Sequential Decoding: Computational
Complexity and the Cutoff Rate

Lenny Grokop
May 13, 2005

Abstract

Sequential decoding algorithms decode convolutional codes by guess-
ing their way through the expanding tree of possible transmitted se-
quences. In this way computational complexity is reduced. Gener-
ally it comes at the cost of having to communicate at rates distinctly
below capacity. The computational cutoff rate Rcomp delineates the
border between those rates for which the average decoding time is
bounded and those for which it is infinite. A series of papers estab-
lishes Rcomp = Fo(1), where Ey(p) is the Gallager function.

1 Convolutional Codes

Convolutional codes use memory to spread the message digits over time in
order to average out the channel noise. An example of a convolutional en-
coder is shown in figure (1). The encoder is defined by three parameters A
-the number of digits inputed at each time point, L -the constraint length
and v -the number of digits outputed at each time point. The rate of the
code is defined as R = \/vlog(2) in nats. The constraint length plays the
same role as the length of a block code. If the sequence of message digits is
denoted
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then the sequence of channel digits outputed by the convolutional encoder
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where L is the constraint length of the encoder and g¢;;(l) are the encoder
taps.

2 Sequential decoding

Sequential decoding was proposed by Wozencraft [1] as a suboptimal method
of decoding convolutional codes. The underlying idea is that the decoder re-
trieves the message sequence by guessing its way through the time-expanding
tree of possible transmitted sequences. The complexity of such decoders is
substantially better than MLSD enabling much larger constraint lengths to
be used. For this reason, and for the purposes of later analysis, we will take
L to be infinite in this report. In doing so we assume that the encoder and
decoder have access to an infinite amount of common randomness with which
they generate the sequence of taps g;; ().

2.1 Decoding illustration

Sequential decoding (with infinite constraint length) works as follows. Firstly,
the encoder generates its taps randomly and independently as described
above. Consider the convolutional encoder from figure (2) and its associ-
ated tree structure in figure (3). Suppose we encode the message sequence
(1,0,0) as 111 010 100 but receive 001 010 100. Upon reception of 001
the decoder selects the most likely transmitted symbol, a 0, and heads into
the tree in that direction. It stores the cost of this move as 1 -the ham-
ming distance between the received 3 bits and the selected 3 bits. The next
two received symbols lead it to decode two more zeros. These decisions,
unavoidable as they are given the first choice of received symbol, cause the
decoder’s cost to rise at an unusually high rate. Sooner or later it realists
this (depending on how quickly the decoder starts second guessing itself),
and decides to turn back and try a different path. After it returns to the
beginning and takes the upward path it has a clean run to the end and incurs
a total Hamming cost of 1 for the decoded sequence. More importantly the
decoder will correctly decode the sequence without examining all 8 paths.



— xP
input bit stream —{ 5 b—» output bit stream

x@

> x©@

Figure 1: Convolutional encoder

The idea behind sequential decoding is that if the noise level is small
relative to the rate of the code, the decoder can guess its way through the
tree of possible received sequences -it need not examine every path in order
to decode with decreasing probability of error. The decoder keeps a running
metric designed to, on average, increase when it is travelling along the correct
path, and decrease otherwise (in the above example the metric was simplified
so that it increased quickly along false paths and slowly along true paths). At
each tree depth it compares the metric to an adpating threshold and decides
to either move forward, deeper into the tree, laterally to the nearest branch
or backwards. At the same time it may raise or lower its threshold if it deems
it to be too constraining.

2.2 The algorithm

The algorithm used nowadays is due to Fano [2]. We briefly describe it here.
Our description is based on [3].

At each time point the decoder moves through the tree from node to
node. It only moves in one of three directions, forwards (F), backwards (B)
or laterally (L). It does not really need to keep track of the time, only its
depth in the tree, which is denoted [. Forward moves increase [, backwards
moves decrease [. Upon arriving at a new value of [ the decoder computes
the path metric I'; corresponding to the node it is currently on. Denoting

the first vl digits of an encoded sequence by mgl) x§”), xé ), e ,xl(y) and

the first vl digits of the received sequence by ygl), e ,y§ ), yél), e ,yl(y) the
path metric is given by
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In this expression B is an arbitrary bias term to be selected later and w(j)
is the nominal probability of the jth letter of the channel output alphabet

K-1

w(j) = ) Qk)P(jlk)

k=0

where Q(k) is the relative frequency of the letter k in the mapping from
binary digits to channel inputs. To save computation the path metric is
computed recursively

L =T+ Z

It turns out that the computational complexity of the decoder is relatively
insensitive to B. For the BSC with crossover probability e
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where d(x;y) denotes the Hamming distance between the [th group of v
received bits and the hypothesized bits corresponding to the current node
(refer to the example from the previous section). The path metric I'; is then
compared to a threshold 7" and the decoder determines where to move to
next, and how to update the threshold, based on the rule set listed in the
table in figure 3.

Roughly speaking, the operational of the algorithm is such that with little
noise rule 1 is the most common move. Severe noise causes the decoder to
make regular use of the other rules. Under these conditions it will usually
move forward a tad, increasing the threshold for a while, then retreat as it
realizes it has been travelling down the wrong path. It will then oscillate
using rules 3 and 4 so as to lower its threshold before heading down a new
path.

Throughout the operation of the algorithm the decoder must keep track
of the following variables.

1. The path metric I';_; for the previous node at depth [ — 1.

2. The threshold T.

3. The previous move ('F’, 'B’ or 'L’).
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Figure 2: Decoding tree

Node Conditions Action
Previous Move \ Metric Comparison \ Final Threshold \ Move
1 ForlL Do <T+6,1>T Raise* Fi
2 ForlL L1 >T+0,10>T No change Fi
3 For L I'<T No change L or BT
4 B o< T Lower by A Fi
5 B ry.>T No change L or B}

Figure 3: Rule set for Fano decoding algorithm. *Add jd to threshold,
where j is chosen to satisfy Iy — 0 < T 4 jo < I'y. tMove forward to first
node stemming from current node. iMove laterally to next node differing

from current node only in the final branch. If current node is the last, move
backward.



4. The estimate of the transmitted sequence. Note -this storage re-
quirement is growing linearly in time.

5. Practical systems need a counter to help determine when to give up.

2.3 Error probability for two codewords

Before discussing the analysis of the above algorithm we present a result
which lies at its heart. It concerns the probability that given a codebook
consisting of only two codewords, a ML decoder will output one codeword
when in actuality the other was transmitted. We follow [6] (pages 122-139).

Let x; and x5 be two code words of length v. Suppose message 1 was
sent over a discrete memoryless channel and ML detection is used to decode.
The probability of error P, ; can be written as the probability of receiving a
particular sequence y conditioned on the transmitted message, summed over
the set of received sequences that cause the decoder to choose message 2 —a
set we denote by Y}

Pe,l = ZP<y|X1)
Ye
For any 0 < s < 1 we can upper bound this expression by

Py <Y Plylxa)' " Plylx2)’,
y

where the sum is now over all y. Now suppose x; and x5 are chosen inde-
pendently at random according to probability distribution @, (x). The prob-
ability of confusing a particular codeword x; with a particular codeword o,
or vice versa is upper bounded by

P.(x1,%3) < ZP(Y|X1)1_SP<Y|X2)S

for any 0 < s < 1 so that the average error probability over the ensemble is
given by

Fe = Z QV(X1)QV(X2)P6(X17X2) (2)
<Y | T awre | | Samareky| )



By symmetry, convexity and the fact that x; and xs are dummy variables,
the minimum over s occurs at s = 1/2 and

Rey P VPR

For the discrete memoryless channel with input alphabet (0,1,..., K — 1)
and output alphabet (0,1,...,J — 1), channel transition matrix P(j|k) and
codewords generated i.i.d according to Q(k) this becomes

s (5 (o m) )

J=

which is written as
< e_VEO(l’Q)

-9

where
Fo(1,Q) 2 - Z(ZQ y|kz)2

The bound can be tightened by maximizing Fy(1, Q) over Q. Define

E0(1> = HléziX E()(l, Q)

Then we have o
P. < exp{—vEy(1)}.

With this bound at hand we discuss the analysis of the sequential decoding
algorithm.

2.4 Cutoff rate

A little thought reveals that if the noise level is too high relative to the rate
of the code, the decoder will backtrack frequently and search through an
increasing number of nodes in its quest to find the correct path. By the
nature of its construction, the sequential decoder cannot avoid this effect.

It turns out though, for rates below a certain threshold Reomp known as
the computational cutoff rate (or just the cutoff rate) the average amount of
backtracking per bit decoded is bounded. Above the cutoff rate the decoder
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backtracks almost as often as it progresses forward, resulting in unbounded
computational complexity. The parameter Reomp is a function of the channel
and the noise level.

More specifically define the random variable W,, as the number of forward
hypotheses required to decode the nth subblock. Then ([3] p279)

W, < 4{1 — exp[-vEy(1) + vR]} 2

The important thing to observe is that W, is bounded for R < Reomp =
Ey(1). To get a feel for why this is the case let us examine the effect of the
particular choice of metric in equation (1) on the decoding process. Suppose
the decoder is on a particular node of depth n into the tree. Assume the
depth n — 1 node the decoder came from corresponds to the true path and
denote this event by e’ The decoder will proceed forward only if the

n—1-
likelihood that the corresponding source bits ﬂg), e ,127({\) were transmitted
given the received bits ynl), e ,yﬁly), is greater than the threshold 7. The
value of T' should be thought of as roughly corresponding to the likelihood
of the true sequence ug), e ,ug) given the received bits. Thus the decoder

will proceed down the current path provided

P (ﬁ(l) Ii\[/’gl)\) y(1)7 st 7y’l(’l,l/)) Z P (u’f’l,l)7 A 7u’£1)\)} yr(zl)7 st 7y’lg,l/)) °

noyc n

This probability is essentially the pairwise error probability between two
codewords chosen independently at random and hence the probability of
proceeding forward down a false branch of the tree is exp —vEy(1). As there
are 2 — 1 = exprR — 1 =~ exp VR such false branches stemming from every
node, applying the union bound, the probability of following a false path at
depth n given the true path was followed at depth n — 1 is

Pleales ) < exp{u(R — Eo(1))}.

n—1

Thus

P(en) = P(6n|62—1)P(6;—1) + P(enlen—1)P(en1)
< P(enler,_y) + P(en-1)
<exp{v(R— Ey(1))} + P(e,_1)
— P(e,) < nexp{v(R— Ey(1))}.
Thus for R < Ey(1), the probability of winding up on a false node at depth

n goes to zero as v — 00, and we expect the average number of forward
hypotheses required per decoded subblock to be small.
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Arikan [4] was the first to prove the converse result in full generality: for
R > Ey(1)

In doing so he completed the proof that the cutoff for sequential decoding
Reomp = Eo(1). For the BSC, the cutoff rate is given by the following expres-
sion

Eo(1) =1 — 2logy[ve + V1 — €. (4)

The capacity of the BSC is
C =1+e€logy(e) + (1 —€)logy(1 —e). (5)

These functions are plotted in figure (4) on the same graph for comparison.

One can ask a more general question about the statistics of the decoding
time: below what rate is the pth moment of W,, bounded? We denote this
quantity Reomp(p). The works of Falconer [5], Savage [6], Jelinek [7] and
Hashimoto and Arimoto [8] established an achievability bound

Reomp(p) = Eo(p)/p,  p> 0.

Here Ey(p) is defined as the maximum over all input distributions Q of the
function

Eo 1ogZ P(jlk)"/ 040

A converse result for channels where Fy(p) is concave was given by Jacobs
and Berlekamp [9]: for R > Ey(p)/p

The converse for arbitrary channels was not proved until much later (Arikan
[10]). This established

Reomp(p) = Eo(p)/p-



2.5 Computational complexity

Although W, is uniformly bounded for all n at rates below cutoff, the average
number of computations per bit decoded is not. This is because the decoder
must hypothesize increasingly long sequences and run them through its ver-
sion of the convolutional encoder. For the same reason the computational
complexity of the encoder is also unbounded with increasing n. Ultimately
the average number of computations per bit decoded grows in time like O(n).
This is a substantial improvement over the ML decoder which has computa-
tional complexity that grows in time like O(2F) = O(2").

2.6 Guessing and its relationship to sequential decod-
ing

It is interesting to examine a later paper by Arikan [11], that establishes
the converse bound Reomp(p) < Eo(p)/p using a simple but powerful lemma
concerning the number of attempts one needs to guess the value of a random
variable. Let (X,Y’) be a pair of discrete random variables with X taking
one of M possible values. Suppose the value of X is to be determined, given
the value of Y, by asking questions of the form "Is X equal to x?” until
the answer is ”"Yes”. Let G(z]y) denote the number of guesses in any such
guessing scheme when X = z,Y = y. Then it can be shown that

EIG(XIY)] > (1+ 1o 3 pryxyw] (6)

for any p > 0. The trick in the proof of this result is to take the expression

G(X|Y)] ZP )Y Pa)G(X =Y =y) (7)

and bound it in such a way that the guessing r.v. term G(X = z|Y = y)
is isolated within the summation over z, i.e. Y f(G(X = z|Y = y)).
Because the enumeration of all possible values of G(X = z|Y = y) is just
the enumeration of all integers from 1 to M, we have

D MGX =2y =y)) = Zf(i)
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which does not depend on the specific guessing function G that is used. We
can rewrite equation (6) as

ElGX|Y)] > (1+1logM) ?exp E,(X]|Y) ()

where
14p

E,(X]Y) = Z ZPnyyHP

Observe that the sequential decodlng operation at a particular depth n in-
volves guessing the correct node out of M = expnR possibilities. Observe
also that

E (X|Y) = pnR — Ey(p, Px).

where Px denotes the uniform distribution. It can be shown for any input
distribution Q that Ey(p, Q) < NEy(p) (see [13] theorem 5) and hence

E,(X[Y) > pnR — NEy(p).
So we have
E[G(X]Y)’] > (1 4+ nR)""expn(pR — Eo(p))] (9)

and thus at rates R > Ey(p)/p, the pth moment of computation performed at
depth n of the tree must go to infinity exponentially as n is increased. Hence
Reomp(p) < Eo(p)/p. This style of prove has also been used by Arikan to
establish the cutoff rate region of sequential decoding for multiaccess channels
[11] and to derive bounds to the complexity of sequential decoding in joint
source-channel coding systems [12].

2.7 Simulations

Simulating the Fano algorithm provides a practical analysis that comple-
ments the theoretical one discussed in the preceding section. A convolutional
code with infinite constraint, A = 1 and v = 15 was used. The taps were
generated uniformly at random from {0, 1}, and regenerated independently
each simulation. The rate of the code was R = 1/15 = 0.0667. The input
sequences consisted of 1000 binary digits selected uniformly at random from
{0,1}. The input sequences were regenerated independently each simulation.
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Figure 4: Cutoff rates versus capacity for the binary symmetric channel.
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The channel was binary symmetric with crossover probability €. A total of six
simulations were run. In the first three € = 0.2 yielding R < Reomp = 0.1054.
In the second three € = 0.3 yielding R > Reomp = 0.0426. The results are
presented in figure 6 in the form of a graph plotting the depth the algorithm
is at after a certain number of moves. Notice for R < Romp the algorithm
finds the true path in roughly 4 times the number steps but for R > Rcomp
it sooner or later gets stuck and begins to backtrack frequently.

3 Conclusion

The decoding of convolutional codes with large constraint lengths (L > 20)
cannot be practically achieved using the Viterbi algorithm. Sequential algo-
rithms such the one by Fano make this decoding possible as their average
decoding time grows only linearly with the constraint length so long as the
communication rate R is less than the cutoff rate of the channel Ey(1), which
is typically of the order of 1/2 the capacity. Furthermore, the pth moment
of the decoding time is bounded for R < Ey(p)/p. This indicates that in
practical systems it may be wise to select a rate well below Ey(1) in order to
ensure the decoding delay is reasonably consistent.
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Figure 5: Tree depth versus the number of moves made by the decoder, for
the Fano sequential decoding algorithm. In these simulations A = 1 and
v = 15. Thus R = 1/15 = 0.0667. The length of the input sequence is
1000. The channel is binary symmetric. For the three simulations in (a) the
crossover probability is € = 0.2, for the three in (b) it is € = 0.3. Thus for the
simulations in (a) Reomp = 0.1054 so that R < Reomp but for the simulations
in (b) Reomp = 0.0426 so that R > Reomp.
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