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Abstract

This is the second part of a two-part paper on informaticrothtically secure secret key agreement.
This paper focuses on the secret key rate problem undechtaenel modellin the channel model, a
set of two or more terminals wish to create a shared secretHatyis information-theoretically secure
from an eavesdropper. The first terminal can choose a sequanmputs to a discrete memoryless
broadcast channel, which has outputs at the other termamalsat the eavesdropper. After each channel
use, the terminals can engage in arbitrarily many roundstefactive authenticated communication over
a public channel; thus, each input by the first terminal cgmedd on the previous inputs and the public
communication so far. At the end of the process each ternsinalild be able to generate the key. We
introduce a technique for proving that a given expressioands the secrecy rate from above. Using
this technique, a new upper bound on the secrecy rate in therglemulti-terminal case is proposed
that strictly improves the currently best known upper baung also derive a new lower bound on the

secrecy rate and prove that it strictly improves what is @&y the best known lower bound.

Keywords Secret key agreement, unconditional security, secreggay, common randomness, public

discussion, channel model, security.

. INTRODUCTION

In this paper, we study the problem of determining the maxiriaformation-theoretically secure
secret key rate against a passive eavesdropper in a wellrksetting in the information-theoretic security
literature, called thehannel model

The history of this model dates back to an early work by Wydé{,[who studied what may be called

a “degraded broadcast scenario”. In this setting Alice isnezted to Bob by a discrete memoryless

January 23, 2008 DRAFT



channel. The eavesdropper, Eve, receives a noisy versidineobutput at Bob’s end. In a subsequent
work, Csiszar and Korner [3] generalized Wyner's modeldsguming that Alice is connected to Bob
and Eve through a broadcast channel. The channel from Adideve in this model is not necessarily a
degraded version of the channel between Alice and Bob. fndbénario, the secrecy rate, as one might
expect, would be zero if the channel from Alice to Eve is sgemthan the channel from Alice to Bob.

The scenario considered by Csiszar and Korner was fugkeeralized by Maurer [7], who made
the interesting observation that even if the channel froceAto Eve is stronger than the channel from
Alice to Bob, Alice and Bob may still be able to generate a cammsecret key if we allow Bob to
send authenticated but public messages to Alice. This watsen led to the formulation of the two main
models in this area, introduced by the works of Ahlswede asidZar [1], Csiszar and Narayan [4] and
Maurer [7], thesource modetand channel modelin this paper, we focus on the channel model. There
are m terminals interested in secret key generation against aersary Eve. A discrete memoryless
broadcast channel exists from the first terminal to all otteeminals, and to Eve. The input to the
channel is governed by the first terminal while the other teafs, as well as Eve, observe the outputs
of the broadcast channel at their end. In what is traditignedlled the channel model, after each use
of the channel by the first terminal, all the terminals are allowed to engage in arbitrary many rounds
of interactive authenticated communication over a pubtiarmel. We consider a generalization of this
where only the first: terminals { < u < m) are allowed such communication; terminals-1 < i <m
listen and must participate in secret key generation, babhagtalk. This generalization is motivated by
the desire to put one-way capacity and interactive capacitthe same footing, and fits naturally with
the corresponding generalization that we made in the sauomel [6]. Note that we assume, mostly for
notational convenience, that terminal 1 is allowed to pgoéte in the interactive authenticated public
communication.

Note that each input to the broadcast channel by the firstineins allowed to depend on the past
inputs and on the public communication so far. At the end efdhtire process, i.e. of theinputs and
of the interactive public communication after each inpache terminall < i < m generates random
variableS; as its secret key. Alb;’s should with high probability be equal to each other andg tsieould
be approximately independent of Eve’'s whole informatioterathe communication, i.e. the outputs
at Eve’s end of the broadcast channel, and the entire puidmussion. The achieved secret key rate
would then be roughly%H(Sl). The highest achievable secret key rate, asymptotically,irs called
the secrecy capacity. For a precise formulation see segtion

Calculation of the exact secrecy capacity remains an uadoproblem, although some lower and
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upper bounds on this quantity are known. For the case ef 2, the best known upper bound explicitly
mentioned in the literature, as far as we are awareyiigsup,(,) {(X;Y),sup,) [(X;Y|Z))], which
was proposed by Maurer [7]. This can however be easily gépedatoinf;_, . [sup,) [(X; Y|Z)).
The best know lower bound, as far as we are aware, is

SUPp(z) max{supy_y_x_yz[[(U;Y|V)=I(U; Z|V)], supy v _y_xz[[(U; X|V) = I(U; Z|V)]},
which one can find in [4], [7].

In this paper, we improve the above mentioned upper boundiseosecret key rate. Our proof technique
is similar to the one for proving upper bounds in the first mHrthis paper [6], but this paper can be
read independently of [6]. The idea is to define a potentiatfion and show that for any valid secret
key generating protocol, the potential function startsrfrthe upper bound and decreases as we move
along the protocol, and eventually becomes equal to theeeetiisecret key rate of the protocol.

We also derive lower bounds on the secrecy rate by explogimgnew lower bound on the secrecy
rate in the source model, which was proved in [6]. An examplprovided to show that the new bound
is strictly better thaninf,_, . [sup,) [(X;Y|Z)].

The outline of this paper is as follows. In section 2, we idtroe the basic notations and definitions
used in this paper. Section 3 contains the main results sfghper. This is followed by section 4 and

two appendices which give proofs for the results.

1. DEFINITIONS AND NOTATION

Throughout this paper we assumg, Xo, ...., X,, and Z are m + 1 possibly dependent random
variables each taking values from a finite set.

Our multi-terminal channel model is basically the same &sahe studied in the literature, see e.g.
[8]. We however relax the uniformity condition on the genedasecret key. Maurer in [7] argued that the
assumption of uniformity could always be added without losgenerality. We study the weak notion of
secrecy throughout this paper and assume that.gkrminals are interested in secret key generation. It
is known that the weak and strong secret key rates are equa@{B model is however somewhat more
general in the sense that it assumes that only some of théntdsnare able to participate in the public
discussion. Throughout this paper, we assume that tersnipal ..., u (1 < u < m) are allowed to talk
while terminalsu + 1, u + 2, ...,m are silent.

Given an ordered sequence frandom variables taking values from some finite set we detiate
i" of these by notation such as(i). We write X for (X (1), X(2), ..., X(4)). For X" we will often

instead writeX™.
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Definition 1.Let q(x2,x3, ..., Xm, z|x1) be a conditional distributiom be a natural numbe¢,be a posi-
tive real numberﬁ> = (61, 82, ey 6n) be a collection of: finite sets of discrete random variablgs :
i=1,2,...,n. Eachai is a finite set of discrete random variablé—é; = (52-(1), 6’2(2), s Bi(r(i))).
Let My, Mo, ..., My, X{', X3, ..., XJ}, Z™ and Sy, S, ..., Sm beu+ (m + 1)n + m discrete random
variables.

Consider the following conditions:

1) Fori=1,2,...,n:

p(X2(i) = 22(i), ooy Xin (1) = 2 (3), Z(3) = 2(3)| X1 = 2}, Xo ™t = 231 X L1 =
phi=l Zli=l — pUi=l N — iy My, = my,) =
q(x2(1), -+, xm (1), 2(1) [x1 (1));
2) Fori=1,..,n:
H(X1(i)|C1, Cay ..oy C i, My, X 1) = 0

3) p(My...My X1 (1), X2(1), ..., X (1), Z(1)) = p(M1)...p(Mu)p(X1(1), X2(1), ..., Xin (1), Z(1));

4) H(C:(j)|C1,Cayoy Cist O IXEM) =0 Vs:1<s<u, s=j modulom. This means
that the indexing of the communications is done in roundmrabider and each communication is
adapted to the available information of the communicator.

Furthermoreﬁi(j) =0Vi,j,s:j=s modulom ands > u. This means that-th terminal is not
allowed to participate in the communication;

5) H(S;|C,X"M;)=0for1<i<u
H(S;|C, XM =0foru+1<i<m.

This means thab; is created byi-th terminal at the end of the entire process;

6) P(S; =5, =53=..=S5,)>1—c This ensures the reliability of the generated keys;

7) %I(Sl; zZ", 6) < e. This ensures that the generated key is almost hidden freneakiesdropper.

Intuitively, n represents the number of communication rourﬁ%;represents communications at the
i-th stage;M1, M, ..., M, represents external randomness provided to theitstminals.

The data typing condition SKn, €, S1, S2, Ss,..., Sm, 6 My, My, ..., M, X1, X3,..., X}, Z™) is
said to hold iff all above-mentioned conditions are satikfilo any Sk data type, we assign a number
called thegain of the SK- data type which is defined a§H(Sl). °

Definition 2: C¢ p; (u, q(x2x3...xmz|x1)), the e secret key rate, is defined as:

lim sup sup Gain(SK)
"0 SR (nye, 81,852,850, Sm, C Moo, Mo, X7, X5 X1 Z7)
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Definition 3: Copr(u, q(x2x3...xmz|x1)), the channel model secret key rate, is defined as:

2% Cépr(u, q(x2x3...Xm2|x1))

°
Note that we have allowed the first user to participate in tbblip discussion and to randomize.
Further, all the terminals who participate in the publiccdission, i.e. terminal$ < i < u, are allowed
to randomize. The assumption on the participation of thé fimminal in the public discussion can be
removed but this terminal must be allowed to randomize. @tise, the inputs to the broadcast channel
will be always a deterministic function of the public comnzation and thus known to the eavesdropper,
resulting in zero secret key rate. It is legitimate to diffietiate between the ability to randomize and
the ability to participate in the public discussion as lorggtlae first user is concerned. For the sake of

notational simplicity, however, we allow the first user tatmapate in the public discussion.

I1l. STATEMENT OF THE RESULTS

In this section, the main results of the paper are formalyspnted as theorems 1 through 4. Following
each result there is an informal discussion of it in orderit@ @n intuitive feeling for the result.
Theorem 1For eachj > 1, let p;(p(x1,x2, ..., zm, 2)) be a real-valued function from the set aif
probability distributions defined on a product afly m + 1 finite sets. We sometimes use the notation
0 (X1; Xo; X35...; X0, || Z) to refer to p;(p(x1,x2, ..., Tm, 2)) When (X, Xo, ..., X, Z) has the law
p(x1, ..., Tm, z). FOr any conditional distribution(x2, x3, ..., Xm, 2|x1),
P(a(x2, X3, -y Xm, 2[X1)) = SUPy(a,) P1(q(21)-A(X2, X3, -, Xm, 2[X1))
would be an upper bound dfic g (u, q(x2, X3, ...xm, z|x1)), the channel model secrecy rate assuming
that only the firstu terminals are permitted to talk, ip;(; = 1,2,...) satisfy the following for all
p(T1, X2, ey Ty, 2):
1) Whenever
H(X{|X;) =0 and
X1 X0 XnZ — X1 — X, — X|X5.. X!, Z" and
p(ah, ab, .,z 2 |2)) = q(x2, X3, ..., Xm, 2X1)
are true, we have:
i1 (X1 X7 XoXo5 s X X0, 1227) < 0 (X015 X230 Xin |2) + (a2, X3, -y Xm, 2[%1));
2) For any random variabl& such thatd: < « : H(F|X;) = 0, we have:
0 (X105 X5 s X | Z2) = 0 (X0 Fs Xo s X F|| ZF);
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3) For any random variableX/, X/, ..., X/ such thatvi : H(X/|X;) = 0, we have:
0i(X1; X235 X | Z2) > @i(XT; Xb5 .5 X1, 11 2);
4) ¢;(X1; Xo; s X1 Z) > H(X1|Z) = Y00, H(X4]X5);
5) Whenever for random variabléd,, Mo, ..., M,
p(My, My, ..., My, X1, X9, X3, ..., Xm, Z) = p(M1)p(Ms)..p(My)p(X1, Xo, X3, ... X, Z)
is true, we have:
0 (X1; X255 Xin [|Z) > 0 (M1 X713 Mo Xo; s My Xo; Xut1; o5 X || Z).

Discussion:For eachj > 1, the quantityy;(p(z1,z2,...,zm,2)) can be intuitively understood as
representing the secret key rate per channel use that ishf@#swe insist on first usingj channel
uses to create the distributigrizy, zo, ..., z,,, z) and then work with this distribution as the “raw” joint
distribution across a new discrete memoryless channeh Wis rough picture in mind, condition 1 can
be understood as saying that having already insisted onimgovkith a j-channel use(z, z2, ..., Tm, 2),
one more use of the channel can at most buy us the channelityapa@a per use basis. Condition 2
says that further insistence on working with a distributibiat results from a particular kind of use
of the authenticated public channel by any termihak i < w cannot increase the per channel use
secrecy rate. Condition 3 has a similar interpretation.hE@fcthese conditions has been stated only for
the case where the corresponding maps are deterministicjsttsufficient because the possibility of
randomization by any of the first terminals is covered by condition 5. The right hand side ofdition
4 is a convenient expression that is easily seen to be a loagndon the corresponding secrecy rate;
other such expressions would have worked as well. Finatpdition 5 would apply if independent
randomization was freely available to the terminals who tzd i.e. terminalsl < i < u. °

Theorem 2.Let [m] and [u] respectively denote the sefs,2,...,m}, {1,2,...,u}. For everyA =
(A, B C [m]) such that for each-tuple (R;, Rs, ..., R,,) of real numbers we have

> BBC(m),B O[ul£0,B£m] MB 2jen ) B = 2j=1 1
the following inequality holds:
Con(u,q(x2,X3, ...Xm, z|x1)) <
suPp(e) (L p(1xs . x 2y ([ (X1 Xl T) = TN (X0, Xy oo, Xy XU, X0 |1T) +
I(X1X9.. X3 J|Z)]) }

In this expressiont Xy, Xo, ..., X;,,, J, Z) have the lawp(x1)q(x2, ..., Xm, z|x1)p(j |21, .oy T, 2), A IS

the mnemonic for\g, B C [m]), and (X1, X, ...,Xu,XffZl, ...,X,(,f)HJ) is defined as

2 BB ml, B Oul 20, B2im) ABH (XB )| XBeJ).
Discussion:The above upper bound can be written as the infimum over thefsst valid A of
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SUPp () (0 p(1 s x 2y ([ (X1 Xl T) = TN (X0, Xy oo, Xy XS X0 [1T) +
I(X1X2...Xm;J]Z)])}.

If the infimum overA is swapped with the supremum ovér:, ), one gets the following lower bound
on our upper bound by applying theorem 6 of the first part of gaper:

SUP, (o) {I0f g3, X0 2) ([S(X1 5 Xo s s Xo 5 (X1 ) s (X )T +
I(X1X9.. X3 J|Z)]) }

For the notation see [6]. We were not able to prove that thigllemexpression is an upper bound on
Ceom(u,q(x2,X3, ...Xm, 2[X1)). °

Theorem 3In the case ofn = 2, the new upper bound ofc (2, q(y, z|x)) equals

SUpy () Inf s [I(X;Y|JT) + I(XY5 J|Z)].

This bound strictly improves thmin[supp(x) I(X;Y), SUPp(z) I(X;Y||Z))] bound proposed by Maurer
[7]. It also improves the stronger upper bound, , . SUPp(z) I(X;Y|Z) mentioned in the intro-
duction.

Discussion:infy_,_ . sup,) I(X;Y[Z) is an upper bound 06'c (2, q(y, z[x)) because for every
choice ofp(z]z) the channel model secrecy rate is no bigger thap, ) I(X;Y|Z). We will in fact
prove that the new bound is strictly smaller thaup,, inf_,_y I(X;Y[Z), which in turn is no
bigger thaninf,_, _yy sup,,) [(X;Y|Z). °

Theorem 4 Assume thaty < p are two arbitrary natural numbers agtl;, Us, ...,U,) are arbitrary
random variables satisfying the following properties:

o U; (i=1,2,...,p) takes values from a finite set;

o p(U1,Us, ..., Up| X1, Xo, X3, o0; Xiny Z) = TTP—; (Uil Ui -1 X5 mod m);

e Forallr >u, we havelU; =0Vi:i—r ="0.

Ccon(u,q(x2,x3, ...Xm, z|x1)) is bounded from below by

SUD(z,) 2 j—g i1 <r<m I (Us Xo|Urij—1) — 1(Uj; Z|U1:j-1)]
where (X1, X, ..., X,,, Z, Uy, ..., Up) inside the supremum has joint distribution
p(X1)a(X2, X3, .. Xm, 2|X1)p(Ur, Us, ..., Up| X1, X2, X3, ..., X, Z).

In the case ofn = 2, the new lower bound of'cr(2,q(y,z|x)) derived by taking supremum over
all valid (q,p,Us,Us,...,U,) strictly improves thesup,,,[max(S(X;Y 9] 2), S(X®);Y|Z))] lower
bound, where in this expressiofi(X;Y (¥ Z) is the source-model one way secrecy rate friimo Y’
in the presence of, see [6].

In this Theoremy (written in italics) is a non-negative integer and should be confused with the

conditional distributiong(xs, X3, ...Xm, z|X1).
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Discussion:Cop (u, q(x2, X3, ...Xm, z|x1)) IS bounded from below by
SUPp(a,) S (X715 Xo; ...;Xu;XfﬁZl; ...;X,(,f)HZ) (see [6] for the notation)
because the first terminal can always insert i.i.d. repeitiof anyp(x;) at the input of the broad-
cast channel[7]. We then apply theorem 7 of the first part &f ffaper [6] to bound from below
S(X15 X3 X3 X35 X001 Z) by
> gmini << I(Uss Xi|Uijo1) = 1(Uj; Z|Un;j-1))-
The proof for this theorem mainly involves proving that iretbase ofm = 2, the new lower bound

strictly improves thesup,(,y [max(S(X;Y®)|2), S(X®);Y]|Z))] lower bound. °

IV. PROOFS OFTHEOREMS1-4

Proof of Theorem 1Fix a probability distributiony(xs, x3, ..., xm, z|x1) and assume thaf,, X, ..., X,
and Z take values from the discrete finite se&ts, : = 1...m + 1. For everyd > 0 ande > 0, one can
find a valid data type SK(n, ¢, S1, Sz, S3, «s Sy C My, Ma, ..., My, X2, X3, ..., X", Z") whose
gain is withiné of C¢& (u, q(x2, ..., Xm, 2|x1)).

We have:
n¢(q($27 L3y -5 Ty Z|$1)) >

(n — 1) é(q(w2, 23, .oy T, 2|71)) + 01(XT; X355 XL 21 >
(n — 1)¢(q(z2, T3, ooy Tm, 2|21)) + o1 (M1 X1 Mo X35 o My X5 X2 XL ZY) >
(n —1)o(q(x2, 23, ...y T, 2|21))

+ o (My X1 C oy MyX3Cs s MUXEC XL, C . XL C || 21 C ) >
(n —2)o(q(x2, 3, ..., T, 2|21))

+ oo (MY X 2T My X22C ;o My X120y X122 €. XE2CH || 220 ) >
(n—2)d(q(x2, 3, ..., Ty, 2|21))

+ 302(M1X11:26'>1:2; M2X21:281;2; e MuX&QZ')l:z; X&:_Elal:Z---Xylr?E)l:Z‘|Zl:281:2) >
(n —3)o(q(x2, 3, ..., T, 2|21))

+ g (MyXE3C 1g; My XE3C g5 s My X153 Cy93 X133, C 119, X3 C 1) 213 C 1) >

ol Im A Im A Im A el Im A
On (M1 X7 C iy Mo X5 Cipy oo My X" Ci Xy Cron o X Crinl|| 277 Cig) >
l'n_> l'n_> l'n_> 1:n P2l l'n_> l'n_>
Spn(Mle' Cl:n;M2X2' Cl:n§-'-;MuXu' Cl:n;Xu'_HCl:n-'-Xm' Cln”Z ' C'1:n) >
©n (S1; So; ...;SmHZL"Z’)Ln) >
.n_) m
H(S1|Z5"Cin) = YTy H(S1]S5) >
nCé&y (u,q(x2,X3, ... Xm, 2[x1))) — nd — (m — 1)[h(e) + enlog [T, |Al]
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The last inequality in this chain is a consequence of Fam&guality. The inequality and its analogs
are valid because satisfies property number 1 of theorem 1. All the other indijes are consequence
of other properties required in theorem 1, in a straightéydwvay.

The above inequalities show that

D(X1; Xo; X335 Xin|| Z) > C&py (u, a(x2,X3, ... Xm, 2[x1))) — 6 — 2L [h(e) + e.nlog [T, |As].

The first part of the theorem is proved by taking the limitcagnd § go to zero. °

Proof of Theorem 2Fix a A = (A, B C [m]) satisfying the conditions of the theorem. In order to

prove this theorem, it is enough to verify the five conditimigheorem 1 when for alj > 1 we set:

0 (X1; Xo; X35 X |1 Z) = 1( X5 Xo; X35 X || Z) @
= inf (H (X1 Xy | J) = 78(X1, Xa, ooy X, X X))

WhereTA(Xl,Xg,...,Xu,qus_gl,...,Xﬁf)HJ) is as in the statement of the Theorem. In appendix |, we
show that this choice satisfies the five conditions of Theotemus completing the proof. °

Proof of Theorem 3The only possible value foh;;, and Ag,, in the case ofm = v = 2 is one.
The upper bound, therefore reducesi®,,, inf,[1(X;Y[J) + (XY J|Z)]. In order to prove that this
bound strictly improvesup,,infz_,_yy I(X;Y|Z) we use the example of Renner and Wolf in [9].
X andY take values from the sd0, 1,2,3}. Assuming thatP(X = i) = p;, Table (I) characterizes
the conditional probability distribution of given X. The conditional distribution o given X andY

is specified by the following equation:

(X +Y) mod 2 if Xe{0,1}
X mod 2 if X € {2,3}

Renner and Wolf proved that for the choicegf= % fori=0,1,2,3 andU = L%j, one has
I(X;YlZ):g I(X;Y | ZU)=0
whereI(X;Y | Z), known as the intrinsic information is defined s , . I(X;Y|Z) [9].
Therefore

The proof will be completed if we can show thatp,,, inf ;[1(X;Y[J) + I(XY;J[Z)] < 1.
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TABLE |

JOINT PROBABILITY DISTRIBUTION OF X AND Y

Let

U if U=0
Jo =
Uz if U=1

We can upper bounsip,,, inf s [1(X;Y|J) + (XY J|Z)] by sup, [{(X;Y[Jo) + [(XY; Jo|Z)].

Since I(X;Y|Jy) = 0 and I(XY;Jo|Z) < 1 for all p(z), sup,, inf,[I(X;Y]J) + [(XY; J|Z)] is
less than or equal to one. °

Proof of Theorem 4C¢c g (u, q(x2,X3, ...Xm, z|x1)) IS bounded from below by

SUPp(a,) S (X1; Xo; ...;Xu;XfﬁZl; ...;X,(,f)HZ) (see [6] for the notation)

because the first terminal can always insert i.i.d. repeistiof anyp(x;) at the input of the broadcast

channel[7]. We apply theorem 7 of the first part of this papebaund from below
S(X1; Xos s X3 X015 X511 2) by
L mini << I(Uj; X, |Urj—1) — I(Uj; Z|Uyj-1))-

For the case ofn = 2, we first prove that the new lower bound 6f-(2, q(y,z|x)) is not worse
thansupp(w)[maX(S(X;Y(S)HZ),S(X(S);YHZ))].

Take some particulap(z), and consider random variables, Y and Z with the joint distribution
p(z)a(y,z|x). Take arbitrary random variabldg and 1, satisfying the Markov chai, — V; — X —
YZ. Letp = ¢ =3 andU; = V,, Uy, = 0, U3 = V;i. The lower bound achieved by this choice
of p(z), p, ¢ and (U1, Uy, Us) is I(Va;Y|V1) — I(Va; Z|V1). Therefore the new lower bound is no
worse thansup,,(,) S(X; Y ()| Z). It can be similarly proved that the new lower bound is no wdsgan
supp() S(X; Y Z).

Now we construct an example in which the new lower boundtstrimproves
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SUP (o [max(S(X; Y91 2), S(X ;Y| 2)).

Assume thalX = (X1, X5),Y = (Y1,Y2), Z = (Z1, Z3). The conditional distribution ofY7, Ya, Z1, Z5)
given X; and X; is defined in figure 1. We prove that the upper boung, x, I(X;Y|Z) is equal to
the new lower bound but is not strictly greater than the mresilower bound.

In appendix II, with reference to figure 1 with = (X1, X»), Y = (Y1,Ys2) and Z = (73, Z»), it is
shown that for any) < ¢ < 1, I(X;Y|Z) strictly increases when

« X; and X, are not independent and we replageX;, Xs)p(Y, Z|X) with p(X;)p(X2)p(Y, Z|X);

« we change the distribution of; to a uniform distribution ifX; and X, are independent but; is

not uniform;

« we change the distribution of» to a uniform distribution ifX; and X, are independent buXs is

not uniform.

But whenX; and X, are independent, the paiX, Y1, Z;) and(X,, Y2, Z2) will become independent
and the upper bounfi(X;Y'|Z) = I(X1; Y1[Z1) + I(X2; Y2|Z2) = 1(X1; Y1) — I(X13 Z1) + 1(Ya; X2) —
1(Y3; Z3) will become achievable by the choice 6f = X; andU; = Y5.
Now, we will prove that
SUP, oy [max(S(X; Y9 2), S(X); Y| 2))]

is strictly less than
sup,(x) 1 (X;Y[Z).

Assume that this is not the case. Since for every choicg(.of, I(X;Y|Z) is as big as
max(S(X; Y] 2),S(X); Y| 2))

the supremum of the maximum of the two one way rates must mappen.X; and X, are independent
and have a uniform distribution. But in the proof of theorerofthe first part of this paper, it is shown

that under these circumstancksY; Y'|Z) strictly exceedsnax(S(X;Y ¥ 2),S(X®);Y]2)).

V. DISCUSSION

We have derived a new lower bound and upper bound on the geatecunder the channel model. The
latter was proved using a general technique for proving dhegrtain expression bounds the secrecy rate
from above, while the former was proved using the fact that; (u, q(x2, x3, ...xm, z|x1)) iS bounded
from below bysup, ) S(X1; Xo; ...;XU;Xﬁzl; ...;X,(,f)HZ).

The exact relation of the secrecy rate under the channel Inasde source model remains an open

problem. Both the new lower bound and the new upper bound thevgeneric form of
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Fig. 1. The conditional distribution ofY1, Y2, Z1, Z2) given X; and X».

SUPp(z,) F'(p(21)d(x2, X3, - Xm, 2[X1)).
One can then conjecture th@t r (u, q(x2, X3, ...Xm, z|x1)) equals
SUPp (o) S(X1: Xos oo X X150 X1 2).
If true, using the theorem 5 of the first part of this paper/ifor= 2, one can bound’c (2, q(y, z|x))
from above by
SUp, ;) infy f7HF(S(X15 Xai s Xus (K1) ®s s (X)W 1) +
St —one—way(X1Xa2.. Xm:; | Z)}
f : R>o — R>( is an arbitrary strictly increasing convex function ajiebone-way secrecy rates
defined as
St —one—way(X; Y O 2Z) = supy_y_x_y[f(H(U|ZV)) = fF(HU[YV))].
We do not know if this expression actually serves as an uppand onCcp(2,q(y,z|x)) for all
appropriate choices of, or less ambitiously for the particular choice ffz) = x. If it does, it may
represent an strict improvement over previous bounds.r@tbe, it will be evidence against the original

conjecture.

APPENDIX |

In this appendix, we prove that theg, j > 1 proposed in eqn. (1) satisfy the five properties of Theorem
1. Recall thatA = (A\g, B C [m]) is assumed to verify the conditions in the statement of #m@o2.
Let
08 (X1; Xo; X35 o3 Xon; J (| Z) = H (X1 Xy |J) —
TAX, Xy oy Xy X XSDNT) + T(X1 Xy X3 ] Z)

wheret (X1, Xo, ..., X,, Xff_zl, X,(;f)HJ) is as in the statement of theorem 2.
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In this appendix, for any subsét of [m] = {1,2,3,...,m}, we use the notatiotX z in reference to
the set of random variabl€s\y, k € B).
Property 1.
It is required to verify that:
inf (0N (X1 X{; Xo Xbi X3 X4 oo X X[3 T [ 22")) <
infj,(HA(Xl; Xo: X35 .0: Xom: 1| 2)) + d(q(z2, 23, ..., T, 2]|71)).
From the continuity of the relevant information theoretim¢tions, for any > 0 one can bound from
below
d(q(xo, 3, .y T, z||21)) DY
0(X1; X5 X5 ... X, J"||Z") — e for someJ”.
We will prove that the above inequality holds when we replagg xs, zs, ..., Tm, z||x1)) by this lower
bound. Without loss of generality, we can further assume tha
J — X1 X0 X Z — X1 — X — X|X}.. X, 2" — J"
because in the corresponding optimization problems depetyd
on p(J'| X1 Xy...X,n Z) andp(J"| X} X}... X!, Z").
In order to prove that
inf ;0N (X1 X5 Xo Xb; X3 XY oos Xpn X003 J|| Z22") <
inf 7, 0 (X1; Xo; Xsi ooy Xons J'[| Z) + 0MXT 3 X5 Xb; s X0 7| Z))
it would be enough to show that for any arbitrafy satisfying
J — X1 X0 XnZ — X1 — X} — X} X5.. X! 7" — J",
the following inequality holds:
07 (X1 XT3 Xo Xb; Xs Xb; oo Xon X3 J' || 22)) <
ON(X 15 Xo; X353 Xon; J'|| Z) 4+ 0N (XT; X5 X555 X5 T 2).
We claim that the following two inequalities hold:
H(X1.. Xy X0 X0 T T — 78X X X X, e, Xu XL (X1 X0 ) @) (X XL ST
< H(X1 Xy |J') = 78X, Xy ooy X, X XS +
H (X} X" = MX, X, X0 X X8 7);
and
I(X1 Xo.. X X! X5, X! - J' I 22") <
I(X1 X0 X3 J'|Z) + I(X] X5... X0, J"| Z").
Starting from the last inequality:

(X1 X9 Xpn X\ X4 X! ' T 22) =
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H(J'J"ZZ") - H(J'J"ZZ' X1 Xo.. X X} X5.. X! ) <

H(J'\ZZ')+ H(J"ZZ') -

H(J'|ZZ' X\ Xo.. Xy X! X}.. X! ) — H(J"|J' ZZ' X1 X5.. X, X[ X5 X! ) <

H(J'|\Z)+ H(J"|Z") — H(J'|ZX1X5.. X,,) — H(J"|Z' X[ X}.. X! ) =
I(X1X0.. X3 J'| Z) + 1(X] X} X!, J"|Z")

In stepi, we have used the Markov property
J — X1 Xo.. XpZ — X1 — X| — X|X}.. X, 2/ — J".

It remains to prove the other inequality. We first prove tratdvery setB C [m]:
H(Xp A X gl XBe X I ") = H(X1|Xpe X ' J") =
H(Xp A XpeJ') — H(X1|XpeJ") + H(X} | XpeJ") — H(X{| X J")

This equality is true because
H(Xp )X | X X I T") =

X5 X} A X1 X B X ' J") =
|XBCXBCJ'J”) + H(Xp nuXp A X1 X X J' ") =

H(X1|Xp X J'J") + H(Xp | X1 X X5 J'J") +

H(X | X0 X1 X g X e X e J'T") =1
H(X1|Xpe X' J") + H(Xp | X1 Xpe ) + H(X ]y 4| X1 X e T") =

H(X1| Xpe Xy J'T") 4+ H(X | X e ')~ H (X | X e J') 4 H(X g | X ) — H (X X 7).
In stepi, we have used the fact thaf(X/|X;) = 0 and in stepi, we have used the Markov property

J - X1 X0 XnZ — X1 — X} — X} X5..X! 7" — J".
This property lets us to rewrite the inequality we would likeprove in a new form:
H(Xy|J',J") =
2 B:Bcim). B Ofu#0,B4(m) ABH (X1 XX I, J") <
H(Xq|J') -
> B:BCm],B Oul£0,B£m) ABH (X1 X e ") +
H(X1|J") -
> BiBC[m),B Nu)£0,B£m) ABH (X1 X5 ")
Further, we can restrict the summation on those Bessich thatl € B (otherwise the term in question
would be zero).
From the definition ofA, we can write;
> B:BCm),B N0, B£m)1es A8 = 1 (this could be proved by setting; = 1, andR; = 0 for

1<i<u).
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Therefore
H(X11J', J") = 32 5. m), B )20, B4m) ABH (X1| XBe X J'J") =
> B:BCm),B ()20, B£m) ABIH (X1, J") — H(X1|Xpe X J'J")] =
2. BB, B O[u#0,B5(m] ABL (X1 Xpe X J'J").
Similarly we can rewrite the two other expressions. It wolbkethen enough to prove that
I[(X1; Xpe X |J'J") < I(X1; Xpe| J') + I(X1; X | J")
for all B C [m] such thatB # [m] and1 € B.

We have:
I[(X1; Xpe Xppo|J'J") = H(Xpe Xl |J'J") — H(Xpe X}y |J'J"X1) <
H(Xpe|J")+ H(Xg|J") — H(Xpe X .| J'J"X1) =*
H(Xpe|J') 4+ H(X}5.|J") — H(Xpe|J'X1) — H(X}p.|J"X}) =
I[(X1; Xpe|J') + I(X1; Xg.|J").
In stepi, we have usedi(X}|X;) = 0 and the Markov property
J — X1 X0 XnZ — X1 — X} — X} XX 7" — J". o
Property 2.

Let1 <i<wand letH(F|X;) =0. We need to prove that:
inf (02 (X1 Xo; X35y X3 J [ 2)) >
inf 5, (0 (X1 F; XoF; X3F; ...; X, F3 J'|| ZF))
It is enough to prove that for any, there is aJ’ such that:
OM(X1; Xo; Xs5.0; Xons J(| Z) > 0N X1 F; XoF; X3 F; . X F; J'|| ZF)
Let J' = JF. Sincel(F;J | Z) > 0, one can show that the above inequality would hold if:
Since H(F'|X;) = 0, we can rewrite the above inequality as follows:
H(F|Xpg-J) is bounded from above b¥ (F'|J) hence
H(F|J) = X p.pclm), B Nul£0,B4m] ien ABH (F|XpeJ) 2
H(F[T)-(1 = X2 p.Bcim], B N[u]£0,B#[m] icB AB)-
But

L= > B.BCim), B Nu)#£0,B£m],icB AB =0
This could be proved by setting; = 1, and R; = 0 otherwise in the inequality involving?;’s. e
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Property 3.
We need to prove that:
inf 7(0(X1; Xo; X33 ...; X3 J[1 2)) >
inf 5, (0(X1; X5; X45..; X73 J'[1 2))
It is enough to prove that for any:
0(X1; Xo; X3: .. Xins J|| Z) > 0(X{; X X555 X3 || 2)
It is clear that
I(X1Xo.. Xp; J|2) > I(X] X} X! J| 2).
It remains to show that the first two terms of the expressioat is
H(X 1 Xy J) = 78X, Xay ooy Xoy X, XS)1),
does not increase when we repldcé,, Xs, ..., X, Z, J) with (X1, X%, ..., X}, Z, J).
Since we can replaceX;, Xo, ..., X,,)s with (X1, X%, ..., X/ ) one at a time, it is enough to consider
the case that we only change one component, that is we replceXs, ..., X,,) by
(X1, X, oo Xjo1, X, X1, XD
The proof can be completed by considering the two casegs>of, andj < u separately. In the case
§ > u, we note that* (X1, X, ...,Xu,XfﬁZl, ...,X,(,f)HJ) increases term by term whilé (X; X,... X, |J)
remains constant. In casg < u, we note that for every seB that does not contaip, the term
—ApH(Xpnw|XpeJ) decreases as we replagg by X'. If the setB includesj, we have:
H(Xpw|Xp:J) = H (X5 ) -3 Xil X5 ) =
H(X 3 -y X5 X1 Xpe J) =
H (X5 -3y X1 X e T) + H(XG X X X a5y )) <
H(X (5 )13 X1 X o) + H (X1 XX 517)
So, in order to prove the inequality, it would be enough tovprthat
H (X5 XX 0~ (53 ]) = 22 B:Bcm), B Ou)20,B(m) je B ABH (X | X X[y (53 ]) 2 0.

But the left hand side is zero SiNGE s g (1. 5 Nuj 20, B4m],jeB B = - °

JEB
Property 4.
;i (X1; X2; X3;5...; X, || Z) can be lower bounded as follows (in the following formula\&s called
valid if it verifies the conditions in the statement of Thear@):
@i (X1; X2; X355 Xon | Z) > infyapig a{infy (H(X1...Xu|J) -
A1, Xy ooy Xy X, XSDNT) + 1(X1 X X3 ]| 2)) } =

inf s {infyasia o (H (X1 Xo|J) — 72(X0, Xa, ooy Xy, X, XET) + 1(X0 X g X3 T Z)) }
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By applying Theorem 6 of the first part of this paper [6] and dli@lity theory, one gets the following
lower bound onp;(X1; Xo; X3;...; X || Z):
e1( X1 Xoy X3 Xin|| Z) >
inf ; (S(X1J; XoJ; i Xu s (X1 )y (Xin )| T) + (X1 Xoo. X s T 2)).

According to Theorem 5 of the [6],

inf ; (S(X1J5 XoJ; o Xud; (X1 )y (Xn )| T) + I(X1 X X3 T 2))
is an upper bound on

S(X1; X oo; Xus X X311 2)
which is in turn bounded from below by

H(X1|Z) = 2%, H(X1|X).

Thereforep(X1; X2; Xs;...; X |2) > H(X11Z) — Y15 H(X1|X3). o

Property 5.

We need to prove that:
infj(GA(Xl; Xo; X350 X jHZ)) >
inf 7, (0 (X1 My; XoMo; ..; Xy My; Xugr.; X || 2))

It is enough to prove that for any, there is aJ’ such that:

OMX1; Xo; X35 X3 J||Z) > 0N X1 My XoMa; o; Xou My Xos1 s Xons J'|| Z)

We defineJ’ in a way that it has the same joint distribution with';, X5, ..., X,,,, Z) asJ has but at
the same be independent bf, M,...M,. One can then prove that:
H(X) My... X, M, |J') — 78X My, Xo My, .o, X My, X5 X 107) +
I(X1X9.. Xon My... M, J'|Z) =
H(X 1. Xy J) = 78(X1, Xy ooy Xoy X XSUT) 4 1(X) X X3 T Z) +
H(M)+ ...+ H(M,) —
2 B:BCm],B N[u]£0,B£[m] B 2ic B ] H (Mi)
But
H(M)+ H(Msy)+ ...+ H(M,) —
2 B:BCm],B N[u]£0,B£[m] B 2_ic ] H (Mi)

is zero (this could be proved using the definition/ofand by settingR; = H(M;) for 1 <i < wu). ®
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APPENDIXII

In this appendix, we will prove that for anyin the interval(0,1), I(X;Y|Z) strictly increases in the

following three cases:

« X; and X, are not independent and we replageX;, Xs)p(Y, Z|X) with p(X;)p(X2)p(Y, Z|X).

« we change the distribution of; to a uniform distribution ifX; and X, are independent but; is
not uniform.

« we change the distribution of» to a uniform distribution ifX; and X, are independent buXs is

not uniform.

Case 1:
I(X;Y|2) = I(X1 X2, Y1Ys| 21 Zy) = H(Y1Ya|Z1Z5) — H(Y1Ys|Z1 Zo X1 X5).
SinceY1 Z; — X7 — X5 — Y575, we can work out the second term
H(Y1Ys|Z1 25 X1 X5) = H(Y1|Z) Zo X1 Xo) + H (Ya| Z1 2o X1 X5 Y1) = H(Y1|Z1X1) 4+ H(Ya| X2 Z5).
The first term can be bounded from above as follows:
HWYs2|Z1Z2) = H(Ya|Z1Z5) + H(Y1|Z12:Y2) < H(Y2|Z2) + H(Y1|Z1).

Thereforel (X;Y|Z) < I(X1;Y1|Z1) + I(X9; Y| Z5). This would mean that if we replace
p(X1, Xo)p(Y, Z|X) with p(X1)p(X2)p(Y, Z|X), I(X;Y|Z) does not decrease.

We prove thatl (X;Y'|Z) strictly increases by contradiction. AssurheX'; Y'|Z) does not increase. In
this case H (Y1|Z1 Z>Y,) must be equal tdZ (Y1|Z;) implying that(Y7;Y5|Z1) = 0. SinceZ; —Y; — Y3
form a Markov chain, thd (Y;;Y2|Z1) = 0 constraint implies thaf (Ys2; Z1) = I(Y2;Y:7). But since

I(Yo; Y1) 2 1(Yo; Th) > 1(Ya; Z1),
we getl(Ye; Th) = 1(Ya; Z1).
1(Yy; Z1) = 1(Ye; Z1,1[Z1 = E)) =
I(Yo;1[Zy = E]) + 1(Yy; Z1[U[Z1 = E]) = 0+ eI(Ya; Th).
Sincee < 1, I(Ye; Th) = 1(Y3; Z1) can hold only when! (Yy; T7) = I(Ye; Z1) = I(Ya; Y1) = 0.
0=1(Yy; Y1) =1(Ye,1]Ys = E|; Y1,1[Y7 = E]) >
I(Yy; Y1[UYs = E] 1Y, = E]) >
p(Y2 # E).p(Y1 # E).I(Yy;Y1]Y2 # E, Y1 # E) = 0.811(X1; X2).

Thereforel(X;; X2) = 0 meaning thatX; and X, are independent. This is a contradiction. e

Case 2:

I(X1;0|21) = I(X1; ) = I(X1; Z1) = H(Y1) — H(A[Xq) — H(Z1) + H(Z1]X1) can be thought
of as a function ofp(X; = 0) = a. H(Y1|X1) and H(Z;|X,) are constant not depending an The
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marginal distribution oZ; equals(e.(0.9a+0.05),1—¢, e.(—0.9a+0.95)), and the marginal distribution
of Y7 equals(0.9a,0.1,0.9 — 0.9a)). Therefore it is enough to show thai(Y;) — H(Z:) reaches its

maximum at and only at = 0.5. This can be seen by noting that the derivativegf 7 (Y1) — H(Z1))

0.5—(a—0.5) 0.5—0.9(a—0.5)

W|th I’eSpeCt toa equals:log m m

—elog which is zero only atz = 0.5. °

Case 3:
I(X2;Y2|Z2) = I(Xy; (Y2,1[Y2 = E])|Z3) = I(X2;1[Y2 = E||Z3) + I(Xa; Ya[l[Y2 = El, Z3) =
04 P(Yy = E).0 + P(Ya # E).H(X3|Z5) = 0.9H (X5|Z5).

But H(X3|Z2) = P(Zy =0).04+ P(Zy =1).0 + P(Zy = E).H(X3). Therefore
I(X2;Ys|Zy) = 0.9 % 0.19H (X).

We are done by noting thaf (X) strictly increases when the distribution &% is changed to uniform.
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