
EE 229B ERROR CONTROL CODING Spring 2005

Solutions for Homework 2

1. (Weights of codewords in a cyclic code)

Let g(X) be the generator polynomial of a binary cyclic code of length n.

(a) Show that if g(X) has X + 1 as a factor then the code contains no codewords of odd
weight.
Solution :
v(X) ∈ GF (2)[X] is a code polynomial iff it is of degree at most n − 1 and can be
written as v(X) = u(X)g(X) for some polynomial u(X) ∈ GF (2)[X]. Since X + 1
divides g(X), it follows that X + 1 divides v(X). Hence v(1) = 0. This means
precisely that the weight of the corresponding codeword (v0, . . . , vn−1) is even.

(b) Show that if n is odd and X + 1 is not a factor of g(X) then the code contains the
codeword consisting of all 1’s.
Solution :
The claim of this part of the problem is true whether n is odd or even.

Xn + 1 = (X + 1)(1 +X +X2 + . . .+Xn−1) .

Since g(X) divides Xn + 1 and does not have X + 1 as a factor, it must divide
1 +X +X2 + . . .+Xn−1. In other words, the length n word consisting of all 1’s is
a codeword.

(c) Show that if n is the smallest integer such that g(X) divides Xn + 1 then the code
has minimum weight at least 3.
Solution :
If there is a codeword of weight 1, the associated code polynomial is Xm, for some
0 ≤ m ≤ n− 1. Since the code is cyclic, it follows that 1 is also a code polynomial.
But then the code is trivial (every word is a codeword), and g(X) = 1, contradicting
the hypothesis.

If there is a codeword of weight 2, the associated code polynomial is Xm + X l for
some 0 ≤ m < l ≤ n− 1. Since the code is cyclic, it follows that 1 +X l−m is also a
code polynomial. Hence g(X) divides 1 + X l−m, which contradicts the hypothesis.
since l −m < n.

Thus under the hypothesis the smallest weight of a nonzero codeword must be at
least 3.

(d) Suppose g(X) is such that the code contains both even-weight and odd-weight code-
words. Let A(z) denote the weight enumerator polynomial of the code. Show that
the polynomial (X+1)g(X) also generates a binary cyclic code of length n, and that
this has weight enumerator polynomial

A1(z) =
1
2

[A(z) +A(−z)] .
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Solution :
Let C denote the binary cyclic code (n, k) with generator polynomial g(X). We know
that g(X) divides Xn + 1. Since C contains both even and odd weight codewords,
X + 1 does not divide g(X). Thus (X + 1)g(X) divides Xn + 1. Hence it is the
generator polynomial of a binary cyclic (n, k − 1) code. Let C1 denote this code.

We claim that C1 is comprised of the even weight codewords of C.

Consider a codeword of C. The corresponding code polynomial can be uniquely
written in the form a(X)g(X), where a(X) ∈ GF (2)[X] is of degree at most k − 1.
The codeword has even weight iff its code polynomial is divisible by X + 1. Since
X + 1 does not divide g(X), it follows that the codeword has even weight iff X + 1
divides a(X), i.e. a(X) = b(X)(X + 1) for some b(X) ∈ GF (2)[X]. But this means
the code polynomial has the form b(X)((X+1)g(X)), so the corresponding codeword
is in C1.

For the converse, consider a codeword in C1. Its code polynomial is of the form
b(X)(X + 1)g(X) for a unique b(X) ∈ GF (2)[X] of degree at most k − 2. Writing
this as (b(X)(X + 1))g(X) we see that the codeword is in C and has even weight.

It now follows that
A1(z) =

1
2

[A(z) +A(−z)] ,

where A1(z) denotes the weight enumerator polynomial of C1 and A(z) denotes the
weight enumerator polynomial of C. Indeed, the polynomial on the right hand side
of the equation above just enumerates the even weight codewords in C.

2. (Cyclic codes)

(a) i. Show that g(X) = 1+X2 +X4 +X6 +X7 +X10 generates a (21,11) cyclic code.
Solution :
We need to show that g(X) divides X21 + 1. Note that

g(X) = (X + 1)(X3 +X2 + 1)(X6 +X4 +X2 +X + 1) .

As can be seen from any table enumerating the minimal polynomials of the
elements of GF (2m) for small values of m, each of the factors is the minimal
polynomial of some elements in GF (64). It follows that g(X) divides X63 +
1. Let α denote a primitive element in GF (64). The tables also show that
X3 + X2 + 1 is the minimal polynomial of the conjugates {α27, α54, α45} in
GF (64) and X6 +X4 +X2 +X + 1 is the minimal polynomial of the conjugates
{α3, α6, α12, α24, α48, α33} in GF (64). Each of the roots of these polynomials
satisfies the equation X21 + 1 = 0. It follows that g(X) divides X21 + 1.

ii. Let r(X) = 1 +X5 +X17 be a received polynomial. Compute the syndrome of
r(X).
Solution :
The syndrome polynomial s(X) when the received polynomial is r(X) is the
remainder of r(X) when divided by the generator polynomial g(X). Direct
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computation gives :

s(X) = X8 +X6 +X4 +X3 + 1 .

(b) Let C1 and C2 be two cyclic codes of length n generated by g1(x) and g2(x) respec-
tively. What is the generator polynomial for the smallest cyclic code that contains
the set C1 ∪ C2 ?
Solution :
Let g(x) = gcd(g1(x)g2(x)). The cyclic code C generated by g(x) contains C1 ∪ C2.
Also, there are polynomials a(x) and b(x) (with coefficients from the field in which
the symbols lie) such that

a(x)g1(x) + b(x)g2(x) = g(x) ,

as can be seen by applying Euclid’s algorithm. This equation then also holds modulo
xn+1. Since a(x)g1(x)mod(xn+1) is a code polynomial for C1 and b(x)g2(x)mod(xn+
1) is a code polynomial for C2, and since any code containing C1 ∪ C2 is closed under
sums, it follows that g(x) is a code polynomial in any code that contains C1 ∪ C2. It
then follows that any cyclic code containing C1 ∪ C2 must contain C. Thus g(x) is
the generator polynomial of the smallest cyclic code containing C1 ∪ C2.

(c) Let C1 and C2 be two cyclic codes of length n generated by g1(x) and g2(x) respec-
tively. Show that the code polynomials common to both C1 and C2 also form a cyclic
code C3. Determine the generator polynomial of C3. If d1 and d2 are the minimum
distances of C1 and C2 respectively, what can you say about the minimum distance
of C3 ?
Solution :
Since the intersection of any two binary linear codes is a binary linear code, we know
that C3 is a binary linear code. Let v(X) be the polynomial associated to a binary
string that is in C1 ∩C2. Then v(X) is divisible by both g1(X) and g2(X). It follows
that it is divisible by

g3(X) = l.c.m.(g1(X), g2(X)) ,

where “l.c.m.” stands for “least common multiple”. Conversely, if the polynomial
associated to a binary string is divisible by g3(X) it follows that it is divisible by
both g1(X) and g2(X) and so the corresponding binary string is in C1 ∩ C2 = C3. It
follows that C3 is a cyclic code, with generator polynomial g3(X).

C3 may be the trivial code comprised of the zero codeword. If it has at least one
nonzero codeword, its minimum distance can be no smaller than the maximum of
the minimum distances of C1 and C2, because every nonzero codeword in C3 lies in
both C1 and C2.

3. (Polynomials )

(a) Show that X5 +X3 + 1 is irreducible over GF(2).
Solution :
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Neither 0 nor 1 is a root of the polynomial X5 +X3 +1, so it has no factors of degree
1 in GF (2)[X]. Also, for the same reason, if it had a factor of degree 2 in GF (2)[X]
this factor would have to be irreducible. The only irreducible polynomial of degree
2 in GF (2)[X] is X2 + X + 1. If this were a factor of X5 + X3 + 1 in GF (2)[X],
it would also be a factor of X5 + X3 + 1 in GF (4)[X], which would mean that α,
any primitive element of GF (4)[X] with minimal polynomial X2 +X + 1, would be
a root of X5 +X3 + 1 in GF (4)[X]. However, α5 +α3 + 1 = α2 6= 0 in GF (4). Thus
X5 +X3 + 1 does not have any factors of degree 2 in GF (2)[X]. It now follows that
this polynomial is irreducible in GF (2)[X], since if it were reducible it would have
to have a factor of degree 1 or a factor of degree 2.

(b) Let f(X) be a polynomial of degree n over GF(2) with nonzero constant term. Let
f∗(X) denote its reciprocal polynomial, i.e.

f∗(X) = Xnf(X−1) .

i. Prove that f(X) is irreducible over GF(2) if and only if f∗(X) is irreducible over
GF(2).
Solution :
Since the reciprocal of f∗(X) is f(X) it is enough to show that if f(X) is
reducible over GF(2) then f∗(X) is reducible over GF(2).

Suppose we had a nontrivial factorization f(X) = a(X)b(X), with deg(a(X)) =
k, where 1 ≤ k ≤ n− 1. Note that both a(X) and b(X) have nonzero constant
term. The reciprocal polynomials of a(X) and b(X) are a∗(X) = Xka(X−1)
and b∗(X) = Xn−kb(X−1) respectively, and we have f∗(X) = a∗(X)b∗(X), so
f∗(X) is also reducible over GF(2).

ii. Prove that f(X) is primitive over GF(2) if and only if f∗(X) is primitive over
GF(2).
Solution :
Since the reciprocal of f∗(X) is f(X) it is enough to show that if f(X) is not
primitive over GF(2) then f∗(X) is not primitive over GF(2).

Suppose f(X) is not primitive over GF(2). Then f(X) divides Xt + 1 for
some t < 2n − 1, which then means Xt + 1 = g(X)f(X) for some g(X)
with nonzero constant term. The polynomial Xt + 1 is its own reciprocal and
the reciprocal polynomial of g(X) is g∗(X) = Xt−ng(X−1). We then have
Xt+1 = g∗(X)f∗(X), which means that f∗(X) divides Xt+1, and since t < 2n

and deg(f∗(X)) = n, it follows that f∗(X) is not primitive.

4. (Calculations in finite fields)

Let α be a primitive element in GF(24) satisfying α = α4 + 1. In the following problems
you will find it useful to refer to Table 2.8 on pg. 47 of the text.

(a) Find the roots of X3 + α6X2 + α9X + α9 in GF(24).
Solution :
X3 + α6X2 + α9X + α9 = (X + α)(X + α3)(X + α5).
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(b) Solve the following system of equations in GF(24) :

X + α5Y + Z = α7

X + αY + α7Z = α9

α2X + Y + α6Z = α

Solution :
(X,Y, Z) = (α12, α14, α10).

5. (Determining all binary cyclic codes)

Determine all the binary cyclic codes of length 21.

Hint : What is the factorization of X21 + 1 into irreducible factors over GF(2) ? The
decomposition of the nonzero elements of GF(64) into cyclotomic cosets may be useful in
answering this question.

Solution :

Consider the field GF (64) generated by the primitive polynomial X6 + X + 1. The
polynomial X63 + 1 splits into factors of degree 1 over this field, and since

X63 + 1 = (X21 + 1)(X42 +X21 + 1) ,

the polynomial X21 + 1 splits into factors of degree 1 over this field. In fact, the roots of
X21 + 1 are precisely :

1, α3, α6, α9, α12, α15, α18, α21, α24, α27, α30, α33, α36, α39, α42, α45, α48, α51, α54, α57, α60 .

The minimal polynomials of these elements are :

X6 +X4 +X2 +X + 1 whose roots are α3, α6, α12, α24, α48, and α33

X3 +X2 + 1 whose roots are α9, α18, and α36

X6 +X5 +X4 +X2 + 1 whose roots are α15, α30, α60, α57, α51, and α39

X2 +X + 1 whose roots are α21 and α42

X3 +X + 1 whose roots are α27, α54, and α45 .

Thus, the factorization of X21 + 1 into irreducible factors in GF (2)[X] is X21 + 1 =
(X+1)(X6+X4+X2+X+1)(X3+X2+1)(X6+X5+X4+X2+1)(X2+X+1)(X3+X+1).

There are six distinct irreducible factors of X21 + 1, each with multiplicity 1. A binary
cyclic code of length 21 is determined by its generator polynomial, which is a polynomial
that divides X21 + 1. Thus there are 26 = 64 binary cyclic codes of length 21, given
respectively by the 26 distinct polynomials that divide X21 + 1 in GF (2)[X].
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