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Abstract— We consider the following problem: Alice and
Bob observe sequences Xn and Y n respectively where
{(Xi, Yi)}∞i=1 are drawn i.i.d. from P (x, y), and they
output U and V respectively which is required to have
a joint law that is close in total variation to a specified
Q(u, v). One important technique to establish impossibility
results for this problem is the Hirschfeld-Gebelein-Rényi
maximal correlation which was considered by Witsen-
hausen [1]. Hypercontractivity studied by Ahlswede and
Gács [2] and reverse hypercontractivity recently studied
by Mossel et al. [3] provide another approach for proving
impossibility results. We consider the tightest impossibility
results that can be obtained using hypercontractivity and
reverse hypercontractivity and provide a necessary and
sufficient condition on the source distribution P (x, y) for
when this approach subsumes the maximal correlation
approach. We show that the binary pair source distribution
with symmetric noise satisfies this condition.

I. INTRODUCTION

We consider the problem of simulation of one sample
of a joint distribution by physically separated non-
interacting agents observing i.i.d. copies of correlated
random variables. Related problems have been well-
studied in the literature. Wyner [4] studied the problem
of simulating a joint distribution from shared randomness
while Gács and Körner [5] studied the problem of
extracting common randomness from correlated obser-
vations. Cuff studied communication requirements for
simulating a channel [6]. Gohari and Anantharam gen-
eralized Cuff’s formulation in [7] and Yassaee, Gohari
and Aref recently solved this problem in [8]. Cuff,
Permuter, Cover studied communication requirements
for establishing dependence among nodes in a network
setting [9].

Non-Interactive Correlation Distillation, a setup in
which non-interacting agents have to each output a
uniform random bit which agree with high probability,
has been studied in [1], [10], [11]. In this paper, we
propose a generalization of this problem.

Rows a) and b) of Table I summarize two different
formulations of the problem of simulation of joint dis-
tributions while Row c) describes our formulation as a
motivation to provide a converse to the formulation in
Row b).

Definition: Let X ,Y,U ,V denote finite sets. Given a
source distribution P (x, y) over X ×Y and a target dis-
tribution Q(u, v) over U×V, we say that non-interactive
simulation of Q(u, v) using P (x, y) is possible, if for
any ε > 0, there exists a positive integer n and functions
f : Xn 7→ U , g : Yn 7→ V such that

dTV ((f(Xn), g(Y n)), (U, V )) ≤ ε
where {(Xi, Yi)}ni=1 is a sequence of i.i.d. samples
drawn from P (x, y), (U, V ) is drawn from Q(u, v) and
dTV(·, ·) is the total variation distance.

For a fixed P (x, y), the set of distributions Q(u, v) on
U × V for which non-interactive simulation is possible
can be shown to be the closure of the set of marginal
distributions of (U, V ) satisfying U −Xk − Y k − V for
some k. However, this set of distributions seems to be
very hard to characterize. The current paper focuses on
outer bounds on this set or in other words, impossibility
results for non-interactive simulation.

Note that the simulation problem specified in the
above definition does not have any more generality if
we allow the agents to use their own private randomness:
Agents can obtain as much private randomness as desired
by using extended observations that are non-overlapping
in time, i.e. the agents observe n1+n2+n3 symbols, they
use X1, . . . , Xn1

as their correlated observations, one
agent uses Xn1+1, . . . , Xn2

as her private randomness
and the other agent uses Xn2+1, . . . , Xn3

as his private
randomness.

Note also that the notion of simulation we consider is
distinct from the notion of exact generation. If we have
a strategic setting, such as a distributed game, in which
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a) This formulation was proposed by Gohari and Anantharam [7] as a
generalization of Cuff’s formulation [6]. Yassaee, Gohari, Aref [8] recently
solved this problem completely. The task is for two agents to simulate i.i.d.
samples of a specified joint distribution P (x, y, u, v). Nature supplies i.i.d.
copies of (X,Y ) with the right marginal distribution as shown and the
agents can use a certain rate of common randomness and certain rate-limited
communication and an infinite stream of their own private randomness to
accomplish the desired task.
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b) In this formulation, two agents having access to their own infinite stream
of private randomness observe n i.i.d. copies of samples generated according
to a specified law P (x, y) as shown and are required to output nR samples
drawn from a distribution that is close (in total variation) to the the distribution
constructed by taking i.i.d. copies of a specified law Q(u, v). Let R∗ be the
supremum of all achievable rates.
• When (U, V ) ∼ Q(u, v) has U = V ∼ Ber(1/2), we have R∗ =
K(X;Y ), the Gács-Körner common information [5] of X and Y.

• When (X,Y ) ∼ P (x, y) has X = Y ∼ Ber(1/2), we have 1
R∗ =

C(U ;V ), the Wyner common information [4] of U and V.
The problem of characterizing R∗ is open for general distributions
P (x, y), Q(u, v) and indeed, so is the problem of characterizing whenR∗ > 0.
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c) Since the problem of characterizing when R∗ > 0 in formulation b) is
also non-trivial, we propose a relaxed problem where two agents observe an
arbitrary but finite number of samples drawn i.i.d. from P (x, y) as shown and
are required to output one random variable each with the requirement that the
output distribution be close in total variation to a specified Q(u, v). Clearly,
if it is impossible to generate even a single sample, we obtain R∗ = 0. We
therefore, focus on impossibility results for this problem which will be relevant
to formulation b) above. It is not clear if the converse is true, i.e. it is unclear
whether the possibility of generating one sample implies that we may generate
samples at a positive rate R > 0.
When (U, V ) ∼ Q(u, v) has U = V ∼ Ber(1/2), the problem has
recently come to be called Non-Interactive Correlation Distillation [10]. We
therefore, call our formulation the problem of Non-Interactive Simulation of
Joint Distributions.

TABLE I
DIFFERENT FORMULATIONS OF THE JOINT DISTRIBUTION SIMULATION PROBLEM

a player, represented by a number of distributed agents,
is playing against an adversary, the agents would often
need to generate a joint distribution exactly [12].

We will consider two examples to motivate the focus
of this study.

A. Example 1

Let X be a uniform Bernoulli random variable, X ∼
Ber( 12 ). Let Y be a noisy copy of X, i.e. Y = X +N
where N ∼ Ber(α) for 0 < α < 1

2 , is independent of X.
We say that (X,Y ) has the Doubly Symmetric Binary
Source distribution with parameter α denoted DSBS(α)
following the notation of Wyner [4]. We consider

(U, V ) ∼ DSBS(β) for 0 ≤ β < 1
2 . We ask whether

non-interactive simulation of DSBS(0) using DSBS(α)
is possible. Witsenhausen answered this question in the
negative in [1], thus significantly strengthening the result
of Gács and Körner [5]. Witsenhausen established this
by proving the tensorization of the Hirschfeld-Gebelein-
Rényi maximal correlation, henceforth simply called the
maximal correlation (both tensorization and maximal
correlation are defined and discussed in Section II-A).
Witsenhausen’s approach easily allows us to conclude
that if non-interactive simulation is possible, then the
maximal correlation of the target distribution can be no
more than that of the source distribution. The maxi-
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mal correlation of a pair of binary random variables
distributed as DSBS(α) equals |1 − 2α|. Thus, for
instance, if the non-interactive simulation of DSBS(β)
using DSBS(α) is possible, with 0 ≤ α, β ≤ 1

2 , then
we must have α ≤ β. It is easy to see in this case
that if α ≤ β, then non-interactive simulation is indeed
possible: one agent outputs the first bit of her observation
while the other agent outputs a suitable noisy copy of his
first bit, the noise realization created from his other n−1
observations. Thus, for 0 ≤ α, β ≤ 1

2 , non-interactive
simulation of DSBS(β) using DSBS(α) is possible if
and only if α ≤ β.

B. Example 2

Let (X,Y ) ∼ DSBS(α) with 0 < α < 1
2 . Consider

binary random variables (U, V ) distributed as Q(u, v)
given by: Q(0, 0) = 0, Q(0, 1) = Q(1, 0) = Q(1, 1) =
1
3 . We ask if non-interactive simulation of Q(u, v) using
DSBS(α) is possible. The maximal correlation of a
DSBS(α) source distribution is 1 − 2α while that of
Q(u, v) is 1

2 . The approach of comparing maximal
correlations of the source and target informs us that the
inequality 1−2α ≤ 1

2 , if violated, makes non-interactive
simulation impossible. Thus, if 1

4 < α < 1
2 , then non-

interactive simulation is impossible. But what about the
case when 0 < α ≤ 1

4? Can we come up with a suitable
scheme to simulate Q(u, v)? The answer turns out to be
no for each 0 < α ≤ 1

4 and can be proved using the
so-called reverse hypercontractive inequalities [3]. The
following inequality holds for {(Xi, Yi)}∞i=1 being i.i.d
DSBS(α), and for arbitrary sets S, T ⊆ {0, 1}n :

Pr (Xn ∈ S, Y n ∈ T ) ≥ Pr (Xn ∈ S) 1
2α Pr (Y n ∈ T ) 1

2α .
(1)

If non-interactive simulation of Q(u, v) using DSBS(α)
were possible, we should be able to find sets S, T
such that Pr (Xn ∈ S) ≈ 1

3 ,Pr (Y
n ∈ T ) ≈ 1

3 and
Pr (Xn ∈ S, Y n ∈ T ) ≈ 0. Inequality (1) rules out this
possibility. Thus, hypercontractivity or reverse hyper-
contractivity can provide impossibility results when the
maximal correlation approach cannot. Is it true that one
is always stronger than the other? We show indeed that
the approach using hypercontractivity and reverse hyper-
contractivity subsumes the maximal correlation approach
for the case when P (x, y) is of the form DSBS(α). More
generally, we give necessary and sufficient conditions
on P (x, y) for this subsumption. This arises from an
inequality obtained by Ahlswede and Gács [2] in the
hypercontractive case which we extend to the reverse
hypercontractive case.

The rest of the paper is organized as follows. Section II
discusses preliminaries on maximal correlation, hyper-
contractivity and reverse hypercontractivity. We present
our main results in Section III. Section IV contains all
the proofs. Finally, Section V discusses an interesting

example of non-interactive simulation of a joint distri-
bution of three random variables.

II. MAXIMAL CORRELATION AND THE
HYPERCONTRACTIVITY RIBBON

In this paper, all sets are finite and all probability
distributions are discrete and have finite support. For a
finite set X , let FX ,F+

X denote the set of all functions
from X to R and to R≥0 respectively. We will also
assume without loss of generality throughout the rest
of the paper that the marginals of P (x, y) and Q(u, v)
(denoted PX , PY and QU , QV respectively) assign zero
probability only to the null set.

A. Maximal Correlation and its properties
For jointly distributed random variables (X,Y ), define

their maximal correlation ρ(X;Y ) := supEf(X)g(Y )
where the supremum is over f : X 7→ R, g : Y 7→ R
such that Ef(X) = Eg(Y ) = 0 and E (f(X))

2
=

E (g(Y ))
2
= 1 and with the convention that the supre-

mum over the empty set evaluates to 0.
The following theorem was proved by Witsenhausen

in [1]. Kumar has obtained simpler proofs of the same
result [13], [14].

Theorem 2.1: (Witsenhausen [1]) If
(X1, Y1), (X2, Y2) are independent, then
ρ(X1, X2;Y1, Y2) = max{ρ(X1;Y1), ρ(X2;Y2)}. If
(X1, Y1), (X2, Y2) are i.i.d., then ρ(X1, X2;Y1, Y2) =
ρ(X1;Y1).

We mention here that Kumar [14] has obtained a
natural modification of the maximal correlation that he
has called n-ary Rényi correlation, for each n ≥ 2. He
shows that these quantities also tensorize and can be
used for proving impossibility results for non-interactive
simulation. We don’t discuss these quantities in the
current paper.

The following monotonicity lemma is immediate.
Lemma 2.2: If φ(X) = U,ψ(Y ) = V , then

ρ(X;Y ) ≥ ρ(U ;V ).
The following properties hold for the maximal corre-

lation of two discrete valued random variables with finite
support [15].

1) If (X,Y ) ∼ DSBS(α), then ρ(X;Y ) = |1− 2α|.
2) ρ(X;Y ) = 0 if and only if X is independent of

Y.
3) ρ(X;Y ) = 1 if and only if the Gács-Körner

common information K(X;Y ) > 0, i.e. if and
only if (X,Y ) is decomposable.

Putting together Theorem 2.1 and Lemma 2.2 and
using continuity of the maximal correlation in the joint
distribution Q(u, v) (continuity requires QU , QV assign
zero probability only to the null set), we get the follow-
ing corollary.

Corollary 2.3: Non-interactive simulation of
(U, V ) ∼ Q(u, v) using (X,Y ) ∼ P (x, y) is possible
only if ρ(X;Y ) ≥ ρ(U ;V ).
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B. Hypercontractivity ribbon and its properties

Definition: For any random variable W and real num-
ber p 6= 0, define ||W ||p := (E|W |p)1/p . Define
||W ||0 := exp (E log |W |) . For p ≤ 0, ||W ||p = 0 if
Pr (|W | = 0) > 0.

||W ||p is continuous and non-decreasing in p. If W is
non-constant, then ||W ||p is strictly increasing for p ≥ 0.
If in addition, Pr (|W | = 0) = 0, then ||W ||p is strictly
increasing for all p.

Definition: For a pair of random variables (X,Y ) ∼
P (x, y) on X×Y, define the operator TX;Y : FY 7→ FX
as

(TX;Y f)(x) := E[f(Y )|X = x]. (2)

Likewise, define TY ;X : FX 7→ FY as

(TY ;Xg)(y) := E[g(X)|Y = y]. (3)

Definition: For a pair of random variables (X,Y ) ∼
P (x, y) on X × Y, we define the hypercontractivity
ribbon

RX;Y ⊆ {(p, q) : 1 ≤ q ≤ p or 1 ≥ q ≥ p}

as follows:
• For 1 ≤ q ≤ p, we have (p, q) ∈ RX;Y if

||TX;Y f(X)||p ≤ ||f(Y )||q ∀f ∈ FY ; (4)

• For 1 ≥ q ≥ p, we have (p, q) ∈ RX;Y if

||TX;Y f(X)||p ≥ ||f(Y )||q ∀f ∈ F+
Y . (5)

Likewise, we can define RY ;X . These are both regions
in R2 pinching to a point at (1, 1) resembling a ribbon,
explaining our choice of the name (see Fig. 1).RX;Y and
RY ;X are intimately connected by a duality relationship
which we will discuss later. TX;Y is contractive in the p-
norm when p ≥ 1 and inequality (4) is a hypercontractive
inequality since q ≤ p. TX;Y is reverse contractive for
non-negative valued functions f under the p-pseudo-
norm when p ≤ 1, (the triangle inequality is violated)
and inequality (5) is called a reverse hypercontractive
inequality and has been studied in [3].

Definition: For any real p 6= 0, 1, define its Hölder
conjugate p′ by 1

p +
1
p′ = 1. For p = 0, define p′ = 0.

Remark: An equivalent definition of RX;Y which does
not use the definition of the operator TX;Y can be
provided by observing how much the corresponding
Hölder’s and reverse Hölder’s inequalities may be tight-
ened.
• For 1 ≤ q < p, we have (p, q) ∈ RX;Y iff

Ef(X)g(Y ) ≤ ||f(X)||p′ ||g(Y )||q
∀f ∈ FX , g ∈ FY ; (6)

0

1

1  

(1,1)
Slope ⇢

2Sl
op

e
1

p

q

Fig. 1. The hypercontractivity ribbon RX;Y is the shaded region.
Also shown a straight line of slope ρ2 := ρ2(X;Y ) through (1, 1).

• For 1 ≥ q > p, we have (p, q) ∈ RX;Y iff

Ef(X)g(Y ) ≥ ||f(X)||p′ ||g(Y )||q
∀f ∈ F+

X , g ∈ F+
Y ; (7)

• (1, 1) ∈ RX;Y .

To see the equivalence, observe that for p > 1, if (4)
holds, then by Hölder’s inequality, we get

Ef(X)g(Y ) = Ef(X) (TX;Y g) (X) (8)
≤ ||f(X)||p′ || (TX;Y g) (X)||p (9)
≤ ||f(X)||p′ ||g(Y )||q. (10)

Conversely, if the inequality in (4) fails for some non-
negative f, say f = h, then by choosing the function
e(X) = (TX;Y h(X))

p/p′
, we have equality in Hölder’s

inequality as follows:

Ee(X)h(Y ) = Ee(X) (TX;Y h) (X) (11)
= ||e(X)||p′ || (TX;Y h) (X)||p (12)
> ||e(X)||p′ ||h(Y )||q, (13)

since ||e(X)||p′ > 0, thus producing the desired con-
tradiction to (6). It suffices to consider non-negative
f, since −|f | ≤ f ≤ |f | holds pointwise and so
|TX;Y f | ≤ TX;Y |f | holds pointwise so that if (4) fails
for some f then it also fails for |f |. A similar equivalence
can be observed for p < 1, using the reverse Hölder’s
inequality:

E[WZ] ≥ ||W ||p′ ||Z||p, (14)

which holds when p < 1 and W,Z are non-negative
random variables. The contradiction is first observed for
strictly positive functions with p/p′ := −1 in the case
p = 0 and then for non-negative functions by taking
limits.

RX;Y is closed and connected in R2. Moreover,
{(p, q) : p = q} ⊆ RX;Y . So, RX;Y is completely
characterized by its other boundary, a continuous non-
decreasing function q∗X;Y : R 7→ R such that
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• q∗X;Y (p) ≤ p whenever p ≥ 1, and q∗X;Y (p) ≥ p
whenever p ≤ 1, so q∗X;Y (1) = 1;

• RX;Y = {(p, q) : 1 ≤ q∗X;Y (p) ≤ q ≤ p}∪{(p, q) :
1 ≥ q∗X;Y (p) ≥ q ≥ p}.

Hypercontractive inequalities and reverse hypercon-
tractive inequalities tensorize [3].

Theorem 2.4: Suppose (p, q) ∈ RX1;Y1 and (p, q) ∈
RX2;Y2 . If (X1, Y1), (X2, Y2) are independent, then
(p, q) ∈ RX1,X2;Y1Y2

, so that R(X1,X2);(Y1,Y2) =
RX1;Y1

∩ RX2;Y2
. If (X1, Y1), (X2, Y2) are i.i.d., then

R(X1,X2);(Y1,Y2) = RX1;Y1
.

The following lemma provides a monotonicity prop-
erty for the hypercontractivity ribbon [3].

Lemma 2.5: If φ(X) = U,ψ(Y ) = V , then RX;Y ⊆
RU ;V .

Putting together Theorem 2.4 and Lemma 2.5 and
using continuity of q∗U ;V (p) for each p in the distribu-
tion of (U, V ) (continuity requires QU , QV assign zero
probability only to the null set), we get the following
corollary.

Corollary 2.6: Non-interactive simulation of
(U, V ) ∼ Q(u, v) using (X,Y ) ∼ P (x, y) is possible
only if RX;Y ⊆ RU ;V .

The following properties hold for the hypercontractiv-
ity ribbon for two discrete valued random variables with
finite support [3].

1) If (X,Y ) ∼ DSBS(α), then
q∗X;Y (p)− 1 = (1− 2α)2(p− 1) [10].

2) q∗X;Y (p) ≡ 1 if and only if X and Y are indepen-
dent, i.e. I(X;Y ) = 0.

3) q∗X;Y (p) ≡ p if and only if P (x, y) is decom-
posable, i.e. the Gács-Körner common information
K(X;Y ) > 0.

4) If K(X;Y ) = 0 but I(X;Y ) > 0, then for p > 1,
we have the strict inequalities 1 < q∗X;Y (p) < p
[2].

C. Proving impossibility results for non-interactive sim-
ulation using the hypercontractivity ribbon RX;Y

While Corollary 2.6 describes the technique for prov-
ing impossibility results, it is worthwhile noting that this
is equivalent to the techniques that were originally used
to produce inequalities like (1).

Suppose that non-interactive simulation of Q(u, v) us-
ing P (x, y) is possible, i.e. suppose for any ε > 0, there
exists n and functions φ : Xn 7→ U , ψ : Yn 7→ V so that
φ(Xn) = Ũ , ψ(Y n) = Ṽ produces (Ũ , Ṽ ) satisfying
dTV((Ũ , Ṽ ); (U, V )) ≤ ε when (U, V ) ∼ Q(u, v) and
{(Xi, Yi)}ni=1 are generated i.i.d. from P (x, y). Choose

f(xn) =
∑
u∈U

λu1[φ(xn)=u], (15)

g(yn) =
∑
v∈V

µv1[ψ(yn)=v]. (16)

For (p, q) ∈ RX;Y , with p > 1, using (6), we obtain
upon taking the limit as ε→ 0,∑
u∈U

∑
v∈V

λuµvQ(u, v)

≤
(∑
u∈U

λp
′

u QU (u)

)1/p′

·
(∑
v∈V

µqvQV (v)

)1/q

. (17)

For (p, q) ∈ RX;Y , with p < 1, using (7), we obtain for
non-negative {λu}u∈U , {µv}v∈V , the inequality∑
u∈U

∑
v∈V

λuµvQ(u, v)

≥
(∑
u∈U

λp
′

u QU (u)

)1/p′

·
(∑
v∈V

µqvQV (v)

)1/q

. (18)

Indeed, (1) is a version of (18) with (p, q) ∈ RX;Y

for (X,Y ) ∈ DSBS(α) given by p = − 2α
1−2α , q = 2α.

The inclusion RX;Y ⊆ RU ;V implies the col-
lection of inequalities (17) for any choice of real
{λu}u∈U , {µv}v∈V and the collection of inequalities
(18) for any choice of non-negative {λu}u∈U , {µv}v∈V .
By an argument similar to the one proving equivalence
of the two definitions ofRX;Y , one can prove the reverse
implication from the collection of inequalities (17), (18)
to RX;Y ⊆ RU ;V .

III. MAIN RESULTS

Theorem 3.1:

ρ(X;Y ) ≤ inf
(p,q)∈RX;Y ,p6=1

√
q − 1

p− 1
= inf
p 6=1

√
q∗X;Y (p)− 1

p− 1
.

(19)
Theorem 3.1 is obtained in [2] for the case of hyper-

contractive inequalities. We provide an alternate proof of
the same result and derive it for the reverse hypercon-
tractive inequalities. In the current form of the statement
of Theorem 3.1, the maximal correlation is afforded a
geometric meaning, namely its square is the slope of
a straight line bound constraining the hypercontractivity
ribbon (see Fig 1). Indeed, for (X,Y ) ∼ DSBS(α), the
hypercontractivity ribbon is precisely the wedge obtained
by the straight lines p = q, and q−1 = ρ(X;Y )2(p−1)
[10].

Theorem 3.2: The following are equivalent:
• For all (U, V ), we have RX;Y ⊆ RU ;V =⇒
ρ(X;Y ) ≥ ρ(U ;V ).

•

ρ(X;Y ) = inf
(p,q)∈RX;Y ,p6=1

√
q − 1

p− 1
. (20)

Theorem 3.2 states that Corollary 2.6 subsumes Corol-
lary 2.3 for all Q(u, v) if and only (19) holds with
equality.

Ahlswede and Gács [2] show that limp→∞
q∗X;Y (p)

p ex-
ists and equals a quantity s∗(X;Y ), defined as follows:
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Consider finite sets X ,Y and let P (x, y) be a joint distri-
bution over the product X ×Y. Let R(x) be an arbitrary
probability distribution on X . Let

∑
X PY |X ∗R denote

the probability distribution on Y whose probability mass
at y is

∑
x∈X

P (x,y)
PX(x)R(x). If (X,Y ) ∼ P (x, y), then

we define s∗(X;Y ) = supR:R 6=PX
D(

∑
X PY |X∗R||PY )

D(R||PX) .
Erkip and Cover consider a related quantity and show
that it equals ρ2(X;Y ) [16].

We prove the same result, also extending it to reverse
hypercontractive inequalities by a simpler approach.

Theorem 3.3:

lim
p→1

q∗X;Y (p)− 1

p− 1
= s∗(Y ;X). (21)

Corollary 3.4 follows from Theorem 3.3 upon using a
duality result connecting RX;Y and RY ;X .

Corollary 3.4:

lim
p→∞

q∗X;Y (p)− 1

p− 1
= lim
p→−∞

q∗X;Y (p)− 1

p− 1
= s∗(X;Y ).

(22)
Corollary 3.5 provides a sufficient condition for (20)

to hold.
Corollary 3.5: If ρ(X;Y ) =

min{
√
s∗(X;Y ),

√
s∗(Y ;X)}, then

∀ (U, V ), RX;Y ⊆ RU ;V =⇒ ρ(X;Y ) ≥ ρ(U ;V ).
Note that from properties listed for the hypercontrac-

tivity ribbon, DSBS sources always satisfy the condition
in Corollary 3.5.

IV. PROOFS

Proof of Theorem 3.1:
The proof proceeds from a perturbative argument. Let

(X,Y ) distributed as P (x, y). Fix functions φ : X 7→
R, ψ : Y 7→ R such that

Eφ(X) = Eψ(Y ) = 0, Eφ(X)2 = Eψ(Y )2 = 1. (23)

Fix r > 0. Define f : X 7→ R, g : Y 7→ R by f(x) =
1+ σ

r φ(x), g(y) = 1+σrψ(y). Note that for sufficiently
small σ, the functions f, g take only positive values. Fix
(p, q) ∈ RX;Y with p > 1. Using (6), we have

E[(1 +
σ

r
φ(X))(1 + σrψ(Y ))] ≤(

E[(1 +
σ

r
φ(X))p

′
]
)1/p′

· (E[(1 + σrψ(Y ))q])
1/q

.

(24)

For Z satisfying EZ = 0,EZ2 = 1,(
E[(1 + aZ)l]

)1/l
=

(
1 + l · aEZ +

l(l − 1)

2
· a2EZ2 +O(a3)

)1/l

=

(
1 +

l − 1

2
a2 +O(a3)

)
.

The first two terms of the expansion on both sides of (24)
match. Comparing the coefficient of σ2 on both sides,
we get

Eφ(X)ψ(Y ) ≤ p′ − 1

2r2
+

(q − 1)r2

2
.

Taking the supremum over all φ, ψ satisfying (23) and
the infimum over all r > 0, we have

ρ(X;Y ) ≤
√
q − 1

p− 1
.

We can similarly prove the inequality in the case when
p < 1. We get Eφ(X)ψ(Y ) ≥ −

√
q−1
p−1 in this case and

we replace φ by −φ and perform similar steps to get the
desired. This completes the proof.

Proof of Theorem 3.2:
The if part of the statement follows immediately from

Theorem 3.1. For the only if part, suppose that for
(X,Y ) ∼ P (x, y), we have for some δ > 0,

ρ(X;Y ) = inf
(p,q)∈RX;Y ,p6=1

√
q − 1

p− 1
− δ.

A classical result [10] states that for (U, V ) ∼ DSBS(ε),

q∗U ;V (p)− 1

p− 1
= (1− 2ε)2 = ρ(U ;V )2.

Choosing ε so that ρ(U ;V ) = 1 − 2ε =

inf(p,q)∈RX;Y ,p6=1

√
q−1
p−1 , we have ρ(X;Y ) < ρ(U ;V )

and RX;Y ⊆ RU ;V . This completes the proof.
Proof of Theorem 3.3:
As noted earlier, the inequality (4) holds for all

functions f only if it holds for all non-negative functions
f. Now, for non-negative f, we always have

||TX;Y f(X)||1 = ||f(Y )||1 ∀f ∈ F+
Y . (25)

As in [3], we define for any non-negative random
variable X, the function Ent(X) := EX logX − EX ·
logEX, where by convention 0 log 0 := 0. By strict
convexity of the function x 7→ x log x, we get using
Jensen’s inequality that Ent(X) ≥ 0 and equality holds
if and only if X is a constant almost surely. Also,
note that Ent(·) is homogenous, that is, Ent(aX) =
aEnt(X) for any a ≥ 0.

Define s := sup
Ent(TX;Y f(X))

Ent(f(Y )) , where the supremum
is taken over non-constant functions f ∈ F+

Y . As PY
assigns a positive probability to all elements of Y, this
rules out the possibility of a non-constant function f
with f(Y ) being a constant almost surely.

If m < s, then (1 + τ, 1 + mτ) 6∈ RX;Y for all
sufficiently small τ > 0. To see this, fix f0 to be any
(non-constant) function in F+

Y that satisfies

Ent(TX;Y f0(X))

Ent(f0(Y ))
≥ m+

δ

2
, (26)
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where δ := s−m. Now,

||f0(Y )||1+mτ = ||f0(Y )||1
+mτ Ent(f0(Y )) +O(τ2), (27)

||TX;Y f0(X)||1+τ = ||TX;Y f0(X)||1
+ τ Ent(TX;Y f0(X)) +O(τ2).

(28)

Putting together (25), (26), (27), (28), we get the exis-
tence of τ0 > 0 such that

||TX;Y f0(X)||1+τ > ||f0(Y )||1+mτ ∀τ : 0 < τ ≤ τ0.
(29)

If m > s, then consider the set H of all functions
f : Y 7→ R+ that satisfy ||f ||1 = 1 and define
τ(f) := max{τ : 0 ≤ τ ≤ 1, ||TX;Y f(X)||1+τ ≤
||f(Y )||1+mτ}. As τ(f) is continuous over the compact
set H, showing τ(f) > 0 ∀f ∈ H would yield
τ1 := inff∈H τ(f) > 0. But that is obvious since for
f constant, τ(f) = 1 and for f non-constant, τ(f) > 0
from (25), (26), (27), (28).

This gives ||TX;Y f(X)||1+τ ≤ ||f(Y )||1+mτ for all
f ∈ H, 0 < τ ≤ τ1. By homogeneity of the p-norm,
it follows that ||TX;Y f(X)||1+τ ≤ ||f(Y )||1+mτ ∀f ∈
FY+ , 0 < τ ≤ τ1, thus proving that

lim
p→1+

q∗X;Y (p)− 1

p− 1
= s. (30)

Similarly, one can prove the same limit for p→ 1−. The
final step is to show s = s∗(Y ;X). For any distribution
R(·) on Y, that is not equal to PY (·) consider the non-
constant function f given by f(y) := R(y)

PY (y) . This choice
yields Ent(f(Y )) = D(R||PY ) and Ent(TX;Y f(X)) =
D(
∑
Y PX|Y ∗ R||PX)) which gives s ≥ s∗(Y ;X).

Homogeneity of Ent(·) then completes the proof.
Proof of Corollary 3.4:
The existence of the limit and its value both follow

from Theorem 3.3 and the following well-known duality
result that follows from the equivalent formulations of
the hypercontractivity ribbon in inequalities (6), (7): For
1 < q < p or 1 > q > p,

(p, q) ∈ RX;Y ⇐⇒ (q′, p′) ∈ RY ;X . (31)

Proof of Corollary 3.5:
This is an easy consequence of Theorems 3.2, 3.3 and

Corollary 3.4.

V. NON-INTERACTIVE SIMULATION OF A THREE
RANDOM VARIABLE JOINT DISTRIBUTION

This section discusses an interesting example. Con-
sider joint distributions P (x, y, z), Q(u, v, w) with bi-
nary random variables X,Y, Z and U, V,W. Fix 0 <
ε < 1

2 . Let X ∼ Ber( 12 ) and Y = X+N1, Z = Y +N2

where N1, N2 ∼ Ber(ε) are independent of X with
P (N1 = N2 = 0) = 1 − 3ε

2 , P (N1 = 0, N2 = 1) =
P (N1 = 1, N2 = 0) = P (N1 = N2 = 1) = ε

2 . Let U ∼

Ber( 12 ) and V = U+N3,W = V +N4 where N3, N4 ∼
Ber(ε) such that U,N3, N4 are independent. Note that
(X,Y ), (Y, Z), (X,Z), (U, V ), (V,W ) ∼ DSBS(ε) and
(U,W ) ∼ DSBS(2ε(1− ε)) as shown in the Fig. 2

Consider the problem where three agents try to simu-
late a triple joint distribution as follows. Agents A,B,C
observe Xn, Y n, Zn respectively and output Ũ , Ṽ , W̃ ,
respectively which is required to be close in total varia-
tion to the target distribution (U, V,W ) as shown.

X

Y Z

✏

✏

✏

(a) Source distribution

U

V W

✏

✏

2✏(1�
✏)

(b) Target distribution

Fig. 2. Three random variable simulation example

As discussed earlier, non-interactive simulation of a
DSBS target distribution with parameter q < 1

2 using
a DSBS source distribution with parameter p < 1

2 is
possible if and only if the target distribution is more
noisy, i.e. p ≤ q. Thus, for this example, each pair of
agents can perform the marginal pair simulation desired
of them. However, the three agents cannot simulate the
desired triple joint distribution. Calculation shows

ρ(X,Z;Y ) =
1− 2ε√
1− ε , (32)

ρ(U,W ;V ) =
1− 2ε√

1− 2ε+ 2ε2
. (33)

For 0 < ε < 1
2 , we have 1 − 2ε + 2ε2 < 1 − ε,

which gives ρ(X,Z;Y ) < ρ(U,W ;V ). This shows that
even if agents A and C were merged into one agent Ã,
then Ã and B cannot achieve the desired non-interactive
simulation.
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