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1 Convolutional Codes

1.1 Introduction

Suggested reference for convolutional codes : “Fundamentals of Convolutional Coding” by Rolf
Johannesson and Kamil Zigangirov, IEEE Press, 1999.

An encoder for a binary block code takes a block of information bits and converts it into a block
of transmitted bits (a codeword). A binary convolutional encoder takes a stream of information
bits and converts it into a stream of transmitted bits, using a shift register bank. Redundancy for
recovery from channel errors is provided by transmitting more bits per unit time than the number
of information bits per unit time. Maximum likelihood decoding can be done using the Viterb:
algorithm; other decoding algorithms such as SOVA (soft output Viterbi algorithm) and the BCJR
algorithm are also commonly used. In practice the information stream is of finite duration and one
typically appends a few termination bits to the input stream to bring the shift register bank back
to the all zeros state, so that the convolutional code is in effect used as a very long block code.

Often convolutional codes are used as inner codes with burst error correcting block codes as
outer codes to form concatenated codes. Errors in Viterbi-like decoding algorithms for convolutional
codes tend to occur in bursts because they result from taking a wrong path in a trellis. The burst
error correcting capability of the outer code is used to recover from such burst error patterns in
the decoding of the inner code. See Section 15.6 on pp. 760 -761 of the text of Lin and Costello
(2nd edition) for a short discussion of this idea.

1.2 Formal definitions

Convolutional codes are linear codes over the field of one-sided infinite sequences. The symbols can
be from any field but we will just consider symbols from GF'(2). For notational simplicity, and to
give an indication of how the more general case works, in the following we will write F' for the field
GF(2). We begin with a few definitions.

Definition 1 Let -
F((D)) = {Zw,D’ cx; € Fyr e Z}

be the set of binary Laurent series.

The D is a formal place holder to represent one step of delay. With addition and multiplication
defined in the obvious way F'((D)) becomes a field. Because the Laurent series are finite to the left,
multiplication is well defined (as then we don’t have to sum an infinite number of terms). All the
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axioms of a field are easy to check except the existence of a multiplicative inverse. A multiplicative
inverse can be constructed explicitly by “long division”.

Definition 2 Let

o
F[[D]] = {Z%Dl cx; € For > 0}
i=r
be the set of binary formal power series.

With addition and multiplication defined in the obvious way F[[D]] is a ring (in a ring, as
opposed to a field, we do not require the existence of a multiplicative identity and we do not
requrie the existence of multiplicative inverses for nonzero elements).

Definition 3 Let ;
F[D] = {inDi:xieF,O§r§d<oo}

i=r

be the set of binary formal polynomials.
With addition and multiplication defined in the obvious way F[D] is a ring.

Definition 4 Let

F(D) = {% #(D).a(D) € FIDI}

be the set of binary rational functions.

With addition and multiplication defined in the obvious way F'(D) is a field.
Note that we have
F[D] c F(D) C F((D))

and
F[D] C F[[D]] c F((D)).

Definition 5 Let
F*(D)) = {(z1(D),z2(D), -, xk(D)) : z;(D) € F((D)),1 < j < k}.
Definition 6 A rate R = k/n (k < n) convolutional mapping is a linear transformation
7 FF(D)) — F"((D))

defined by
T(z(D)) = z(D)G(D)

where G(D) € F(D)¥*™ (k x n matrices of rational functions) and G(D) has rank k. G(D) is
called a transfer function.

Definition 7 A rate R = k/n convolutional code is the image of a rate R convolution mapping.
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Given a k x n transfer function G(D) and x(D) € F¥((D)), then y(D) = x(D)G(D) € F*((D))
is the code sequence corresponding to the input sequence x(D).

Definition 8 Given x(D) € F((D)), its delay del(x(D)) is the smallest r for which z, = 1.
Definition 9 z(D) is called delay free if del(x(D)) = 0.
Definition 10 A rational function p(D)/q(D) is called realizable if q(D) is delay free.

Definition 11 G(D) € F(D)**" is called realizable if each of its elements is realizable. Such a
G(D) is called a generator matrix.

Definition 12 A generator matriz (a transfer function matriz that is realizable) is called delay
free if at least one of its elements is delay free.

Theorem 1 Any convolutional code C C F"((D)) is the image of a convolutional mapping with a
transfer function matriz that is a delay free generator matrix.

Proof: Suppose C is the image of F*((D)) under the mapping corresponding to G(D) € F(D)F*".
Write
G(D) = [gi (D))"

where g;;(D) = pij(D)/qi;(D). Now write
9ij(D) = D*pi;(D)/qij(D)
where p;;(0) =1, ¢;;(0) = 1. Define s = min; j s;; and
G(D) = D*G(D).

Then G(D) is a delay free generator and the image of F¥((D)) under the transformation corre-
sponding to G(D) is C. O

In general a transfer function matrix may not be realizable, so any shift register bank that
implements it would need to be noncausal. The preceding result shows that any convolutional
code has a generator matrix ( a realizable transfer function matrix), which can now be built with
a causal shift register bank. Further we can ensure that there is no “unnecessary delay” (this the
content of the delay free condition). The following result shows that we can actually even use any
convolutional code with feedforward shift register banks (i.e. no need for feedback, or, in other
words, a polynomial transfer function matrix).

Theorem 2 Any rate R = k/n convolutional code C is the image of F"((D)) under a transfer
function matriz that is

e a generator
o delay free

e polynomial



Proof: We already know from the previous theorem that C is the image of F*((D)) under a
G(D) € F(D)**™ that is realizable and delay free. Write

G(D) = [giy(D)]™"

where g;;(D) = pij(D)/qi;(D), ¢i;(0) =1,1 <i < k,1 < j <mn, and there is at least one (i, j) with
pij(0) = 1. Let ¢(D) =lem({g;;(D) : 1 <i < k,1<j<n}). Let

G(D) = q(D)G(D).

Then C is the image of F*((D)) under G(D). G(D) is a polynomial matrix and thus realizable. Since
all the ¢;;(0) = 1, g(0) = 1. So for the same (i, j) for which p;;(0) = 1 will have ¢(0)p;;(0)/g:;(0) = 1
making G(D) delay free.

Definition 13 A rate R = k/n convolutional mapping is said to be systematic if some k of the code
sequences are exactly the k input sequences. FEquivalently, after reordering the output coordinates
the corresponding transfer function matriz G(D) has the form

G(D) = [LpxkR(D)],
where R(D) € F(D)*>n=Fk,

Every convolutional code has both systematic and non-systematic convolutional mappings that
result in the same code.

In block codes errors cannot propagate very far because of finite size blocks. This is not
necessarily the case for convolutional codes as it is possible for a “finite” error in the code sequence
to have an “infinite” error in the corresponding input sequence.

Definition 14 A convolutional mapping is said to be catastrophic if there is some code sequence
y(D) with finitely many 1s that results from an input sequence x(D) with infinitely many 1s.

Every code has catastrophic and non-catastrophic mappings that result in that code.
Several examples relating to the definitions were discussed in class. See also the text of Lin and
Costello and the book of Johannesson and Zigangirov.

2 Smith form of a polynomial matrix

G(D), a k x n polynomial matrix, can be written as

where A(D) is an unimodular k£ X k polynomial matrix (an unimodular matrix is a polynomial
matrix with a polynomial inverse), B(D) is an unimodular n X n matrix, and

71(D)

(D) = , r =rank G(D)



with v;(D) |vi41(D), 0<i<r—1. In fact

Ai(D)

WP =X D)

where Ag(D) =1 and A;(D) = ged of the i x ¢ minors of G(D).
This was proved in class. See also the book of Johannesson and Zigangirov.

3 Smith form of a rational matrix G(D) € F(D)"

Suppose ¢(D) is the lem of the denominator polynomials in the entries of G(D). Then ¢(D)G(D)
is a polynomial matrix. So

¢(D)G(D) = A(D)['(D)B(D) (Smith Form)

Therefore,
G(D) = A(D)I(D)B(D)

where A(D) and B(D) are unimodular with size k x k and n X n, respectively, and

where o;(D) | aj+1(D), 0<i<r—1and Bi+1(D) | Bi(D), 0<i<r-—1.
4 Massey-Sain characterization of non-catastrophic generator ma-
trices

Theorem 1 A rational generator matriz G(D) for a convolutional code C' is non-catastrophic
(Recall G(D) k x n has rank k and k < n) iff ax(D) = D* for some s > 0.

Proof: Let G(D) = A(D)I'(D)B(D) (Smith form) and

I(D) = [ diag(gjggg), 1<i<k, 0

Assume oy (D) = D*. A right inverse for G(D) is given by

: Bi(D) ; )
G(D)™ = B(D) [ 0 (&), 1=i=k o)
Since a1(D) | aa(D) |...| ag(D) = D?, each «;(D) = D* for for some s1 < 59 < ... < s, =s.
So
DSG(D)—I — B—I(D) [ glag(D B Zﬁ’l(D)7 1 <1< k) 1 A—I(D)



This is a polynomial matrix.

So if y(D) = z(D)G(D), then y(D)D*G(D)~! = D*z(D). Because D*G(D)~! is a polynomial
matrix we see that if y(D) is polynomial, then D*z(D) is polynomial. Therefore, x(D) corresponds
to a sequence that has only finitely many 1’s whenever y(D) corresponds to a sequence that has
only finitely many 1’s. This means that G(D) is non-catastrophic

Conversely, if o (D) has a factor which is not just D, then g iEID)g has infinite weight.

Now

G(D) = A(D) [ diag (;;;gg;) ,1<i<k 0 ] B(D)

so taking

B Be(D)] -1
x(D)_[o...oak(D)}A (D)

first note that it corresponds to a sequence with infinitely many 1’s. Also

is a polynomial, so it corresponds to a sequence with finitely many 1’s. Thus we have found an
input sequence with infinitely many 1’s that is encoded as an output sequence with finitely many
1’s. This means that G(D) is catastrophic.

Definition 15 A generator matriz G(D) is called basic if it is polynomial and has a polynomial
right inverse.

Note: Any basic generator matrix is an (basic) encoding matrix. (A generator matrix G(D) is
called an encoding matrix if G(0) is invertible.)

Theorem 2 FEvery convolutional code C' can be described by a basic generator matriz.

One consequence is that decoding can be conceptually viewed as in the figure, when a basic generator
matrix is used for encoding. Namely, one can view the decoding problem in two stages as that of
first finding the most likely output sequence that explains the (noisy) observations and then using
the (feedforward) inverse of the basic encoding matrix to recover the corresponding information
sequence.

Proof: We already know that C can be described by a polynomial delay free matrix. Call it
G(D). Let G(D) = A(D)I'(D)B(D) be the Smith form of G(D), where

I'(D) = [diag(v(D)), 1 <i <k, 0].

Note that

G(D) = A(D) [diag(vi(D)), 1 <i < k] G(D)

where G(D) is the k x n matrix consisting of the k rows of B(D). Also A(D)[diag(v;(D))] is
invertible as a rational matrix. So G(D) also describes C. Further G(D) is a polynomial matrix
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e(D)

X(D) Y(D) Decode
—————* G(D) Channel ——

for Y(D)

basic polynomial
generator matrix

Figure 1:

and the first k& columns of B~'(D) give a right inverse for G(D), and this is a polynomial right
inverse because B~1(D) is polynomial.

Theorem 3 A polynomial generator matriz G(D) (a k x n matriz of rank k, k < n) has a poly-
nomial right inverse iff v, (D) = 1 where

G(D) = A(D) [diag(vi(D)), 1 <i <k, 0] B(D)
is the Smith form of G(D).

Proof: See the book of Johannesson and Zigangirov.

Corollary: For any convolutional code C, any basic (i.e. polynomial with polynomial inverse)
generator matrix is non-catastrophic.
Proof : yx(D) =1 = D? and use Massey-Sain, i.e. Theorem 1.

5 Some deeper results w/o proof

Consider any polynomial generator matrix for C. Call it G(D).
Def: Let
;= d i (D).
vi = max deg gi;(D)
Call it the i constraint length.
m = maxi<;<k Y is called the memory.
v = Zle v; is called the overall constraint length.
The terminology comes from associating to the polynomial generator matrix a feedforward shift
register implementation (controller form) that encodes information sequences into code sequences.
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The i-th coordinate of the information sequence (viewed as a block of k bits at any symbol interval)
will need to go into a shift register with ~; blocks, the longest such shift register will have length
m, and the overall number of blocks in all the k shift registers involved will be ~.

Definition 16 A minimal basic encoding matriz is one whose overall constraint length is the small-
est among all basic encoding matrices for the same code.

Note: A convolutional code can have more than one basic encoding matrix describing it. In fact, if
a basic encoding matrix is multiplied on the left or the right by any unimodular matrix, this gives
another basic encoding matrix for the same code.

Now consider G(D), an arbitrary generator matrix for C.

G(D) = [Pij(D)l

4i5(D)
Define ¢;(D) = lem(g;;(D), 1 < j < n). Write

pij(D) _ pij(D)
¢i;(D)  ai(D)

Define: v; = maxi<j<n(deg ¢;(D),deg p;;(D)) and m = maxj<;<xy; and y = Zle ~i

~; is called the i-th constraint length of the generator matrix, m is called the memory, and ~ is
called the overall constraint length.

The terminology comes from associating to the generator matrix a feedback shift register im-
plementation (controller form) that encodes information sequences into code sequences. The i-th
coordinate of the information sequence (viewed as a block of k bits at any symbol interval) will
need to go into a shift register with ~; blocks, the longest such shift register will have length m,
and the overall number of blocks in all the k shift registers involved will be ~.

Definition 17 A minimal generator matrix for C is one whose overall constraint length v is small-
est among all generator matrices describing C.

Theorem :

(I) A basic encoding matrix G(D) is minimal iff the 0-1 matrix of the highest degree terms in
each row is full rank. For example
N 0110
01 01

and this is a full rank matrix, so G(D) is a minimal basic encoding matrix for the code that
it describes.

1+D D?> D*+D 1
¢D)=\p  ps p 1+ D3

(IT) Every minimal basic encoding matrix is a minimal generator matrix.

(ITI) Any two minimal generator matrices have exactly the same constraint lengths up to reorder-
ing.



(IV) Any systematic generator matrix is a minimal generator matrix.

(V) Any minimal generator matrix is non-catastrophic.

For proofs of these results, see the book of Johannesson and Zigangirov.

Note : Every convolutional code has a systematic generator matrix (this is just using the
assumption that any generator matrix for the code has full rank), but there are convolutional codes
that do not have systematic polynomial generator matrices. For instance, the rate 1/2 code with
generator matrix

G(D)=[1+D 1+D+ D?.

6 Duality for Convolutional Codes

Let G(D) be a (rational) generator matrix for C with Smith form G(D) = A(D)I'(D)B(D) where
B(D) = l » ] and B~'(D) = | G(D)™' HT(D) |

where G(D)~! is a right inverse of G(D) and (HT(D))~" is a right inverse for H” (D). The
convolutional code generated by H (D) is called the dual code of C.

The connection with the block code notion of duality was described in class. See also the book
of Johannesson and Zigangirov.



