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Abstract

This is the second part of a two-part paper on information-theoretically secure secret key agreement.

This paper focuses on the secret key rate problem under thechannel model. In the channel model, a

set of two or more terminals wish to create a shared secret keythat is information-theoretically secure

from an eavesdropper. The first terminal can choose a sequence of inputs to a discrete memoryless

broadcast channel, which has outputs at the other terminalsand at the eavesdropper. After each channel

use, the terminals can engage in arbitrarily many rounds of interactive authenticated communication over

a public channel; thus, each input by the first terminal can depend on the previous inputs and the public

communication so far. At the end of the process each terminalshould be able to generate the key. We

introduce a technique for proving that a given expression bounds the secrecy rate from above. Using

this technique, a new upper bound on the secrecy rate in the general multi-terminal case is proposed

that strictly improves the currently best known upper bound. We also derive a new lower bound on the

secrecy rate and prove that it strictly improves what is essentially the best known lower bound.

Keywords: Secret key agreement, unconditional security, secrecy capacity, common randomness, public

discussion, channel model, security.

I. INTRODUCTION

In this paper, we study the problem of determining the maximum information-theoretically secure

secret key rate against a passive eavesdropper in a well-known setting in the information-theoretic security

literature, called thechannel model.

The history of this model dates back to an early work by Wyner [10], who studied what may be called

a “degraded broadcast scenario”. In this setting Alice is connected to Bob by a discrete memoryless
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channel. The eavesdropper, Eve, receives a noisy version ofthe output at Bob’s end. In a subsequent

work, Csiszár and Körner [3] generalized Wyner’s model byassuming that Alice is connected to Bob

and Eve through a broadcast channel. The channel from Alice to Eve in this model is not necessarily a

degraded version of the channel between Alice and Bob. In this scenario, the secrecy rate, as one might

expect, would be zero if the channel from Alice to Eve is stronger than the channel from Alice to Bob.

The scenario considered by Csiszár and Körner was furthergeneralized by Maurer [7], who made

the interesting observation that even if the channel from Alice to Eve is stronger than the channel from

Alice to Bob, Alice and Bob may still be able to generate a common secret key if we allow Bob to

send authenticated but public messages to Alice. This observation led to the formulation of the two main

models in this area, introduced by the works of Ahlswede and Csiszár [1], Csiszár and Narayan [4] and

Maurer [7], thesource modeland channel model. In this paper, we focus on the channel model. There

are m terminals interested in secret key generation against an adversary Eve. A discrete memoryless

broadcast channel exists from the first terminal to all otherterminals, and to Eve. The input to the

channel is governed by the first terminal while the other terminals, as well as Eve, observe the outputs

of the broadcast channel at their end. In what is traditionally called the channel model, after each use

of the channel by the first terminal, all them terminals are allowed to engage in arbitrary many rounds

of interactive authenticated communication over a public channel. We consider a generalization of this

where only the firstu terminals (1 ≤ u ≤ m) are allowed such communication; terminalsu+1 ≤ i ≤ m

listen and must participate in secret key generation, but cannot talk. This generalization is motivated by

the desire to put one-way capacity and interactive capacityon the same footing, and fits naturally with

the corresponding generalization that we made in the sourcemodel [6]. Note that we assume, mostly for

notational convenience, that terminal 1 is allowed to participate in the interactive authenticated public

communication.

Note that each input to the broadcast channel by the first terminal is allowed to depend on the past

inputs and on the public communication so far. At the end of the entire process, i.e. of then inputs and

of the interactive public communication after each input, each terminal1 ≤ i ≤ m generates random

variableSi as its secret key. AllSi’s should with high probability be equal to each other and they should

be approximately independent of Eve’s whole information after the communication, i.e. then outputs

at Eve’s end of the broadcast channel, and the entire public discussion. The achieved secret key rate

would then be roughly1
n
H(S1). The highest achievable secret key rate, asymptotically inn, is called

the secrecy capacity. For a precise formulation see section2.

Calculation of the exact secrecy capacity remains an unsolved problem, although some lower and
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upper bounds on this quantity are known. For the case ofm = 2, the best known upper bound explicitly

mentioned in the literature, as far as we are aware, ismin[supp(x) I(X;Y ), supp(x) I(X;Y |Z))], which

was proposed by Maurer [7]. This can however be easily generalized to infZ−Z−XY [supp(x) I(X;Y |Z)].

The best know lower bound, as far as we are aware, is

supp(x) max{supV −U−X−Y Z [I(U ;Y |V )−I(U ;Z|V )], supV −U−Y −XZ [I(U ;X|V )−I(U ;Z|V )]},

which one can find in [4], [7].

In this paper, we improve the above mentioned upper bounds onthe secret key rate. Our proof technique

is similar to the one for proving upper bounds in the first partof this paper [6], but this paper can be

read independently of [6]. The idea is to define a potential function and show that for any valid secret

key generating protocol, the potential function starts from the upper bound and decreases as we move

along the protocol, and eventually becomes equal to the achieved secret key rate of the protocol.

We also derive lower bounds on the secrecy rate by exploitingour new lower bound on the secrecy

rate in the source model, which was proved in [6]. An example is provided to show that the new bound

is strictly better thaninfZ−Z−XY [supp(x) I(X;Y |Z)].

The outline of this paper is as follows. In section 2, we introduce the basic notations and definitions

used in this paper. Section 3 contains the main results of this paper. This is followed by section 4 and

two appendices which give proofs for the results.

II. D EFINITIONS AND NOTATION

Throughout this paper we assumeX1, X2, ...., Xm and Z are m + 1 possibly dependent random

variables each taking values from a finite set.

Our multi-terminal channel model is basically the same as the one studied in the literature, see e.g.

[8]. We however relax the uniformity condition on the generated secret key. Maurer in [7] argued that the

assumption of uniformity could always be added without lossof generality. We study the weak notion of

secrecy throughout this paper and assume that allm terminals are interested in secret key generation. It

is known that the weak and strong secret key rates are equal [8]. Our model is however somewhat more

general in the sense that it assumes that only some of the terminals are able to participate in the public

discussion. Throughout this paper, we assume that terminals 1, 2, ..., u (1 ≤ u ≤ m) are allowed to talk

while terminalsu + 1, u + 2, ...,m are silent.

Given an ordered sequence ofn random variables taking values from some finite set we denotethe

ith of these by notation such asX(i). We writeX1:i for (X(1),X(2), ...,X(i)). For X1:n we will often

instead writeXn.
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Definition 1.Let q(x2, x3, ..., xm, z|x1) be a conditional distribution,n be a natural number,ǫ be a posi-

tive real number,
−→
C = (

−→
C 1,

−→
C 2, ...,

−→
C n) be a collection ofn finite sets of discrete random variables

−→
C i :

i = 1, 2, ..., n. Each
−→
C i is a finite set of discrete random variables:

−→
C i = (

−→
C i(1),

−→
C i(2), ...,

−→
C i(r(i))).

Let M1, M2, ..., Mu, Xn
1 , Xn

2 , ..., Xn
m, Zn andS1, S2, ..., Sm be u + (m + 1)n + m discrete random

variables.

Consider the following conditions:

1) For i = 1, 2, ..., n:

p(X2(i) = x2(i), ...,Xm(i) = xm(i), Z(i) = z(i)|X1:i
1 = x1:i

1 ,X1:i−1
2 = x1:i−1

2 , ...,X1:i−1
m =

x1:i−1
m , Z1:i−1 = z1:i−1,M1 = m1, ...,Mu = mu) =

q(x2(i), ..., xm(i), z(i)|x1(i));

2) For i = 1, ..., n:

H(X1(i)|
−→
C 1,

−→
C 2, ...,

−→
C i−1,M1,X

1:i−1
1 ) = 0;

3) p(M1...MuX1(1),X2(1), ...,Xm(1), Z(1)) = p(M1)...p(Mu)p(X1(1),X2(1), ...,Xm(1), Z(1));

4) H(
−→
C i(j)|

−→
C 1,

−→
C 2, ...,

−→
C i−1

−→
C

1:j−1
i X1:i

s Ms) = 0 ∀s : 1 ≤ s ≤ u, s = j modulom. This means

that the indexing of the communications is done in round robin order and each communication is

adapted to the available information of the communicator.

Furthermore,
−→
C i(j) = 0 ∀i, j, s : j = s modulom ands > u. This means thats-th terminal is not

allowed to participate in the communication;

5) H(Si|
−→
C ,Xn

i Mi) = 0 for 1 ≤ i ≤ u

H(Si|
−→
C ,Xn

i ) = 0 for u + 1 ≤ i ≤ m.

This means thatSi is created byi-th terminal at the end of the entire process;

6) P (S1 = S2 = S3 = ... = Sm) > 1 − ǫ. This ensures the reliability of the generated keys;

7) 1
n
I(S1;Z

n,
−→
C ) < ǫ. This ensures that the generated key is almost hidden from the eavesdropper.

Intuitively, n represents the number of communication rounds;
−→
C i represents communications at the

i-th stage;M1, M2, ..., Mu represents external randomness provided to the firstu terminals.

The data typing condition SKC(n, ǫ, S1, S2, S3,..., Sm,
−→
C , M1,M2, ...,Mu, Xn

1 ,Xn
2 , ...,Xn

m, Zn) is

said to hold iff all above-mentioned conditions are satisfied. To any SKC data type, we assign a number

called thegain of the SKC data type which is defined as1
n
H(S1). •

Definition 2: Cǫ
CH(u, q(x2x3...xmz|x1)), the ǫ secret key rate, is defined as:

lim sup
n→∞

sup
SKC(n,ǫ,S1,S2,S3,...,Sm,

−→
C ,M1,...,Mu,Xn

1
,Xn

2
,...,Xn

m
,Zn)

Gain(SK)

•
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Definition 3: CCH(u, q(x2x3...xmz|x1)), the channel model secret key rate, is defined as:

lim
ǫ→0

Cǫ
CH(u, q(x2x3...xmz|x1))

•

Note that we have allowed the first user to participate in the public discussion and to randomize.

Further, all the terminals who participate in the public discussion, i.e. terminals1 ≤ i ≤ u, are allowed

to randomize. The assumption on the participation of the first terminal in the public discussion can be

removed but this terminal must be allowed to randomize. Otherwise, the inputs to the broadcast channel

will be always a deterministic function of the public communication and thus known to the eavesdropper,

resulting in zero secret key rate. It is legitimate to differentiate between the ability to randomize and

the ability to participate in the public discussion as long as the first user is concerned. For the sake of

notational simplicity, however, we allow the first user to participate in the public discussion.

III. STATEMENT OF THE RESULTS

In this section, the main results of the paper are formally presented as theorems 1 through 4. Following

each result there is an informal discussion of it in order to give an intuitive feeling for the result.

Theorem 1.For eachj ≥ 1, let ϕj(p(x1, x2, ..., xm, z)) be a real-valued function from the set ofall

probability distributions defined on a product ofany m + 1 finite sets. We sometimes use the notation

ϕj(X1;X2;X3; ...;Xm‖Z) to refer to ϕj(p(x1, x2, ..., xm, z)) when (X1,X2, ...,Xm, Z) has the law

p(x1, ..., xm, z). For any conditional distributionq(x2, x3, ..., xm, z|x1),

φ(q(x2, x3, ..., xm, z|x1)) = supq(x1) ϕ1(q(x1).q(x2, x3, ..., xm, z|x1))

would be an upper bound onCCH(u, q(x2, x3, ...xm, z|x1)), the channel model secrecy rate assuming

that only the firstu terminals are permitted to talk, ifϕj(j = 1, 2, ...) satisfy the following for all

p(x1, x2, ..., xm, z):

1) Whenever

H(X ′
1|X1) = 0 and

X1X2...XmZ − X1 − X ′
1 − X ′

1X
′
2...X

′
mZ ′ and

p(x′
2, x

′
3, ..., x

′
m, z′|x′

1) = q(x2, x3, ..., xm, z|x1)

are true, we have:

ϕj+1(X1X
′
1;X2X

′
2; ...;XmX ′

m‖ZZ ′) ≤ ϕj(X1;X2; ...;Xm‖Z) + φ(q(x2, x3, ..., xm, z|x1));

2) For any random variableF such that∃i ≤ u : H(F |Xi) = 0, we have:

ϕj(X1;X2; ...;Xm‖Z) ≥ ϕj(X1F ;X2F ; ...;XmF‖ZF );
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3) For any random variablesX ′
1,X

′
2, ...,X

′
m such that∀i : H(X ′

i|Xi) = 0, we have:

ϕj(X1;X2; ...;Xm‖Z) ≥ ϕj(X
′
1;X

′
2; ...;X

′
m‖Z);

4) ϕj(X1;X2; ...;Xm‖Z) ≥ H(X1|Z) −
∑m

i=2 H(X1|Xi);

5) Whenever for random variablesM1, M2, ..., Mu

p(M1,M2, ...,Mu,X1,X2,X3, ...,Xm, Z) = p(M1)p(M2)...p(Mu)p(X1,X2,X3, ...,Xm, Z)

is true, we have:

ϕj(X1;X2; ...;Xm‖Z) ≥ ϕj(M1X1;M2X2; ...;MuXu;Xu+1; ...;Xm‖Z).

Discussion:For eachj ≥ 1, the quantityϕj(p(x1, x2, ..., xm, z)) can be intuitively understood as

representing the secret key rate per channel use that is possible if we insist on first usingj channel

uses to create the distributionp(x1, x2, ..., xm, z) and then work with this distribution as the “raw” joint

distribution across a new discrete memoryless channel. With this rough picture in mind, condition 1 can

be understood as saying that having already insisted on working with aj-channel usep(x1, x2, ..., xm, z),

one more use of the channel can at most buy us the channel capacity on a per use basis. Condition 2

says that further insistence on working with a distributionthat results from a particular kind of use

of the authenticated public channel by any terminal1 ≤ i ≤ u cannot increase the per channel use

secrecy rate. Condition 3 has a similar interpretation. Each of these conditions has been stated only for

the case where the corresponding maps are deterministic; this is sufficient because the possibility of

randomization by any of the firstu terminals is covered by condition 5. The right hand side of condition

4 is a convenient expression that is easily seen to be a lower bound on the corresponding secrecy rate;

other such expressions would have worked as well. Finally, condition 5 would apply if independent

randomization was freely available to the terminals who cantalk, i.e. terminals1 ≤ i ≤ u. •

Theorem 2.Let [m] and [u] respectively denote the sets{1, 2, ...,m}, {1, 2, ..., u}. For everyΛ =

(λB , B ⊆ [m]) such that for eachu-tuple (R1, R2, ..., Ru) of real numbers we have
∑

B:B⊂[m],B
T

[u] 6=∅,B 6=[m] λB

∑
j∈B

T
[u] Rj =

∑u
j=1 Rj ,

the following inequality holds:

CCH(u, q(x2, x3, ...xm, z|x1)) ≤

supp(x1){infp(J |X1,...,Xm,Z)

(
[H(X1...Xu|J) − τΛ(X1,X2, ...,Xu,X

(s)
u+1, ...,X

(s)
m ‖J) +

I(X1X2...Xm;J |Z)]
)
}.

In this expression(X1,X2, ...,Xm, J, Z) have the lawp(x1)q(x2, ..., xm, z|x1)p(j|x1, ..., xm, z), Λ is

the mnemonic for(λB , B ⊆ [m]), andτΛ(X1,X2, ...,Xu,X
(s)
u+1, ...,X

(s)
m ‖J) is defined as

∑
B:B⊂[m],B

T
[u] 6=∅,B 6=[m] λBH(XB

T
[u]|XBcJ).

Discussion:The above upper bound can be written as the infimum over the setof all valid Λ of
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supp(x1){infp(J |X1,...,Xm,Z)

(
[H(X1...Xu|J) − τΛ(X1,X2, ...,Xu,X

(s)
u+1, ...,X

(s)
m ‖J) +

I(X1X2...Xm;J |Z)]
)
}.

If the infimum overΛ is swapped with the supremum overp(x1), one gets the following lower bound

on our upper bound by applying theorem 6 of the first part of this paper:

supp(x1){infp(J |X1,...,Xm,Z)

(
[S(X1J ;X2J ; ...;XuJ ; (Xu+1J)(s)...; (XmJ)(s)‖J) +

I(X1X2...Xm;J |Z)]
)
}.

For the notation see [6]. We were not able to prove that this smaller expression is an upper bound on

CCH(u, q(x2, x3, ...xm, z|x1)). •

Theorem 3.In the case ofm = 2, the new upper bound onCCH(2, q(y, z|x)) equals

supp(x) infJ [I(X;Y |J) + I(XY ;J |Z)].

This bound strictly improves themin[supp(x) I(X;Y ), supp(x) I(X;Y ‖Z))] bound proposed by Maurer

[7]. It also improves the stronger upper boundinfZ−Z−XY supp(x) I(X;Y |Z) mentioned in the intro-

duction.

Discussion:infZ−Z−XY supp(x) I(X;Y |Z) is an upper bound onCCH(2, q(y, z|x)) because for every

choice ofp(z|z) the channel model secrecy rate is no bigger thansupp(x) I(X;Y |Z). We will in fact

prove that the new bound is strictly smaller thansupp(x) infZ−Z−XY I(X;Y |Z), which in turn is no

bigger thaninfZ−Z−XY supp(x) I(X;Y |Z). •

Theorem 4.Assume thatq ≤ p are two arbitrary natural numbers and(U1, U2, ..., Up) are arbitrary

random variables satisfying the following properties:

• Ui (i = 1, 2, ..., p) takes values from a finite set;

• p(U1, U2, ..., Up|X1,X2,X3, ...,Xm, Z) =
∏p

i=1 p(Ui|U1:i−1Xi mod m);

• For all r > u, we haveUi = 0 ∀i : i − r ≡m 0.

CCH(u, q(x2, x3, ...xm, z|x1)) is bounded from below by

supp(x1)

∑p
j=q[min1≤r≤m I(Uj ;Xr|U1:j−1) − I(Uj ;Z|U1:j−1)]

where(X1,X2, ...,Xm, Z, U1, ..., Up) inside the supremum has joint distribution

p(X1)q(X2,X3, ...Xm, z|X1)p(U1, U2, ..., Up|X1,X2,X3, ...,Xm, Z).

In the case ofm = 2, the new lower bound onCCH(2, q(y, z|x)) derived by taking supremum over

all valid (q, p, U1, U2, ..., Up) strictly improves thesupp(x)[max(S(X;Y (s)‖Z), S(X(s);Y ‖Z))] lower

bound, where in this expression,S(X;Y (s)‖Z) is the source-model one way secrecy rate fromX to Y

in the presence ofZ, see [6].

In this Theorem,q (written in italics) is a non-negative integer and should not be confused with the

conditional distributionq(x2, x3, ...xm, z|x1).
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Discussion:CCH(u, q(x2, x3, ...xm, z|x1)) is bounded from below by

supp(x1) S(X1;X2; ...;Xu;X
(s)
u+1; ...;X

(s)
m ‖Z) (see [6] for the notation)

because the first terminal can always insert i.i.d. repetitions of anyp(x1) at the input of the broad-

cast channel[7]. We then apply theorem 7 of the first part of this paper [6] to bound from below

S(X1;X2; ...;Xu;X
(s)
u+1; ...;X

(s)
m ‖Z) by

∑p
j=q[min1≤r≤m I(Uj ;Xr|U1:j−1) − I(Uj ;Z|U1:j−1)].

The proof for this theorem mainly involves proving that in the case ofm = 2, the new lower bound

strictly improves thesupp(x)[max(S(X;Y (s)‖Z), S(X(s);Y ‖Z))] lower bound. •

IV. PROOFS OFTHEOREMS1-4

Proof of Theorem 1.Fix a probability distributionq(x2, x3, ..., xm, z|x1) and assume thatX1,X2, ...,Xm

andZ take values from the discrete finite sets∆i, i = 1...m + 1. For everyδ > 0 and ǫ > 0, one can

find a valid data type SKC(n, ǫ, S1, S2, S3, ..., Sm,
−→
C , M1,M2, ...,Mu, Xn

1 ,Xn
2 , ...,Xn

m, Zn) whose

gain is withinδ of Cǫ
CH(u, q(x2, ..., xm, z|x1)).

We have:
nφ(q(x2, x3, ..., xm, z|x1)) ≥

(n − 1)φ(q(x2, x3, ..., xm, z|x1)) + ϕ1(X
1
1 ;X1

2 ; ...;X1
m‖Z1) ≥

(n − 1)φ(q(x2, x3, ..., xm, z|x1)) + ϕ1(M1X
1
1 ;M2X

1
2 ; ...;MuX1

u;X1
u+1...X

1
m‖Z1) ≥

(n − 1)φ(q(x2, x3, ..., xm, z|x1))

+ ϕ1(M1X
1
1

−→
C 1;M2X

1
2

−→
C 1; ...;MuX1

u

−→
C 1;X

1
u+1

−→
C 1...X

1
m

−→
C 1‖Z

1−→C 1) ≥
i

(n − 2)φ(q(x2, x3, ..., xm, z|x1))

+ ϕ2(M1X
1:2
1

−→
C 1;M2X

1:2
2

−→
C 1; ...;MuX1:2

u

−→
C 1;X

1:2
u+1

−→
C 1...X

1:2
m

−→
C 1‖Z

1:2−→C 1) ≥

(n − 2)φ(q(x2, x3, ..., xm, z|x1))

+ ϕ2(M1X
1:2
1

−→
C 1:2;M2X

1:2
2

−→
C 1:2; ...;MuX1:2

u

−→
C 1:2;X

1:2
u+1

−→
C 1:2...X

1:2
m

−→
C 1:2‖Z

1:2−→C 1:2) ≥

(n − 3)φ(q(x2, x3, ..., xm, z|x1))

+ ϕ3(M1X
1:3
1

−→
C 1:2;M2X

1:3
2

−→
C 1:2; ...;MuX1:3

u

−→
C 1:2;X

1:3
u+1

−→
C 1:2...X

1:3
m

−→
C 1:2‖Z

1:3−→C 1:2) ≥

...

ϕn(M1X
1:n
1

−→
C 1:n;M2X

1:n
2

−→
C 1:n; ...;MuX1:n

u

−→
C 1:n;X1:n

u+1

−→
C 1:n...X1:n

m

−→
C 1:n‖Z

1:n−→C 1:n) ≥

ϕn(M1X
1:n
1

−→
C 1:n;M2X

1:n
2

−→
C 1:n; ...;MuX1:n

u

−→
C 1:n;X1:n

u+1

−→
C 1:n...X1:n

m

−→
C 1:n‖Z

1:n−→C 1:n) ≥

ϕn(S1;S2; ...;Sm‖Z1:n−→C 1:n) ≥

H(S1|Z
1:n−→C 1:n) −

∑m
j=2 H(S1|Sj) ≥

nCǫ
CH(u, q(x2, x3, ...xm, z|x1))) − nδ − (m − 1)[h(ǫ) + ǫ.n log

∏m
i=1 |∆i|]
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The last inequality in this chain is a consequence of Fano’s inequality. The inequalityi and its analogs

are valid becauseϕ satisfies property number 1 of theorem 1. All the other inequalities are consequence

of other properties required in theorem 1, in a straightforward way.

The above inequalities show that

φ(X1;X2;X3; ...;Xm‖Z) ≥ Cǫ
CH(u, q(x2, x3, ...xm, z|x1))) − δ − m−1

n
[h(ǫ) + ǫ.n log

∏m
i=1 |∆i|].

The first part of the theorem is proved by taking the limit asǫ andδ go to zero. •

Proof of Theorem 2.Fix a Λ = (λB , B ⊆ [m]) satisfying the conditions of the theorem. In order to

prove this theorem, it is enough to verify the five conditionsof theorem 1 when for allj ≥ 1 we set:

ϕj(X1;X2;X3; ...;Xm‖Z) := ϕ1(X1;X2;X3; ...;Xm‖Z) (1)

= inf
J

(
H(X1...Xu|J) − τΛ(X1,X2, ...,Xu,X

(s)
u+1, ...,X

(s)
m ‖J)

+ I(X1X2...Xm;J‖Z)
)

,

whereτΛ(X1,X2, ...,Xu,X
(s)
u+1, ...,X

(s)
m ‖J) is as in the statement of the Theorem. In appendix I, we

show that this choice satisfies the five conditions of Theorem1, thus completing the proof. •

Proof of Theorem 3.The only possible value forλ{1} and λ{2} in the case ofm = u = 2 is one.

The upper bound, therefore reduces tosupp(x) infJ [I(X;Y |J)+ I(XY ;J |Z)]. In order to prove that this

bound strictly improvessupp(x) infZ−Z−XY I(X;Y |Z) we use the example of Renner and Wolf in [9].

X andY take values from the set{0, 1, 2, 3}. Assuming thatP (X = i) = pi, Table (I) characterizes

the conditional probability distribution ofY given X. The conditional distribution ofZ given X andY

is specified by the following equation:

Z =





(X + Y ) mod 2 if X ∈ {0, 1}

X mod 2 if X ∈ {2, 3}

Renner and Wolf proved that for the choice ofpi = 1
4 for i = 0, 1, 2, 3 andU = ⌊X

2 ⌋, one has

I(X;Y ↓ Z) =
3

2
I(X;Y ↓ ZU) = 0

whereI(X;Y ↓ Z), known as the intrinsic information is defined asinfZ−Z−XY I(X;Y |Z) [9].

Therefore

supp(x)[I(X;Y ↓ Z)] ≥ 3
2

The proof will be completed if we can show thatsupp(x) infJ [I(X;Y |J) + I(XY ;J |Z)] ≤ 1.
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TABLE I

JOINT PROBABILITY DISTRIBUTION OF X AND Y

X

Y 0 1 2 3

0 1

2
p0

1

2
p1 0 0

1 1

2
p0

1

2
p1 0 0

2 0 0 p2 0

3 0 0 0 p3

Let

J0 =





U if U=0

UZ if U=1

We can upper boundsupp(x) infJ [I(X;Y |J) + I(XY ;J |Z)] by supp(x)[I(X;Y |J0) + I(XY ;J0|Z)].

SinceI(X;Y |J0) = 0 and I(XY ;J0|Z) ≤ 1 for all p(x), supp(x) infJ [I(X;Y |J) + I(XY ;J |Z)] is

less than or equal to one. •

Proof of Theorem 4.CCH(u, q(x2, x3, ...xm, z|x1)) is bounded from below by

supp(x1) S(X1;X2; ...;Xu;X
(s)
u+1; ...;X

(s)
m ‖Z) (see [6] for the notation)

because the first terminal can always insert i.i.d. repetitions of anyp(x1) at the input of the broadcast

channel[7]. We apply theorem 7 of the first part of this paper to bound from below

S(X1;X2; ...;Xu;X
(s)
u+1; ...;X

(s)
m ‖Z) by

∑p
j=q[min1≤r≤m I(Uj ;Xr|U1:j−1) − I(Uj ;Z|U1:j−1)].

For the case ofm = 2, we first prove that the new lower bound onCCH(2, q(y, z|x)) is not worse

than supp(x)[max(S(X;Y (s)‖Z), S(X(s);Y ‖Z))].

Take some particularp(x), and consider random variablesX, Y and Z with the joint distribution

p(x)q(y, z|x). Take arbitrary random variablesV1 and V2 satisfying the Markov chainV2 − V1 − X −

Y Z. Let p = q = 3 and U1 = V2, U2 = 0, U3 = V1. The lower bound achieved by this choice

of p(x), p, q and (U1, U2, U3) is I(V2;Y |V1) − I(V2;Z|V1). Therefore the new lower bound is no

worse thansupp(x) S(X;Y (s)‖Z). It can be similarly proved that the new lower bound is no worse than

supp(x) S(X;Y (s)‖Z).

Now we construct an example in which the new lower bound strictly improves
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supp(x)[max(S(X;Y (s)‖Z), S(X(s);Y ‖Z))].

Assume thatX = (X1,X2), Y = (Y1, Y2), Z = (Z1, Z2). The conditional distribution of(Y1, Y2, Z1, Z2)

given X1 andX2 is defined in figure 1. We prove that the upper boundsupp(X) I(X;Y |Z) is equal to

the new lower bound but is not strictly greater than the previous lower bound.

In appendix II, with reference to figure 1 withX = (X1,X2), Y = (Y1, Y2) andZ = (Z1, Z2), it is

shown that for any0 < ǫ < 1, I(X;Y |Z) strictly increases when

• X1 andX2 are not independent and we replacep(X1,X2)p(Y,Z|X) with p(X1)p(X2)p(Y,Z|X);

• we change the distribution ofX1 to a uniform distribution ifX1 andX2 are independent butX1 is

not uniform;

• we change the distribution ofX2 to a uniform distribution ifX1 andX2 are independent butX2 is

not uniform.

But whenX1 andX2 are independent, the pairs(X1, Y1, Z1) and(X2, Y2, Z2) will become independent

and the upper boundI(X;Y |Z) = I(X1;Y1|Z1)+ I(X2;Y2|Z2) = I(X1;Y1)− I(X1;Z1)+ I(Y2;X2)−

I(Y2;Z2) will become achievable by the choice ofU1 = X1 andU2 = Y2.

Now, we will prove that

supp(x)[max(S(X;Y (s)‖Z), S(X(s);Y ‖Z))]

is strictly less than

supp(X) I(X;Y |Z).

Assume that this is not the case. Since for every choice ofp(x), I(X;Y |Z) is as big as

max(S(X;Y (s)‖Z), S(X(s);Y ‖Z))

the supremum of the maximum of the two one way rates must happen whenX1 andX2 are independent

and have a uniform distribution. But in the proof of theorem 7of the first part of this paper, it is shown

that under these circumstancesI(X;Y |Z) strictly exceedsmax(S(X;Y (s)‖Z), S(X(s);Y ‖Z)).

•

V. D ISCUSSION

We have derived a new lower bound and upper bound on the secrecy rate under the channel model. The

latter was proved using a general technique for proving thata certain expression bounds the secrecy rate

from above, while the former was proved using the fact thatCCH(u, q(x2, x3, ...xm, z|x1)) is bounded

from below bysupp(x1) S(X1;X2; ...;Xu;X
(s)
u+1; ...;X

(s)
m ‖Z).

The exact relation of the secrecy rate under the channel model and source model remains an open

problem. Both the new lower bound and the new upper bound havethe generic form of

January 23, 2008 DRAFT
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Fig. 1. The conditional distribution of(Y1, Y2, Z1, Z2) given X1 andX2.

supp(x1) F (p(x1)q(x2, x3, ...xm, z|x1)).

One can then conjecture thatCCH(u, q(x2, x3, ...xm, z|x1)) equals

supp(x1) S(X1;X2; ...;Xu;X
(s)
u+1; ...;X

(s)
m ‖Z).

If true, using the theorem 5 of the first part of this paper form = 2, one can boundCCH(2, q(y, z|x))

from above by

supp(x1) infJ f−1{f(S(X1;X2; ...;Xu; (Xu+1)
(s); ...; (Xm)(s)‖J)) +

Sf−one−way(X1X2...Xm;J (s)‖Z)}

f : R≥0 7→ R≥0 is an arbitrary strictly increasing convex function andf -one-way secrecy rateis

defined as

Sf−one−way(X;Y (s)‖Z) = supV −U−X−Y Z [f(H(U |ZV )) − f(H(U |Y V ))].

We do not know if this expression actually serves as an upper bound onCCH(2, q(y, z|x)) for all

appropriate choices off , or less ambitiously for the particular choice off(x) = x. If it does, it may

represent an strict improvement over previous bounds. Otherwise, it will be evidence against the original

conjecture.

APPENDIX I

In this appendix, we prove that theϕj , j ≥ 1 proposed in eqn. (1) satisfy the five properties of Theorem

1. Recall thatΛ = (λB , B ⊆ [m]) is assumed to verify the conditions in the statement of theorem 2.

Let

θΛ(X1;X2;X3; ...;Xm;J‖Z) = H(X1...Xu|J) −

τΛ(X1,X2, ...,Xu,X
(s)
u+1, ...,X

(s)
m ‖J) + I(X1X2...Xm;J‖Z)

whereτΛ(X1,X2, ...,Xu,X
(s)
u+1, ...,X

(s)
m ‖J) is as in the statement of theorem 2.
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In this appendix, for any subsetB of [m] = {1, 2, 3, ...,m}, we use the notationXB in reference to

the set of random variables(Xk, k ∈ B).

Property 1.

It is required to verify that:

inf eJ(θΛ(X1X
′
1;X2X

′
2;X3X

′
3; ...;XmX ′

m; J̃‖ZZ ′)) ≤

inf eJ ′
(θΛ(X1;X2;X3; ...;Xm; J̃ ′‖Z)) + φ(q(x2, x3, ..., xm, z‖x1)).

From the continuity of the relevant information theoretic functions, for anyǫ > 0 one can bound from

below

φ(q(x2, x3, ..., xm, z‖x1)) by

θ(X ′
1;X

′
2;X

′
3; ...;X

′
m;J ′′‖Z ′) − ǫ for someJ ′′.

We will prove that the above inequality holds when we replaceφ(q(x2, x3, ..., xm, z‖x1)) by this lower

bound. Without loss of generality, we can further assume that

J̃ ′ − X1X2...XmZ − X1 − X ′
1 − X ′

1X
′
2...X

′
mZ ′ − J ′′

because in the corresponding optimization problems dependonly

on p(J̃ ′|X1X2...XmZ) andp(J ′′|X ′
1X

′
2...X

′
mZ ′).

In order to prove that

inf eJ θΛ(X1X
′
1;X2X

′
2;X3X

′
3; ...;XmX ′

m; J̃‖ZZ ′) ≤

inf eJ ′
θΛ(X1;X2;X3; ...;Xm; J̃ ′‖Z) + θΛ(X ′

1;X
′
2;X

′
3; ...;X

′
m;J ′′‖Z ′)

it would be enough to show that for any arbitraryJ ′ satisfying

J ′ − X1X2...XmZ − X1 − X ′
1 − X ′

1X
′
2...X

′
mZ ′ − J ′′,

the following inequality holds:

θΛ(X1X
′
1;X2X

′
2;X3X

′
3; ...;XmX ′

m;J ′J ′′‖ZZ ′) ≤

θΛ(X1;X2;X3; ...;Xm;J ′‖Z) + θΛ(X ′
1;X

′
2;X

′
3; ...;X

′
m;J ′′‖Z ′).

We claim that the following two inequalities hold:

H(X1...XuX ′
1...X

′
u|J

′, J ′′) − τΛ(X1X
′
1,X2X

′
2, ...,XuX ′

u, (Xu+1X
′
u+1)

(s), ..., (XmX ′
m)(s)‖J ′J ′′)

≤ H(X1...Xu|J
′) − τΛ(X1,X2, ...,Xu,X

(s)
u+1, ...,X

(s)
m ‖J ′) +

H(X ′
1...X

′
u|J

′′) − τΛ(X ′
1,X

′
2, ...,X

′
u,X

′(s)
u+1, ...,X

′(s)
m ‖J ′′);

and

I(X1X2...XmX ′
1X

′
2...X

′
m;J ′J ′′|ZZ ′) ≤

I(X1X2...Xm;J ′|Z) + I(X ′
1X

′
2...X

′
m;J ′′|Z ′).

Starting from the last inequality:

I(X1X2...XmX ′
1X

′
2...X

′
m;J ′J ′′|ZZ ′) =

January 23, 2008 DRAFT



14

H(J ′J ′′|ZZ ′) − H(J ′J ′′|ZZ ′X1X2...XmX ′
1X

′
2...X

′
m) ≤

H(J ′|ZZ ′) + H(J ′′|ZZ ′) −

H(J ′|ZZ ′X1X2...XmX ′
1X

′
2...X

′
m) − H(J ′′|J ′ZZ ′X1X2...XmX ′

1X
′
2...X

′
m) ≤i

H(J ′|Z) + H(J ′′|Z ′) − H(J ′|ZX1X2...Xm) − H(J ′′|Z ′X ′
1X

′
2...X

′
m) =

I(X1X2...Xm;J ′|Z) + I(X ′
1X

′
2...X

′
m;J ′′|Z ′)

In stepi, we have used the Markov property

J ′ − X1X2...XmZ − X1 − X ′
1 − X ′

1X
′
2...X

′
mZ ′ − J ′′.

It remains to prove the other inequality. We first prove that for every setB ⊆ [m]:

H(XB
T

[u]X
′
B
T

[u]|XBcX ′
BcJ ′J ′′) − H(X1|XBcX ′

BcJ ′J ′′) =

H(XB
T

[u]|XBcJ ′) − H(X1|XBcJ ′) + H(X ′
B
T

[u]|X
′
BcJ ′′) − H(X ′

1|X
′
BcJ ′′)

This equality is true because

H(XB
T

[u]X
′
B
T

[u]|XBcX ′
BcJ ′J ′′) =

H(XB
T

[u]X
′
B
T

[u]X1|XBcX ′
BcJ ′J ′′) =

H(X1|XBcX ′
BcJ ′J ′′) + H(XB

T
[u]X

′
B
T

[u]|X1XBcX ′
BcJ ′J ′′) =i

H(X1|XBcX ′
BcJ ′J ′′) + H(XB

T
[u]|X1XBcX ′

BcJ ′J ′′) +

H(X ′
B
T

[u]|X1X
′
1XB

T
[u]XBcX ′

BcJ ′J ′′) =ii

H(X1|XBcX ′
BcJ ′J ′′) + H(XB

T
[u]|X1XBcJ ′) + H(X ′

B
T

[u]|X
′
1X

′
BcJ ′′) =

H(X1|XBcX ′
BcJ ′J ′′)+H(XB

T
[u]|XBcJ ′)−H(X1|XBcJ ′)+H(X ′

B
T

[u]|X
′
BcJ ′′)−H(X ′

1|X
′
BcJ ′′).

In stepi, we have used the fact thatH(X ′
1|X1) = 0 and in stepii, we have used the Markov property

J ′ − X1X2...XmZ − X1 − X ′
1 − X ′

1X
′
2...X

′
mZ ′ − J ′′.

This property lets us to rewrite the inequality we would liketo prove in a new form:

H(X1|J
′, J ′′) −

∑
B:B⊂[m],B

T
[u] 6=∅,B 6=[m] λBH(X1|XBcX ′

BcJ ′, J ′′) ≤

H(X1|J
′) −

∑
B:B⊂[m],B

T
[u] 6=∅,B 6=[m] λBH(X1|XBcJ ′) +

H(X ′
1|J

′′) −
∑

B:B⊂[m],B
T

[u] 6=∅,B 6=[m] λBH(X ′
1|X

′
BcJ ′′)

Further, we can restrict the summation on those setsB such that1 ∈ B (otherwise the term in question

would be zero).

From the definition ofΛ, we can write:
∑

B:B⊂[m],B
T

[u] 6=∅,B 6=[m],1∈B λB = 1 (this could be proved by settingR1 = 1, andRi = 0 for

1 < i ≤ u).
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Therefore

H(X1|J
′, J ′′) −

∑
B:B⊂[m],B

T
[u] 6=∅,B 6=[m] λBH(X1|XBcX ′

BcJ ′J ′′) =
∑

B:B⊂[m],B
T

[u] 6=∅,B 6=[m] λB [H(X1|J
′, J ′′) − H(X1|XBcX ′

BcJ ′J ′′)] =
∑

B:B⊂[m],B
T

[u] 6=∅,B 6=[m] λBI(X1;XBcX ′
Bc |J ′J ′′).

Similarly we can rewrite the two other expressions. It wouldbe then enough to prove that

I(X1;XBcX ′
Bc |J ′J ′′) ≤ I(X1;XBc |J ′) + I(X1;X

′
Bc |J ′′)

for all B ⊆ [m] such thatB 6= [m] and1 ∈ B.

We have:

I(X1;XBcX ′
Bc |J ′J ′′) = H(XBcX ′

Bc |J ′J ′′) − H(XBcX ′
Bc |J ′J ′′X1) ≤

H(XBc |J ′) + H(X ′
Bc |J ′′) − H(XBcX ′

Bc |J ′J ′′X1) =i

H(XBc |J ′) + H(X ′
Bc |J ′′) − H(XBc |J ′X1) − H(X ′

Bc |J ′′X ′
1) =

I(X1;XBc |J ′) + I(X1;X
′
Bc |J ′′).

In stepi, we have usedH(X ′
1|X1) = 0 and the Markov property

J ′ − X1X2...XmZ − X1 − X ′
1 − X ′

1X
′
2...X

′
mZ ′ − J ′′. •

Property 2.

Let 1 ≤ i ≤ u and letH(F |Xi) = 0. We need to prove that:

inf eJ(θΛ(X1;X2;X3; ...;Xm; J̃‖Z)) ≥

inf eJ ′
(θΛ(X1F ;X2F ;X3F ; ...;XmF ; J̃ ′‖ZF ))

It is enough to prove that for anyJ , there is aJ ′ such that:

θΛ(X1;X2;X3; ...;Xm;J‖Z) ≥ θΛ(X1F ;X2F ;X3F ; ...;XmF ;J ′‖ZF )

Let J ′ = JF . SinceI(F ;J | Z) ≥ 0, one can show that the above inequality would hold if:

H(F |J) −
∑

B:B⊂[m],B
T

[u] 6=∅,B 6=[m] λBH(F |XBcJ) ≥ 0.

SinceH(F |Xi) = 0, we can rewrite the above inequality as follows:

H(F |J) −
∑

B:B⊂[m],B
T

[u] 6=∅,B 6=[m],i∈B λBH(F |XBcJ) ≥ 0.

H(F |XBcJ) is bounded from above byH(F |J) hence

H(F |J) −
∑

B:B⊂[m],B
T

[u] 6=∅,B 6=[m],i∈B λBH(F |XBcJ) ≥

H(F |J).(1 −
∑

B:B⊂[m],B
T

[u] 6=∅,B 6=[m],i∈B λB).

But

1 −
∑

B:B⊂[m],B
T

[u] 6=∅,B 6=[m],i∈B λB = 0

This could be proved by settingRi = 1, andRj = 0 otherwise in the inequality involvingRj ’s. •
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Property 3.

We need to prove that:

inf eJ(θ(X1;X2;X3; ...;Xm; J̃‖Z)) ≥

inf eJ ′
(θ(X ′

1;X
′
2;X

′
3; ...;X

′
m; J̃ ′‖Z))

It is enough to prove that for anyJ :

θ(X1;X2;X3; ...;Xm;J‖Z) ≥ θ(X ′
1;X

′
2;X

′
3; ...;X

′
m;J‖Z)

It is clear that

I(X1X2...Xm;J |Z) ≥ I(X ′
1X

′
2...X

′
m;J |Z).

It remains to show that the first two terms of the expression, that is

H(X1...Xu|J) − τΛ(X1,X2, ...,Xu,X
(s)
u+1, ...,X

(s)
m ‖J),

does not increase when we replace(X1,X2, ...,Xm, Z, J) with (X ′
1,X

′
2, ...,X

′
m, Z, J).

Since we can replace(X1,X2, ...,Xm)s with (X ′
1,X

′
2, ...,X

′
m) one at a time, it is enough to consider

the case that we only change one component, that is we replace(X1,X2, ...,Xm) by

(X1,X2, ...,Xj−1,X
′
j ,Xj+1, ...,X

′
m).

The proof can be completed by considering the two cases ofj > u andj ≤ u separately. In the case

j > u, we note thatτΛ(X1,X2, ...,Xu,X
(s)
u+1, ...,X

(s)
m ‖J) increases term by term whileH(X1X2...Xu|J)

remains constant. In casej ≤ u, we note that for every setB that does not containj, the term

−λBH(XB
T

[u]|XBcJ) decreases as we replaceXj by X ′
j . If the setB includesj, we have:

H(XB
T

[u]|XBcJ) = H(X(B
T

[u])−{j}Xj |XBcJ) =

H(X(B
T

[u])−{j}XjX
′
j |XBcJ) =

H(X(B
T

[u])−{j}X
′
j|XBcJ) + H(Xj |X

′
jXBcX(B

T
[u])−{j}J) ≤

H(X(B
T

[u])−{j}X
′
j|XBcJ) + H(Xj |X

′
jX[u]−{j}J)

So, in order to prove the inequality, it would be enough to prove that

H(Xj |X
′
jX[u]−{j}J) −

∑
B:B⊂[m],B

T
[u] 6=∅,B 6=[m],j∈B λBH(Xj |X

′
jX[u]−{j}J) ≥ 0.

But the left hand side is zero since
∑

B:B⊂[m],B
T

[u] 6=∅,B 6=[m],j∈B λB = 1. •

Property 4.

ϕj(X1;X2;X3; ...;Xm‖Z) can be lower bounded as follows (in the following formula aΛ is called

valid if it verifies the conditions in the statement of Theorem 2):

ϕj(X1;X2;X3; ...;Xm‖Z) ≥ infvalid Λ{infJ
(
H(X1...Xu|J) −

τΛ(X1,X2, ...,Xu,X
(s)
u+1, ...,X

(s)
m ‖J) + I(X1X2...Xm;J‖Z)

)
} =

infJ{infvalid Λ

(
H(X1...Xu|J) − τΛ(X1,X2, ...,Xu,X

(s)
u+1, ...,X

(s)
m ‖J) + I(X1X2...Xm;J‖Z)

)
}
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By applying Theorem 6 of the first part of this paper [6] and theduality theory, one gets the following

lower bound onϕj(X1;X2;X3; ...;Xm‖Z):

ϕ1(X1;X2;X3; ...;Xm‖Z) ≥

infJ
(
S(X1J ;X2J ; ...;XuJ ; (Xu+1J)(s)...; (XmJ)(s)‖J) + I(X1X2...Xm;J (s)‖Z)

)
.

According to Theorem 5 of the [6],

infJ
(
S(X1J ;X2J ; ...;XuJ ; (Xu+1J)(s)...; (XmJ)(s)‖J) + I(X1X2...Xm;J (s)‖Z)

)

is an upper bound on

S(X1;X2; ...;Xu;X
(s)
u+1...;X

(s)
m ‖Z)

which is in turn bounded from below by

H(X1|Z) −
∑m

i=2 H(X1|Xi).

Thereforeϕ(X1;X2;X3; ...;Xm‖Z) ≥ H(X1|Z) −
∑m

i=2 H(X1|Xi). •

Property 5.

We need to prove that:

inf eJ(θΛ(X1;X2;X3; ...;Xm; J̃‖Z)) ≥

inf eJ ′
(θΛ(X1M1;X2M2; ...;XuMu;Xu+1...;Xm; J̃ ′‖Z))

It is enough to prove that for anyJ , there is aJ ′ such that:

θΛ(X1;X2;X3; ...;Xm;J‖Z) ≥ θΛ(X1M1;X2M2; ...;XuMu;Xu+1...;Xm;J ′‖Z)

We defineJ ′ in a way that it has the same joint distribution with(X1,X2, ...,Xm, Z) asJ has but at

the same be independent ofM1M2...Mu. One can then prove that:

H(X1M1...XuMu|J
′) − τΛ(X1M1,X2M2, ...,XuMu,X

(s)
u+1, ...,X

(s)
m ‖J ′) +

I(X1X2...XmM1...Mu;J ′|Z) =

H(X1...Xu|J) − τΛ(X1,X2, ...,Xu,X
(s)
u+1, ...,X

(s)
m ‖J) + I(X1X2...Xm;J |Z) +

H(M1) + .... + H(Mu) −
∑

B:B⊂[m],B
T

[u] 6=∅,B 6=[m] λB

∑
i∈B

T
[u] H(Mi)

But

H(M1) + H(M2) + ... + H(Mu) −
∑

B:B⊂[m],B
T

[u] 6=∅,B 6=[m] λB

∑
i∈B

T
[u] H(Mi)

is zero (this could be proved using the definition ofΛ and by settingRi = H(Mi) for 1 ≤ i ≤ u). •
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APPENDIX II

In this appendix, we will prove that for anyǫ in the interval(0, 1), I(X;Y |Z) strictly increases in the

following three cases:

• X1 andX2 are not independent and we replacep(X1,X2)p(Y,Z|X) with p(X1)p(X2)p(Y,Z|X).

• we change the distribution ofX1 to a uniform distribution ifX1 andX2 are independent butX1 is

not uniform.

• we change the distribution ofX2 to a uniform distribution ifX1 andX2 are independent butX2 is

not uniform.

Case 1:

I(X;Y |Z) = I(X1X2;Y1Y2|Z1Z2) = H(Y1Y2|Z1Z2) − H(Y1Y2|Z1Z2X1X2).

SinceY1Z1 − X1 − X2 − Y2Z2, we can work out the second term

H(Y1Y2|Z1Z2X1X2) = H(Y1|Z1Z2X1X2)+H(Y2|Z1Z2X1X2Y1) = H(Y1|Z1X1)+H(Y2|X2Z2).

The first term can be bounded from above as follows:

H(Y1Y2|Z1Z2) = H(Y2|Z1Z2) + H(Y1|Z1Z2Y2) ≤ H(Y2|Z2) + H(Y1|Z1).

ThereforeI(X;Y |Z) ≤ I(X1;Y1|Z1) + I(X2;Y2|Z2). This would mean that if we replace

p(X1,X2)p(Y,Z|X) with p(X1)p(X2)p(Y,Z|X), I(X;Y |Z) does not decrease.

We prove thatI(X;Y |Z) strictly increases by contradiction. AssumeI(X;Y |Z) does not increase. In

this case,H(Y1|Z1Z2Y2) must be equal toH(Y1|Z1) implying thatI(Y1;Y2|Z1) = 0. SinceZ1−Y1−Y2

form a Markov chain, theI(Y1;Y2|Z1) = 0 constraint implies thatI(Y2;Z1) = I(Y2;Y1). But since

I(Y2;Y1) ≥ I(Y2;T1) ≥ I(Y2;Z1),

we getI(Y2;T1) = I(Y2;Z1).

I(Y2;Z1) = I(Y2;Z1, 11[Z1 = E]) =

I(Y2; 11[Z1 = E]) + I(Y2;Z1|11[Z1 = E]) = 0 + ǫ.I(Y2;T1).

Sinceǫ < 1, I(Y2;T1) = I(Y2;Z1) can hold only whenI(Y2;T1) = I(Y2;Z1) = I(Y2;Y1) = 0.

0 = I(Y2;Y1) = I(Y2, 11[Y2 = E];Y1, 11[Y1 = E]) ≥

I(Y2;Y1|11[Y2 = E], 11[Y1 = E]) ≥

p(Y2 6= E).p(Y1 6= E).I(Y2;Y1|Y2 6= E,Y1 6= E) = 0.81I(X1;X2).

ThereforeI(X1;X2) = 0 meaning thatX1 andX2 are independent. This is a contradiction. •

Case 2:

I(X1;Y1|Z1) = I(X1;Y1) − I(X1;Z1) = H(Y1) − H(Y1|X1) − H(Z1) + H(Z1|X1) can be thought

of as a function ofp(X1 = 0) = a. H(Y1|X1) and H(Z1|X1) are constant not depending ona. The
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marginal distribution ofZ1 equals(ǫ.(0.9a+0.05), 1− ǫ, ǫ.(−0.9a+0.95)), and the marginal distribution

of Y1 equals(0.9a, 0.1, 0.9 − 0.9a)). Therefore it is enough to show thatH(Y1) − H(Z1) reaches its

maximum at and only ata = 0.5. This can be seen by noting that the derivative of1
0.9(H(Y1)−H(Z1))

with respect toa equals:log 0.5−(a−0.5)
0.5+(a−0.5) − ǫ log 0.5−0.9(a−0.5)

0.5+0.9(a−0.5) which is zero only ata = 0.5. •

Case 3:

I(X2;Y2|Z2) = I(X2; (Y2, 11[Y2 = E])|Z2) = I(X2; 11[Y2 = E]|Z2) + I(X2;Y2|11[Y2 = E], Z2) =

0 + P (Y2 = E).0 + P (Y2 6= E).H(X2|Z2) = 0.9H(X2|Z2).

But H(X2|Z2) = P (Z2 = 0).0 + P (Z2 = 1).0 + P (Z2 = E).H(X2). Therefore

I(X2;Y2|Z2) = 0.9 ∗ 0.19H(X2).

We are done by noting thatH(X2) strictly increases when the distribution ofX2 is changed to uniform.
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