; J|Z) < [H(U)+ming. y_y_ ;7 1(X;Y|Z)]. ChoosingJ = Z, we will
havel(X;Y|J) = I(X;Y|Z) and alsol (XY J|Z) = I(XY;U|Z) - I(XY;U|ZJ) < I(XY;U|Z) <
H(U). Thereforeinf; (I(X;Y]J) + I(XY;J|Z)) is no worse than the double intrinsic information
bound. Appendix | contains an example for whieli; (1(X;Y|J)+1(XY;.J|Z)) is strictly better than
the double intrinsic information bound. °

Proof of Corollary 3.The inequality can be proved by noting that for ggy;...X,,) such that

P(ZI Ty X1 X, X, X)) = p(ZT1 . Ty X X ) (X X ) (XL | X o)
we have

S(X15 Xajoo; Xos X155 X595 08 18091 2) >

S(XY5 X s X0 X5 s X5 g0 7892 7)) 2)

which is true because reducing information can not incrélsesecret key rate. °

Proof of Theorem 5Without loss of generality we can assunfi@)) = 0, because for any positive
constante, g(z) = f(x) + ¢ satisfies the following equations:

o Sg-one—way(X; Y Z) = Ss—onc—way(X; Y| 2);

e 97 (g(a) +b) = f~1(f(a) + b) for any non-negative andb.

Since

S(X1J; Xo ;i X (X1 )55 (X DD T) 2 S(X15 X oos Xui; (X 1) ;005 (X))
and f is increasing, it suffices to prove the first bound in the statet of the theorem. In order to
show this, it is sufficient to verify the five conditions of Tdvem 1. This is done in appendix Il. The

proof uses the standard fact that the convexity @iplies that it is continuous and thgtz +a) — f(x)

is an increasing function im for any fixeda.

Proof of Theorem 6.

We first prove that for anyR;, R, ..., R,) € &, there are SK data types whose gains asymptotically
approachH (X X,...X,|Z) — > | R;. In order to show this, it is enough to prove that for any 0,
there isn large enough such that the firgtterminals, after observing”Z" (1 < ¢ < u), can insert
messages of entropy(R; + €) on the public channel such that all the terminals would be able

to calculateX7, X7, ..., X', Z™ with probability at leastl — e: (X1, Xo, ..., Xy, Z) will be a common
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randomness for the: terminals, and Eve’s whole information about this commordaamness is bounded
above by the summation of the entropy 4fand the entropy of the communication (/e .R; + ¢)).

We use the technique used in appendix A of [5] and apply Tmedrd..14 of [4]. We define a normal
source network (NSN) without helper as follows: There aresource andn dummy nodes in the first
layer of our NSN. The2i-th and(2i —1)-th node are both connected ¥y Z. The second layer comprises
of m + u encoders. The first encoders are connected to the fizsth nodes fori = 1,2, ..., u. The rest
of the m encoders are connected (2 — 1)-th nodes fori = 1,2,...,m. The output rates of the first
u+m encoders aré?;, Ry, ..., Ry, H(X1), H(X2), ..., H(X,,). The third layer includes: decoders.
The i-th decoder is connected to tlie + i)-th and the firstu nodes of the second layer.

It can be shown that the conditions imposed by Theorem 1.4f14] would be satisfied if
(R1, Ra, ..., Ry) is in R. This result makes intuitive sense because for everyssehe overall commu-
nication of those of the; terminals that are imB is at least equal to their uncertainty with respect to
those outsideB.

For the converse part, takearbitrary random variables/;, Ms, ..., M, jointly independent of each self
and of (X1, Xo, ..., X;, Z). For convenience, let us Writ&; for X;Z for the rest of the proof, < i < m.
Take a valid SKé, ¢, S1, Sa, S3,..0 Sy, C) for (X1 My, XoMo, ..., Xy My, Xui1,s ..., X, Z). The proof

technique is similar to one used in Lemma 2 of [5].

H(XPMP XDMP|Z0) = H(XPMP . X2 MPC 81| 27) = X, H(Ci| C iy Z7) + H(S1|C Z7) +
Sy H(XPMp | XpMPRE My XP M) C 5 27
Let R, = %Zi;i_j;noH(EZ\5’1;i_1zn)+%H(XyM;\X{LM{LX;LM;...X;L_lM;L_lﬁ’Slzn)—H(Mj)
forj=1,2,...,u.
Based on this choice aR/’s, one can observe thaf_| R} = H(X,..X,|Z) — LH(S,(Czm).
Let R = R + M. We prove that Ry, Ra, ..., Ry) € R.
Let B be some subset dfn] whose intersection withu] is nonempty and such tha # [m]. By
conditioning on((X'jﬂ,j € B)(M},j € [u] — B)), we get:
H(XpMp . XpMP|ZM(XP,j € BY)(MP,j € [u] - B)) =
> H(Ci[Cria 27Xy, j € BY)(M,j € [u] - B)) +
H(S|C2M(X7,j € BY)(M?,j € [u] - B)) +
S H(X;LMZ-|X{leXgM§...Xﬁ_lMiiﬁsl(X;L,j € BY)(M},j € [u] — B)Z™)
Noting that
H(Ci|Crima 2"(X}j € B)(M]'j € [u] = B)) = 0 for i € (fm] — [u]) U([u] - B)
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and

H(X;LM,-\X;@M;@XgM;...Xﬁ_lMﬁlﬁsl(X';L,j € BY) (M}, j € [u] —B)Z") = 0 for i € [u] — B
we can rewrite the above expression as:

H(XpMp . XoMPZM(XP,j € BY)(MP,j € [u] - B)) =

s mod mepu H(Cil Crin1 27Xy j € BO)(MY,j € [u] — B)) +

H(S|C2"(X},j € BY)(M}.j € [u] - B)) +

S ien i HX M| Xp My XE My X7 M C Sy (X7, j € BO)(MJ,j € [u] — B)Z").
Hence:

H((Xp,ie BOul)(Mp.i € BOu)|Z"(X],j € B)M.j € [u] - B))

<3 mod menp H(Cil Crim1Z) + H(S1|CZM(X],j € BY)(M]j € [u] — B)) +

Sien g H(XPM; | XpMp Xp My XP  MP C $1)
But

H((Xp,i e BOu])(M]i € BO[u])|Z"(X},j € BY)(M},j € [u] - B)) =

H((Xp,i € BOW])|Z"(X},j € B)) +nH((M],i € B[u])).
By simplifying the above expression, we get:

Y jennm B = H(Xpnw|ZXp:) — £H(S1|SB:)

Using Fano inequality, we can upper bouilq;ﬂ{(SﬂSBc) and show that

Siennm Bi = H(XpAw|ZXp:)
We have Gaigx = H(X1X2...X,|Z) — Z}‘Zl R;-. Letting € go to zero (for any fixed\/y, ..., M,,),

we get that
Snor (X1 My; XoMy; . X, My; X5 1 X531 2) <
H(X1X5..Xu|Z) —ming, g, . r)er(Xiz ).
Therefore
S(X1; Xoioos Xus X015 XWN12) <
H(X1X5..Xu|Z) — ming, g, . r)er(Xiz ). o

Proof of Theorem 71t is enough to prove the lower bound for the special case ef 1. This is
becauses(X7; Xo; -.-;Xu;Xﬁl; ...;X,S‘?HZ) can be bounded below by
S(X1Utig—15 XaUtg—15 s XuUtig—1; (Xus1Ur:q—1) ;oo (Xin Unig—1) @ | ZUng—1)
since them terminals can collaboratively create.d. repetitions ofU;.,—;. Here we are using the
following inequality fork = 1,2,...,q — 2:
S(X1Up—1; XoUrib—1; -5 XuUrih—15 (Xug1 Unk—1)®s s (XinUripm1) @ | ZUn 1) 2>
S(X1Up; XoUrs -3 XuUriks (Xug1 U)o (X Ur) D)| ZU 1)
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We proceed with the assumptign= 1.

For any sequencéu,as, ..., as), let (ay, as, ...,ai_l,’éi\, ait+1,...,as) refers to the subsequence in
which a; is removed. Applying Lemma A4.1 of the appendix IV to the+ 1-tuple:

(Ui, X1U1:i-1, s X(i=1) mod mU1:i—1, Xi mod mU1:i~15 X(i41) mod mU1:i~1, s XmUt:i—1, ZU1:i-1)
fori=1,2,...,p, one can conclude existence of a natural numband random variableS., satisfying
the following four properties (here we ugg!;_; as a shorthand fo/;’U3US...U;" |, n i.i.d repetitions
of U1 Us...U;_y):

o C; is a function ofU", i = 1,2,3..., p;

« U]" could be reconstructed frofi; and X7'U7;_, for all j with probability 1 —e for i = 1,2, 3.... p;

. %I(Ci; Z"Up ) < e+max|0, [(U;; ZUy.i—1)—min I(U;; X;Uri-1)]) = e+max(0, I1(U;; Z|Uy.i—1)—

min; [(Us; X;|Uri-1));

. %H(U{L[CiZ”U{fi_l) > max[0, min; I (Us; X;Uri—1) — I(U;; ZUyi—1)] — € =

max|0, min; I (Us; X;|Uy.i-1) — I(U;; Z|Ur:i—1)] — €.

Assume that then terminals observe i.i.d repetition of their random variables. At theth stage,
Ul andC; are created by thé mod m)-th terminal.C; is then communicated to other terminals and
thereby enabling the other — 1 terminals to creaté/ with probability 1 —e. The probability that after
p stages, alln terminals can not agree on the common randomigss;Uy'...U,’ will therefore be at
most(m — 1)pe. In other words, if we leG; represent the-th terminal's guess oU{ﬁp, we will have:

PG =..=Gy,=Up,)=1—(m—1)pe.

We can bound from below (X7; Xo; ...;Xu;Xﬂl; ...;Xﬁ,f’HZ) by
LS(G1; Ga;oo; Gy GO 15 s G| CLp 2™ >
S[H(G1CrpZ™) = 31, H(G1|Gy)].

The last inequality was derived using the property 4 of theod. Since
P(Gr=..=G,=U],)=1- (m — 1)pe

we can work out the last expression as follows:
SH(G1[CrpZ™) = Xy H(GH|G)] >
S[HUL,|CrpZ™) — H(UT,|G) = Y01, H(Gh]Gi)] >

%H(UﬁplClsz”) —m(h((m — 1)pe) + (m — 1)pe.c)

wherec is the sum of the logarithm of the alphabet sized/pfindh(.) is the binary entropy function.

We prove thatl H(UT.,|C1.,Z™) is at least

>y mini<jem I(Us; Xj|Urio1) = I(Ui; Z|Uvi-1)] — 2pe.

If we can show this, the proof would be finished by lettingend zero.
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H(UL,|C1pZ7) = S0 HUP|Crp 20T ,) =
P H(UP|CriZm U y) = S0 H(UPs G| Cra 27Ty ) =
L HUPCZMUY, ) = 02 HUP Ciapl Cra ZMUR ).
Starting with the second term,
Zf:_ll (U Ci+1:p‘clziZnUﬁi—1) =
Zl§i<j§p (U} Cj|Crij 1 27U, ) =
Z§:2 I(UL;_1;CjlC127) < Z§:2 (UL 1C1:j12":C)) =
L I(UY; 127 Cy) < 370 ne(e+ max[0, I(Uy; Z|Uyj—1) — min, I(Uy; X;|Uj-1)]).

Where we have used the third above-mentioned property;ssfin the last step.

The first term in the above expansion &f(UT:,|C1.,Z™) can be bounded below using the fourth
property ofC;’s:

b HUMCZMUE,_y) = n. 3P (max[0, ming I(Us; X;|Ursi—1) — I(Us; Z|Us:i—1)] — €).

Therefore

H(U},|C1pZ") >
n. >0 (max(0, ming I(Uy; X;|Ui—1) — I(Ui; Z|Ui-1)]) —
n. > ¢, (max[0, I(U;; Z|Uri—1) — min; I(Us; Xj|Ut:-1)]) — 2npe.
Since for every real number, max|0, a] — max[0, —a] > a, we can conclude:
SH(UP,|C1p2™) > 308 [ming<p<m I (Ug; X |Utj—1) — 1(Uj; Z|Usj-1)] — 2pe.

It remains to prove that, in the case of two terminals, the tawer bound strictly improves the
maximum of the two one way secrecy rates. Simce= 2, for simplicity we use the notatioX, Y
instead ofX; and X, for the rest of the proof. We note that for any arbitrary ramdeariablesl; and
V5 satisfying the Markov chai, — V; — X — Y Z, the choice ofp = ¢ = 3 andU; = V5, Us = 0,
Us = Vi would achievel (Va;Y|V1) — I(Va; Z|Vy). Therefore the new lower bound is no worse than
the maximum of the two one way secrecy rates. We use the eraamd proof technique provided by
Ahlswede and Csiszar in [1] to show that there are cases iohvthe new lower bound outperforms the
maximum of the two one way secrecy rates. Assume Hatand X, are independent binary random
variables. The joint conditional distribution &%, Y5, 771, Z, given X; and X5 is defined in figure 1. Let
X = (X1,Xs), Y =(Y1,Y2), Z=(Z1,Z2). Assume further thak; has a uniform distribution.

The upper bound (X;Y|Z) = I(X1;Y1|Z1) + I(X2; Y2|Zs) is also a lower bound o8'(X;Y || Z).
This is because the above expression is achievable with hbkce of U7 = X3, Us = Y,. But
this can not be achieved by either of the one-way secrecg.rédte pointed out in [1], the one way

secrecy rateS(X;Y )| Z) depends only omp(X,Y) and p(X, Z). But p((X1, X2), (Y1,Y3)) is the
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0g 0 '1— []‘..\_h‘-‘\ 0o 0
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2 0.1
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}Ll Y 1 T1 Zl Z; TI X: Y :

Fig. 1. The conditional distribution ofY1, Y2, Z1, Z2) given X; and X».

same a®((X1, X2), (Y1,T3)). Further(Xy, Xo) — (Y1,T2) — (Z1, Z3) forms a Markov chain. Therefore
S(X; Y| 2) = I(X1;Y1|21) + 1(Xo; Tu|Zs) < I(X1;Y1|Z1) + I(Xa; Ya|Zo). The last inequality is
becausd (Ys; Z5) = 0.91(Xy; Z5) < I(X2; Zs).

Similarly, S(X(®):Y||Z) < I(X;Y|Z) because((Y1,Ys), (X1, X2)) is the same ag((Y1, Y2), (T1, X2))
as X, has a uniform distribution, and also becau$&’; 7,) < I1(Yy; Z1). The latter inequality is valid
because (Z;]X1) = h(0.95¢,1 — ¢€,0.05¢) > H(Z1|Y1) = 0.9h(e,1 — €) 4+ 0.1h(0.5¢,1 — €,0.5¢).

V. DISCUSSION

We have derived a new upper bound on the secret key rate whinkrglizes and improves the double
intrinsic information bound of [12] to the multi-terminahse. We have also strengthened the results of
[5] via a newly formulated problem of communication for oeience by a neutral observer.

Table (I) contains some properties 8f,_..(.) and7'(.) suggesting a duality. The inequalities men-
tioned in each section could be derived from each other bydt@wing transformation:

T(X1; Xo; X350 Xos X1 X391 2) =

H(X1, X, X3, s Xul Z) = Spor(X15 X3 Xa; o X X0 X)) 2)
In a recent conference paper [7] we proved that

T(X1; Xo; X33 ..; X || Z) = inf, 1T.(XT; X35 X550 X7,1127)

whereT,(X1; Xo; X3;...; X || Z) is the concave hull of T'( X1 ; Xo; X3;...; Xin||Z)} (this is where the
concavity of the choice of the right hand side of conditionf4albeorem 2 was important). In appendix

[ll, we prove thatT'(X1; Xo; X3;...; X;||Z) is not always concave.
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TABLE |

SOME DUAL PROPERTIES OFI'(.) AND Spo—r(.)

Sno—r(): | S.(X1;..; X 2U) < S.(X1U;..; XU 2U)

7(.): T(X1;.; X Z20) > T(X1U; . X3 U|| ZU)

Snor(.): S (X130 XN2) > S (X5 X 2U0)

T(): T(X1:.; XN12) < T(Xa; .. X2 20)+
I[(X1..Xu; U|Z)

Sno—r(): | S(X15s XDUZ) < S.(Xas . XD 2U)+

I(X1.. X, U|Z)

T(.): T(X1;..: X$12) > T(X1;..; X1 20)

VI. APPENDIX

A. Appendix |

In this appendix we prove existence of a joint probabilitgtdbution onX,Y, Z for which the new
bound is strictly better than the double intrinsic inforioatbound. In this appendix, we use the notation
3(X) to refer to the law of the random variabé.

We need the following Lemmas which we will prove at the endhi$ appendix:

Lemma Al.1Assume thatinfy [H(U) + [(X;Y | ZU)| = ming[I(X;Y|J) + I(XY; J|Z)], then
there is a sequence of random variallgs: = 1, 2, ... taking values in finite setQ;, and a sequence of
positive real numbers; converging to zero, such that:

1) H(U;) + I(X;Y | ZU;) — infy[H(U) + I(X;Y | ZU)] asi — oo

2) HU|XYZ) — 0 asi — oo

3) I(U;; Z) — 0 asi — oo

4) pUi=vuj|lX =2,Y =y, 7 =2) — %| > % —0; Yu; € Qy, (z,y,2): plx,y,z) >0

5) The variational distancé(3(U;|Z = z;), S(U;|Z = z;)) — 0 asi — oo Vz,zj 1 p(Z = z) >

0,p(Z =2;) >0
® Lemma Al.Zontinuity of I(X;Y | Z): V¢ > 0,36 > 0 such that for all random variablés having
entropy less than, we have|I(X;Y | ZT) - I(X;Y | Z)| <&. °
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TABLE Il

JOINT PROBABILITY DISTRIBUTION OF X AND Y

X
Y 0 1 2 3
ol L1 o0 o0
1L L o0 o
2|0 0o i o
3/o o o0 1

We will perturb the example provided by Renner and Wolf inesrth prove that their bound is better
than the intrinsic information bound. Table (II) shows tléf probability distribution betweeX and

Y in that exampleZ is defined as:

(X +Y) mod 2 if Xe{0,1}
X mod 2 if X €{2,3}
Renner and Wolf proved that for the choice 6f= L%j, one has

I(X;YLZ):g I(X;Y | ZU) =0

And therefore their bound would be less than or equalit@/) + I(X;Y | ZU) = 1, while
I(X;Y | 2)=3>1.
Let V be a binary random variable, satisfying the— U — XY Z Markov property and defined as
follows:
p(U=0|V=0)=m pU=1V=0)=1-o

p(U=0V=1)=a pU=1V=1)=1—-a

Clearly, there existg; and a, such that:

. {0,0&1,1 —041,%011,1 — %Oxl,l} ﬂ {0,0[2,1 — (9, %042,1 — %042,1} == {0,1}
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If the constraint is not satisfied for somg andas, then it would be enough to perturhy or as by
a tiny amount.
Let X = X,Y =Y, Z = (Z,V). We would like to prove that the new bound is strictly betteart the
double intrinsic information bound for the tripleX, Y, Z).
We have:
p(X =2,Y =y|Z = (0,0)) =
saill(z,y) = (0,0)] + zaul[(z,y) = (1, 1)] + (1 — ar)U(z,y) = (2,2)]
and,
p(X =2,Y =y|Z =(0,1)) =
Laslf(z,y) = (0,0)] + Sanll(z,y) = (1, 1)] + (1 - az)l{(z,y) = (2,2)]
Assuming that the new bound is not better than the doublagitrinformation bound, we can apply
Lemma Al.1 to get a sequen€g having the five properties given in Lemma Al.1. Using the prop

number 4, we have

- > > 1 1
lp(Ui =ulX =0,Y =0,Z = (0,0)) — §| 2 5_51
- > = 1 1
p(Ui =ulX =1,Y =1,Z = (0,0)) — 5| > 5_5i
> o = 1 1

Thereforep(U; = u\Z = (0,0)) is within the 3¢; distance of a point in the set
{0,1,1 — o, %oq, 1— %al, 1}.

Similarly, p(U; = u|Z = (0,1)) is within the 36; distance of a point in the set
{0, 9,1 — an, %ag, 1-— %042, 1}.

Now, as the variational distance between the distributib&s@/;|Z = (0,0)) and S(U;]Z = (0,1))
should converge to zero, and as the intersection betweesetis€0, ao, 1 — o, %O&Q, 1- %O&Q, 1} and
{0,a1,1 — oy, %al, 1-— %al, 1} is just{0,1}, one can conclude that there is somec X so that for
Y i > 1y, Vu € Qy;, the probabilities

p(Ui =ulX =0,Y =0,Z = (0,0)),
pUi=ulX =1,Y =1,Z = (0,0)),
p(Ui =ulX =2,Y =2,Z = (0,0))

are either all less thaj or all greater thari.

Leth(z) = xlog(%). We would like to bound from above the entropy of the distiti of S(U;]Z =
(0,0)) in terms of h(p(U; = u|X = 0,Y = 0,Z = (0,0))), h(p(Ui = u[X = 1,V = 1,Z =
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(0,0))), R(p(U; = u|X = 2,Y = 2,Z = (0,0))). Since entropy is a concave function, we can not use
Jensen inequality to bound from aboﬁ@(%(Ui\E = (0,0))) which is a convex combination of these
probabilities. However, noting that the three mentionegbpbilities are all on the same side ?,f and

that h(z) is monotonic for allz < 3 and for allz > 1, we can derive the following bound:

H(S(U;|Z = (0,0)))) <

Therefore
Y h(p(UilZ = (0,0))) <
S h(p(U; =u|X =0,Y =0,Z = (0,0))) +
S h(pU =ulX = 1Y =1,Z = (0,0))) + X, h(p(Ui = u[X =2,Y =2,Z = (0,0))) =
H(U;| X =0,Y =0,Z = (0,0)) +
HU|X =1,Y =1,Z = (0,0)) + H{U;|X =2,Y =2,Z = (0,0)) — 0 asi — oo.
ThereforeH (U;|Z = (0,0)) — 0 asi — oc. Similarly, H(U;|Z = (0,1)) — 0 , etc. Thus,
H(U;|Z) — 0 asi — oc.
But the property number 3 of Lemma Al.1 states thdyf;; Z) — 0 asi — oo. Thus, we conclude
that H(U;) — 0 asi — oc.
Hence, the limit ofH (U;)+1(X;Y | ZU;) is the same as that ¢f X; Y | ZU;). The property number
1 of Lemma A1.1 states that the series converges to the dmnthlesic information upper bound which
is assumed to be equal toin;[[(X;Y]J) + (XY J|Z)).
Evaluating the expression dt= ZU, gives us0 + I[(XY;UZV|ZV) = I(XY;U|ZV) < 1
Therefore we should havéim; .., I(X;Y | ZU;) < 1. On the other hand, Renner and Wolf have
shown that/(X;Y | Z) = 2. But this is in contradiction with Lemma A1.2 noting th&t(U;) — 0 as
1 — 0Q. °
Now, we prove the Lemmas mentioned at the beginning of thieagix:
Proof of Lemma Al:1Take a sequencE;, Us, ... such that
H(U;)) + I(X;Y | ZU;) — infy[H(U) + I(X;Y | ZU)).
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For everyU;, there exists/; such thatl (X;Y | ZU;) = I[(X;Y|J;), and alsaXY — ZU, — J; forming
a Markov chain.
We have:
I(XY;J;|2) = (XY Us| Z) — [(XY;Us| 2J;) <
[(XY;Ui|Z) = H(Ui|Z) — HUI|XY Z) = H(U;) — 1(Us; Z) — HU;| XY Z).
Hence
H(U) + (XY | 2U;) > [I(U3 Z) + HU\XY 2)) + [[(X; Y |J;) + I(XY; 3| 2)] >
[I(Us; Z) + H(U;| XY Z)] + mins [[(X;Y]J) + [(XY; J|Z)] =
[I(U; Z)+ HU;| XY Z)| + infy[HU) + [(X;Y | ZU)).
Taking the limit asi — oo, we conclude thafl(U;; Z) + H(U;|XY Z)] — 0 asi — oo. Therefore
property number 2 and 3 are proved.
Since H(U;| XY Z) — 0, so should doH (U;| X = 2,Y =y, Z = z) for all (z,y,2) : p(z,y,z) > 0.

Therefore for allu € Q; p(U; = u|X = 2,Y =y, Z = z)log p(Ui:u‘X:;Y:y’Z:Z) should go to zero.
Therefore property number 4 is proved.
In order to prove property number 5, we note that
[(Us:Z) = Y2120 2(2)-D(S(U|Z = 2)|S(U3)) — 0.

Therefore ifp(z1) andp(z2) are positive, bottD (3(U;|Z = 21)||S(U;)) and D(S(U;| Z = 22)[|S(U;))
converge to zero. The Pinsker inequali®y(p|lq) > ﬁ@)cﬂ(p, q) implies that bothd(X(U;|Z =
z1), $(U;)) andd(S(U;| Z = 22),3(U;)) converge to zero, and therefore the variational distantedsn
d(S(U;|Z = 21),3(U;| Z = 22)) should also go to zero. °

Proof of Lemma Al:2Assume that/ (X;Y | ZT) = I(X;Y|J) for someXY — ZT — J.

H(T)> H(T|Z) > p(Z =2)H(T|Z = z). Therefore

H(T|Z = 2) < smomsesy = @

The denominatormin(p(z) : p(z) > 0), is a fixed constant depending on “z”. Intuitively, since

H(T|Z = z) is small, with high probability it will be a constant. Moregmisely, assume that
p(T=T.Z =z2)>p(T =t|Z = z) for all t.

Since H(T|Z = z) > h(p(T = T.|Z = 2)), we haveh(p(T = T,|Z = z)) < Q. Lete; < 1 and
ca = 1 —¢; be the two solutions of the equatidiz) = @ in the interval[0, 1]. c2 goes to one aé goes
to zero.h(p(T =T,|Z = 2)) < Q impliesp(T =T,|Z =z) <cy or p(T =T,|Z = z) > ca.

If p(T =1T1.|Z = z) < ¢1, we will havep(T = t|Z = z) < ¢; for all t. Therefore

H(T|Z = z) > log é

We also have (T'|Z = z) < . If 6 goes to zeroé goes to infinity, but 0

)
min(p(z):p(z)>0) min(p(z):p(2)>0)
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converges zero. Hence, for small enouglwe must havey(T' = T,|Z = z) > ca.

Define a random variablé’ taking values on the same set.ass taking value on, such that

e XY — Z — J' forms a Markov chain
e p(J'=jlZ=2)=p(J=jlZ=2T=T)
We can furthermore couplé and.J’ so thatP(J # J') <1 — ¢ by first drawingJ’ and then changing
it with probability 1 — ¢,. Let V' be the indicator function of the evedt= J'.
(XY [TT) = I(XGY )| = [I(XY[TT'V) — (X Y1) <
I(X;Y|JJV) = I(X;Y|JV)|+ H(V) =
p(V =0)I(X;Y|JJV =0) - I(X;Y|JV =0)| + H(V) <
op(V = 0)H(XY) + H(V)
Similarly, we can show that
I(X;Y[JJ) = I(X;Y]J)| < 2p(V = 0)H(XY)+ H(V)

These two inequalities show that( X; Y'|J") — [(X;Y|J)| < 4p(V = 0)H(XY )+ 2H(V). p(V = 0)
and H (V') converge to zero asgoes to zero, we hav&? > 0,35 > 0 such that for all random variables
T having entropy less thafy we havel (X;Y | Z) — I(X;Y | ZT) < ¢.

It would be enough to prove that( X;Y | ZT) < I(X;Y | Z) to complete the proof. Assume
satisfies the Markov chain properyY — Z — J. Define a random variablé’ taking values on the same
set as/J is taking value on, such that

ep(J =jlX=2Y=yZ=2T=t)=p(J=j|X=2,Y =y, Z =2)

We havel(J';T|XYZ)=0,andI(J;XY|Z)=1(J; XY|Z) = 0. Therefore

I(J;XYT\Z)=I(J;XY|Z2)+ 1(J;T|XYZ) = 0.
Sincel(J; XYT|Z) = I1(J;T)\Z2) + 1(J'; XY |ZT), we havel (J'; XY |ZT) = 0 and therefore the
following Markov chain holds:
XY -ZT - J.
Furthermore, we havé(X;Y|J') = I(X;Y|Z). This proves that
I(X;Y | ZT) < I(X;Y | Z). °

B. Appendix Il

In this appendix, we verify that
infy L (F(S(X1; Xas oons Xus (X))@ oy (X)) +
St—one—way(X1Xo... Xpn; J& | Z))
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satisfies the five conditions of Theorem 1.
Property number 1.
It is enough to show that for any, there exists somd’ such that
nf LS (X05 X oo X X501 XET)) + 5 —oneway (X1 X Xo; J©|| 2)} >
FTHAS (X X85 s X5 (X0 )5 (X)) + S —one—way (XPX5 . X s T &) Z27)}
We prove that/’ = J™ is an appropriate choice.
We will first prove that we will be done if we can prove that
1.5t —one—way(X1 X2 X TN Z) > St one—way (XP XS XD; (J) || Z7).
Let
s = 8(X1; X oo Xos X 1y XW|1),
b= St one—way(X1X2.. X3 J®)|| Z), and
¢ =St one—way(XPXF.. X2 (JV)E)||Z7) < nb.
We have:
f7Hf(ns) + ¢} < f7H{f(ns) + nb}
It suffices to prove that:
nf~Hf(s) +b} > f~{f(ns) + nb} or equivalently
Fnf=H{f(s) +b}) > f(ns) + nb.
Lett = f~'{f(s)+b} —s. We can then write this inequality ag(ns + nt) > f(ns) +nb. According
to the definition oft, we haveb = f(s +t) — f(s). Thus, we can rewrite the inequality as
f(ns +nt) — f(ns) > n.(f(s+1t) — f(s)).
This inequality holds becausgis increasing and convex.
It remains to show that
1.8 —one—way(X1X2.. Xon; T Z) > St one—way(XP X .. X7 (J) )| Z7).
Take some arbitrary/, andV satisfyingV —U — X7 X5 .. X)) — J"Z". We will prove that there exist
U, andV satisfying
V-U-XX9.. X, —JZ
such that( X7, Xs, ..., X;n, J, Z) has the same joint distribution 4%, X, ..., X,n, J, Z) and
FHU|Z™V)) = f(HU]J"V)) = n. | f(H(U|ZV)) = f(HU[IV))|.
We start with the left hand side:
fHUIZ™V)) = fHU|J"V)) =
iy JHU|ZHEr JEV Z(i)) = f(H (U] 27 5TV I (1))

By letting V; = Zi+ttn jli=1y andU; = (U, V;) for i = 1...n, we can write the above equality as:
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FHUZMV)) = fHUIV)) = 305 f(HUViZ(0))) — f(H (Uil Vi (3)))

For everyi, we haveV; —U; — X1 (i) X2(7)... X, (i) — J () Z(i). We would like to define an appropriate

(U, V,X1, Xz, ... Xm,J, Z) whose f(H(U|ZV)) — f(H(U|JV)) is
LT, FHUAVZ(0)) — fH UV (i)

This would be possible if the following region is convex:

{r e R|3U, V satisfying(V —U — X1 Xs...X,,, — JZ) such that- = f(H(U|ZV))— f(H(U|JV))}.

Since we can continuously move from — U; — X1 Xs.. X, —JZto Vo — Uy — X1 X5.. X, — JZ
while having the expressiond (U|ZV) = H{UVZ) — H(ZV) andH{U|JV) = HUJV) — H(JV)
change continuously, the above region has to be convex (ifnepy function is continuous in the whole
probability simplex). The proof for this part is now comdt

Property number 2.

Let H(F|X;) = 0, wherel < i < m. It is enough to show that for any, the following inequality
holds:

FHAS (X0 Xos oo X X0t XSUI)) + S —ome—way (X1 Xo.o Xon; TO)|| Z)} >

FTHIS(XOF; o Xy F5 (X1 )95 (X F) DT F)) 4S5 —one—way (X1 X2... Xpn F; (JF) ) | ZF)}

It is clear that

S(X1; Xoioos Xus X1 s X|IT) =
S(X1F; i Xy F; (Xy1 F) O s (X )| T F)
because the secret key rate itself satisfies the secondriyrayfelheorem 1. It remains to show that
St —one—way (X1 X2 Xon; T Z) = S one—way(X1Xa... Xpn F; (JF) || ZF).
Since H(F'|X;) = 0, we can rewrite the last inequality as:
S f—one—way(X1 X2 Xin; SN Z) 2 S1—one—way(X1 X2 X (JE) | ZF)

Take some arbitrary/ and V' satisfyingV — U — X;X»...X,, — JZF. It can be verified that for
U=UF andV = VF, the Markov propertyy/’ — U — X1 X,...X,,, — JZ holds. For this choice o¥
andU:

FHUVZ) - fHUVI) =
HH(UF)\(VF)2)) ~ f(H(UF)|(VF)JD) = f(HU|V(ZF))) — f(HU|V(JF))).

The proof for this part is now complete.

Property number 3.

By taking an approach similar to the one we took in the prodhefsecond condition, it would suffice

to show that

St—one—way(X1X2.. X I Z) > St—one—way(X1X5.. X5 I Z).
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TakeU andV satisfyingV — U — X{ X}... X/ — JZ. DefineU; andV; in the following way:
p(Uh, Vi, X1, Xo, oo, X, Z,J) =
p(Vi|UL).p(U1) X}, XY, o, X)) .p(X 1, Xo,y ooy Xin Z0), p(V1|UL) = p(V|U)

and
PULXY, Xbooes Xip) = p(U|XY, X, ooy X).

It can be proved thalt) —U; — X1 X5...X,, —JZ and that(V;, Uy, J, Z) has the same joint distribution
as (V,U, J, Z) implying f(H(U1V1Z)) — f(H(U:|W1J)) = f(H(U|VZ)) — f(H(U|VJ)). The proof
for this part is now complete.

Property number 4.

We need to prove that

FHI(S(X05 X5 s X)) + S5—ome—way (X1 Xoee. X3 T Z)} 2
H(X1|Z) — S0, H(X4|X,).
If H(X1]1Z2) <>, H(X1]X;), the inequality clearly holds. So we assume
H(X1|Z) > 3500, H(X1]X5).
Using the fact thatS( X1, Xo, ..., X, ||.J) itself satisfies property 4 of Theorem 1, and the definition of
St —one—way, ONE can lower bound
FHAS (X1 Xog o X | ) + Sp-one—way (X1 X2... X3 J[| 2) }
by
F7H S (max(0, H(X1]T) = 3210, H(X1]X0))) + max(0, f(H(X1]2)) — f(H(X1] )]}
Having assumed thall (X1|Z) > > ", H(X:|X;), one of the following three cases must occur. In
each case, we will prove that
FHS XD oo X]T)) + S —omeway (X1 Xons TN 2)} = H(X112) — S0y H(X1]X,y).
1) H(X1|Z) < H(X1]J): In this case,
FUHXT) = Y0, HXG X)) > f(H(XZ) — S, H(X] X)) > 0.
Therefore the lower bound
M f (max(0, H(X1|J) — Y, H(X1|X,)]) +max(0, f(H(X1]2)) — f(H(X1|))]}
equals
FTHPHXG]T) = S, H(X] X))
and is itself bounded below by
FTHIHXZ) = Y0, HXG X)) = H(X1|Z) = Y0, H(X X)),
2) H(X1|Z) > > "y H(X:|X;) > H(X;1]J): In this case, the lower bound
f7Hf (max(0, H(Xq| ) = 357, H(X:1| X)) + max(0, f(H(X1|2)) — f(H(X:|]))]}
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equals
FHIH (X 2)) = f(H (X))}
But since
fH(X12)) = f(H(X1]|Z) — H(X1]J)) =
FHX|T)) = £0), f7HF(H(X1|2)) — f(H(X1]T))}
can be bounded below b¥ (X,|Z) — H(X1|J) which in turn can be bounded below by
H(X1|Z) = 2205, H(X:1]X5).
3) H(X1|Z2) > H(X:|J) > > iy H(X:|X;): In this case the lower bound
FHF (max(0, H(X1|T) = 3230 H(X1]X0)]) + max(0, f(H (X1]2)) — f(H(X1|7))]}
equals
FTHIH X)) = 30 H(X0| X)) + f(H(X1]2)) — f(H(X1]7))}.
Since
H(X112) > H(X1|J), f(H(X1]12)) = f(H(X1]Z) = 3232, H(X1|X5)) =
FH X)) = fH (X)) = 3052, H(X]X5)).

Therefore
FHX]T) = 200, H(X0 X)) + f(H(X1|2)) — f(H(Xq]J)) =
FH(X411Z) = 3000 H(X1]X5)).

Therefore:

FHAHXLT) = 3200 H(X0 X)) + f(H (X1 2)) = f(H(X4] )} >
FHAHXZ) = X H(Xq1X0)} = H(X:1]Z) — YL, H(X1]X5).
In all the three cases we have proved that
FHAS (X1, oo, X)) 4 Sf—one—way(X1-Xm; T 2)} > H(X1|Z) — 330 H(X1|X5).
The proof for this part is now complete.
Property number 5.
It is enough to show that for any, there exists/’ such that the following inequality holds:
FHA(S (0 Xos oo Xy XUt X)) +
St one—way(X1X2.. Xpn; JO|| 2)} >
PSS My s X My X X 17) +
St one—way(X1 M1 ... Xy My Xy X J O 2)}
Take an arbitrary/ jointly distributed with (X7, X, ..., X,,, Z), and defineJ’ so that a)
p(J' X1, Xoy oy Xon, Z, My, ..., My) = p(J' X1, Xoy ooy Xn, Z).p(My, ..., M)
and b)
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TABLE 11l

JOINT PROBABILITY DISTRIBUTION OF X1, X2, X3

X1X,
X3 00 01 10 11
0 1 0 103 107
1 107 103 0 1

p(J'| X1, Xo, oo, Xon, Z) = p(J| X1, X2, oo, Xom, Z).
It is clear that
S(X15 e Xt X155 (X)) >
S(Xy My; oy X My; X5 X511.77)
because(J'| X1, Xo, ..., X;n, Z) = p(J| X1, Xo, .oy Xon, Z)
and the secret key rate itself satisfies property number Shebiiem 1. It remains to show that
St one—way (X1 X0 Xon; T Z) > St—one—way (X1 M1 XoMa.... Xy My Xy i1.. Xom; )| 2).
Take someU andV satisfyingV — U — X1 X5...X,,My...M,, — J'Z. Since My, M, ..., M, are
independent of X1, X, ..., X,,,, Z,J'), My, M>, ..., M, can be thought of as playing the role of an
external randomness employed By X5...X,, to createU andV. Thus, if we let
p(V.U|X1X5.. XnJZ) = p(V,U| X1 Xy.. XpnJ' Z)
V,U will satisfy V — U — X1 X...X,, — JZ. For this choice of andU:
FHWUIVZ)) = f(HUV])) = fHUVZ)) = f(HU|V])).

The proof for this part is now complete. °

C. Appendix I

In this appendix, we prove th&t(.) is not a concave function. Tables (lll) and (IV) define prdigab
distribution of binary random variableX,, X,, X3, X/, X/, X!.

Let (Y1,Ys,Y3) = 0.5(X1, Xo, X3) + 0.5(X7, X3, X35).

A simple calculation shows th& (X1, Xo, X3(|0) = T(X{, X4, X4||0) = 2.27.

T(Y1,Ys,Y3(|0) = 2.25 < 2.27 = 0.5T (X1, Xo, X3[|0) + 0.5T (X1, X5, X5]|0). ThereforeT'(.) is not

a concave function.
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TABLE IV

JOINT PROBABILITY DISTRIBUTION OF X7, X5, X}

X1X;5
X} 00 01 10 11
0 1 0 107 203
1 103 107 0 1

D. Appendix IV

Lemma A4.IFor any random variableX,, X, ..., X,;, and Z taking value from sets1, X2, X3, -
Xm+1 and for anye > 0, there exist a natural numbér such that for any: > M, there exists random

variableC such that

« H(C|X]) =0;

« X7 could be reconstructed fro¥ and X' for all j with probability 1 — e;

o 11(C;2") < €+ max(0,I(X1; Z) — min; I(X1; X;));

o LH(X7|CZ™) > max[0, min; I(Xy; X;) — I(X1; Z) — €.

Proof:

We will find a mappingf : x7 — {1,2,3, ..., 2"max; H(Xi|[X5)+ea)y sych thatC' = f(X7) satisfies the
required properties: < 1 is a small constant that will be specified during the proof.

We consider two cases: In the first case we asslifig; Z) — min; I(X;; X;) > 0. In other words
max; H(X1]|X;) > H(X1|Z). Consider the scenario in which the first terminal wants tabés the
terminals X, X3, ..., X,, and Z to recover his message with probability at least ce. Slepian-Wolf
tells us that there is a natural numb&f such that for anyn > M, there exists random variable
C = f(X7) of entropyn[max; H(X1|X;) + ce] that would work. Among the four properties th@thas
to satisfy, all but the third one are trivial. Regarding th&d inequality one can write:

[(X{:27) = 1(C; 27) + 1(X} 27(C) = 1(C; 2") + H(X}|C) — H(X}|CZ™).

According to the Fano inequality (X7|CZ") is of ordern(h(ce) + celog |A;|) since X7 can be
recovered fromC'Z" with probability 1 — ce and the logarithm of the support set of these random
variables is of ordem where A; is the alphabet set ok;. The constant can be chosen so that

h(ce) + celog|Aq] < e.
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We get the desired bound ai{C; Z™) by noting thatH (X7 |C) = H(X}) — H(C) = n[H(X;) —
max; H(X1|X;)] = n.min; I(X;; X;).

For the second case, we assume #{&; Z) — min; /(X; X;) < 0, or in other words

max; H(X1|X;) < H(X1|2).
Slepian-Wolf shows the existence of a natural numhésuch that for anyn > M, there are random
variablesC = f(X7') of entropyn[max; H(X1|X;) + ce], andC’ = g(X7) of entropyn[H (X:|Z) —
max; H(X1|X;) + ce] such thatX] is recoverable from(, C’,Z™) with probability 1 — ce, and from
(C, X7') for any j with probability 1 — ce. Now,

[(X];CC'Z™) = I(XP; Z2) + H(CC'|Z™).

On the other hand,

I(X},0C'Z") = H(X}) — H(X}CC'Z™) = H(XT) — n(h(ce) + ce. log |Aq]).

The constant can be chosen so thaf{ce) + ce.log |A;| = e. ThereforeH (CC’'|Z"™) = H(X]) —
I(X7Z™) —ne > H(C) + H(C") — ne. In the last inequality we have used the fact that the valdes o
H(C) and H(C") are known.

But sinceH (CC’|Z™) = H(C|Z™) + H(C'|CZ™), we can conclude-I(C; Z™) + L1(C";CZ™) = .
This proves the third property that has to satisfy, i.e%I(C; Z™) < e. The fourth property can be
proved by noting that

LH(XP|CZ") > LH(C'|0Z™) > LH(C) - 1(Ch;,CZm)] >

min; I(X1; X;) — I(X1;7) — e °
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