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Abstract—We present some simple information inequalities on where S(.) is as defined in (1). Then we have
binary sums of Bernoulli random variables that appear to be new. 9
Consequences for information across binary input memoryless pD.— _J[(E@ X ; EaY)

symmetric channels are also presented. o\ ( Va0
o L S\ p(4),q(4))
= — S )\, 1), 10 N .
or, 2o SO PO o8 ST St 0
I. SETUP AND PRELIMINARY RESULTS _ Z (p(D)a(G) — (1 — p(D)(1 — q(3))) - F(p(0), a(7))
iJ
Consider a collection of independent Bernoulli random vari- (2)
ables{By, ..., Bi}. Let ‘@’ denote the binary sum operation.where in the last equality, all the terms obtained by taking

If S'is a binary sum of the Bernoulli variablds;, 1 <i <k, derivative of the terms under the logarithm sum to zero. Next,

i.e. S :=D;_, g:B: whereg; € {0,1}, thenS will be called combining the similar terms we get the following expression
a BSBVvariable and we will refer to theB;’'s as thebase for the derivative:

variables in the definition of. . ” P
For each integem, define the following function oft), 1] = (=P =9 =pg) [F1 = p.1~0) = F(p.q)]
+ (1 —q) -1 =pa)[F(p,1 —q) - F(1 - p,q)]

m m :(1—P—Q)[F(1_p71_Q)_F(P7Q)]
S(P1;---Pm) :=Hpi+H(1—pi) : 1) +(p—q)[Flp,1—q)—F(1—-p,q)] ()

We will now examine the signs of each of the four terms
involved in (3). We will assume for convenience that ¢ <

Then S(py, ..., pm) can be mterpre_ted as the pmbab'“tyl, although the other combinations can be treated in a similar
that all BSBVs comprised of pairwise binary sums on 2

base variables with parameters,...,p, respectively are fashion. Then(p.— g)<0and(l-p-gq) 20 .
. Next, expanding out the terms for the expression
simultaneously. .
. . . . [F(1—p,1—q)— F(p,q)] in (3), we get
Our first result is the following, which, to the best of our

knowledge, is new: F(1-p,1-q)—F(p,q) 4)
—og ST =p,1-49) S(A,p) S(A.q)
Lemma 1:Let E,X and Y be independent Bernoulli S(Ap,q) S(A, 1 —=p) S\, 1—q)
random variables with parametets := P(E = 1),p := Na+ 221 = X)b+ A1 —X)2%c+ (1 -N)3a
P(X =1), q:= P(Y = 1), wherep, ¢ < 5. Then the mutual = log Ma+ A2(1—Ne+ A1 =2+ (1 —A)3a

information I(E @ X ; E@Y) is a non-decreasing function

of A for 0 < \ < % for appropriates, b, ¢, d wherec—b = (1—p—q)(1—2p)(1—

2q) > 0. It then follows that, forA < 1 < (1 — ) the
o numerator is greater than or equal to the denominator, and
Proof: We demonstrate that the derivative of the m”t“"ﬂence the expression (4) is non-negative.

information term in question w.r.tA is non-negative for all Using transformatiop — (1—p) in (4) we similarly obtain

A€o, 1]
Let p(i) denote P(X = i) and ¢(j) denote P(Y = j), F(p71_q)‘_ F(1-p,q) (
wherei, j € {0,1}. Also, for real valued) < u,v < 1 define o VO AN =Y AL = N2 4 (1= A
SN0+ 22(1— N + A1 N2 + (1 M\3al
S\, u,v) wherecd — b = (¢ — p)(1 — 2p)(1 — 2¢) > 0, proving that

Flu,v):=log g st o) F(p,1—¢q)—F(1-p,q) >0.



Finally, since(1 —p — ¢) > (¢ — p), in order to show that Now S(\, P(F' = 0)) is itself a monotonic function of ¢
D >0 in (3), it suffices to show that [0, 1], which proves the statement.
1N -~ N 1 If £ appears in exactly one ol and B, sayA = E &
FO=p =0~ Fe0l=[Fe 1)~ FU-p.0] 20O o v Ciin " Fey, theni(4; B) — H(B) - H(BIA).
Once again we expand the terms in (5), cancelling out tfide first term does not depend on and the second term
identical terms: H(FeY|EeFa¢ X)is a monotonically decreasing function
of A for A € [0, 3]. This completes the proof. ]

F(l1-p,1-q)—F(p,q) — F(p,1-¢q)+ F(1-p,q)
SA1-p,1—q) S\ 1—-p,q) S\, p)?

%S0 SO 1= S0 ) a binary linear Code over a memonless binary symmetic
=log (@ +7)(% +27) (6) channel (BSC); then each noisy observation corresponds to
(¥ +77)(¢+27) a BSBV, where the base variables consist of the original
where source bits and the BSC noise variables. With this viewpoint
) ) 5 o the preceding results can be generalizedbinary input
¢=A(1-p)"+(1-N)7p", memoryless symmetric channedefined as follows:
¢ =Np*+ (1= A)?*(1-p)?
7=A1-XNp(1—0p), and Definition 1: A Binary Input Memoryless Symmetric
@+ (1 - q)? Channel (BIMSC) with (countable) output alphahdtis a

dl—q channelC with a binary input and (random) output(b) € A

such that for every: € A, there exists & € A, denoted by
It can then be seen that— ¢ = (1 —2X)(1 —2p) > 0, and y = 7, such thatj = z, and P(C(0) = z) = P(C(1) = &).
7> 0, and~y > 2. It follows that

(p+vT)(Wp+27) — (Y +7y7)(d+27) = (v —2)(— ¢) >0 Note from the above definition that the vector channel
B created from finitely many independent BIMSCs is itself a

The fraction under the logarithm in (6) is thus bounded belogiMSC. To see this, supposd and(C, are two independent
by unity, and hence the expression in (5) is non-negative, BAVSCs with output alphabetsl; and A, respectively. The
required. This completes the proof. B vector channelC;» := (C1,C»), is defined to have output
Cr2(X) := (C1(X),C2(X)) € Ay := Ay x Ay. Then for
Regarding the statement of Lemma 1, note that tfé@/eryz = (x,y) € A; 2, and with2 := (z,7) we have
restriction onp,q < ; is in fact unnecessary, as clearly the
mutual information is unchanged X is replaced byl —

(orY by 1-Y). It can also be easily verified that this mutual P(C12(0) = 2) = P(C1(0) = z,C2(0) = v)

information is a symmetric function ok around the point = P(C1(0) = z) - P(C2(0) = y)

A=y = P(Ci(1) = &) - P(C2(1) = 3)
= P(C12(1) = 2)

A slightly more general version of the result of Lemma 1

can be immediately derived:
where we have used the independence and the BIMSC

Lemma 2:Let A and B be BSBV variables over the baseproperties of the’; andC,. This shows thaf, » is a BIMSC.
{E, X1,..., X}, and let\ := P(E = 1) as before. Then The argument extends to the vector channel created from
the mutual information/ (A4 ; B) is a monotonic function of finitely many BIMSCs by induction.
Aoro<a<s.

Proof: Depending on how the variabl& is involved We now genera”ze the result of Lemma 2:

in the linear combinations that determigeand B, we will

have three scenarios: Proposition 3: Let £ be a Bernoulli{) random variable,

and letC; andC, denote two independent BIMSCs with output

: If £ does not appear in neither of and 53, thgnI(A; B) alphabetd, and.A,, respectively. Then the mutual information
is constant with respect td, and the statement is vacuous. (C1(E)

If Eisinvolved in both, then we must have= E& F o X, 7E  C2(E)) is a non-decreasing function affor 0 <
and B = E@® F @Y, where F contains the common base ~ 2’
variables appearing in both and B, and X andY contains
the distinct variables. Then, with’ := E@ F, it follows from Proof: For convenience, we define the following func-
the previous lemma that(A; B) = I(F' @ X ; E'®Y) is tions:pi(z) := P (0) = z), mi(v) = mi(2) = pi(z) +
a non-decreasing function @*(E’ = 1) = S(\, P(F = 0)). pi(®), andp;(z) := ,ré It follows thatr;(z) = m;(#), and




pi(£) =1 — p;(x). Then we have where the second equality follows from the fact ttatis an

) independent Bernoulll() variable, and where we have added
HC(E) 5 Co(EB)) P(C c ) the termX @ N; to all other terms; the third equality follows
_ P(C: = 2.Co — ) 1 1= =Y from the fact thatX @ N, is independent of No, N1, ..., Ny,).
>, Pli=at=y)g P(C; = 2)P(C: = y)

T€A;,yEA2
~ . Similarly we can show that for eache {1,...,m
=3 (An@pa(e) + (1= Vs (@p2(3) g o)
log 7= Apliff)l))z\(y) +(1- - A)p1 (i)Plz(y))\ i Applying (9) and (10) to (8), we get
=Y m(x)ma(y) m
o Y IX®Ny; X &N
_ S(A\p1(2), P2(y )) i=1
SN, p1(x), pa(y)) - log SO0 (@) SO0 a(w) =1—-H(No® Ny | Ny Na,...,Ny & Np)—
1 m
=12 m@m@I(E® N, ; EdN,) @) > (1—H(Ny & N))
z,y =1
whereN, and N, are (dummy) independent Bernoulli random =I(No@® N1 ; N1 @® Na,...,N1 © Np,)—
variables with parameters;(xz) and p»(y): in the second m
equality we have used the fact that conditioned on the value Y (1-H(NNo & Ny)) (11)
of E, C1(F) and Co(E) are independent; the third equality =2

follows from definitions; to see the last equality, note that fovhere in the last equality we have combined the first term
each pair(z,y) with & # = andj # y, the summand in the of the sum with the conditional entropy to obtain the mutual
final expression represents four distinct terms, correspondiféprmation term.
to (z,y), (2,y), (,9) and (2, 7). If on the other handt =& Noyv for f|x§d distribution _of(NO, Na, ..., Ny,), the expres-
(or y = §), thenpi(z) = pi(2) and hencep, (z) = % sion in (11) is only a function op; = P(N; = 1) through
thereforel(E® N, ; E® N,) = 0, which does not contribute the mutual information term. Next note that the combination
to the sum. of the variables N; & No,..., N; & N,,,) is equivalent to a
The claim now follows, since by Lemma 1 each term undéoisy observation ofV; over a BIMSC with output alphabet
the sum is a non-decreasing function)ofn [0, 1]. m GF(2)"'. Using PFOPOSIUOH 3 then (11) is a non-decreasing
function ofp; in [0, 3]. It thus suffices to show thad |n (11)
Equation (7) is an example of a useful technique in dealingless than or equal to zero fpy = . But with p; = 3, this
with arbitrary BIMSCs, when it is possible to reduce theondition is simply a restatement of the claim w(tim 1)
problem as an appropriately weighted superposition of BS@ariables, where by (10), each teft— H(Ny @ N;)) can be
with different parameters. viewed asl(N; @ Ny ; N1 @ N;). This completes the proof.
[ |
Il. AN UPPER BOUND ON THEMUTUAL INFORMATION OF
SUMS OF INDEPENDENTRANDOM VARIABLES The above result can be expressed in the following
We start with the simpler case of independent Bernoubiternative form:
variables:
Proposition 5: Let X, Ny, Ny,...,N,, be independent
Proposition 4: Let X be a Bernoulli{) random variable, Bernoulli variables. Then the following inequality holds:
andNy, Ny, ..., N,, be independent Bernoulli variables. Then m
the following inequality holds: I(X®&Ny; X®&Ny,...,X®N,,) + ZH(NO ®N;)<m
=1

I(X®Ny; X&Ny,...,X®N,,,) <Y I(X&Ny; XBN; (12)
( ’ ' )< ; ( 0 ) Note thatX is no longer restricted to have entropy
(8)

Proof: The statement is clearly correct far = 1. To Proof: The proof follows using the manipulation used in
prove for the casen > 1 we proceed by induction. We firstthe proof of Proposition 4. Using the expression in (11)Xgr
expand the mutual information as follows: we showed that for arbitrary independent Bernoulli variables
I(X&Ny; X®&Ny,...,.X®N,) No, N1, -, N,

—HXON) -HX®Ny | XONy,...,XBNy,) INo@N; Ny@ Ny, Ny © Ni) —
=1-H(Ny®N, | X®Ny,N; & No,...,N; & N,, s

( 0@ l‘ © 1 1D 2, ) 1D ) Z(I—H(NO@NJ)S()
:1—H(N()EBN1‘Nl@N27...,N1@Nm) (9)

=2



The result follows immediately from the instance of the above The redundant information in the case above is then
S;E;%Slzl,on withm + 2 Bernoulli variables, and after renan.nng L= I(X@®Ng; X@&Ni,...,X&N,).

Note that using simple upper bounds ®fon each of In practice, this exact expression is not tractable, and it gener-
the terms in (12), it is trivially seen that the LHS is uppeally suffices to find simple upper bounds @n Proposition 4
bounded bym + 1; the stronger result shown here has beemmediately addresses this problem, wherdés bounded in
somewhat harder to prove. terms of I(X @& Ny ; X & N;)’s, i.e. the amount of redun-

dant information when considering each previous observation

A more general form of Proposition 4 can be derived fdndividually.
independent BIMSCs: A more realistic setting would involvimdirect observations

of each output variabl&, in terms of linear combinations of

Proposition 6: Let X be a Bernoulli{) random variable, observations of other output variables that sum upXtoln

andCy,Cy, .. .,C,, be independent BIMSCs. Then the follow-that case, the effective noise BSC variablés, ..., N, are

ing inequality holds: no longer independent, but rather are BSBVs over a common
m set of base random variables.
I(Co(X) 5 C1(X),...,Cn(X)) < ZI(CO(X) ; Ci(X)) IV. DISCUSSION
=1

(23) The results of (8) and (12) are at some level intuitive. In

Proof: As argued before, the vector channel created froparticular, the inequality in (8) resembles some kind of a
finitely many BIMSCs is itself a BIMSC. It thus suffices toindependence bound on the mutual informations. It may then
prove the proposition for the case of = 2, and the general be expected that a generalization of such result is true, where
statement will follow by simple induction. the variables are not restricted to be all mutually independent.
There are however serious pitfalls in expecting too much to be
We proceed with the notation used in the proof of Propogiue on these matters. For example, the symmetry assumption

tion 3, to show that that results from the setup of the Proposition 4 seems to be
crucial.
I(Co(X) 5 C1(X),Ca(X)) As another example, consider the simplest non-trivial case

1 of m = 1 in (12): After simple manipulation, it is shown that
= - E I X®&N,; X&N,, XPN, ’
8 mo(@)m (y)m2(2) (X & N s X & Ny, X & N:) for independent Bernoulli variableX, Y, Z,

T,Y,z
Y,z —HXaoYY®Z ZdX)<1
I(X®N,; X®N, . .
tI(Xe &N:)) One might be tempted to try and prove that for arbitrary
= I(Co(X) ; C1(X)) + I(Co(X) ; C2(X)), Bernoulli U, V, W,

where the first equality follows from a similar argument ?

leading to (7); the inequality follows from application of HU)+HV)+HW) - HU,V.W) < 1,

Proposition 4; and the last equality follows from two applibut this inequality is certainly not true in general; for example

cations of (7), noting also that; . ,, mi(x) = 2. As before, if U = V = W is the same Bernoull{) random variable,

Nz, N, and N, are dummy independent Bernoulli randomhen the LHS will equaP.

variables with parameteys (), p1(y) andpz(z) respectively. A slightly less ambitious generalization is the following
B conjecture for arbitrary Bernoulli variabld$ and V:

[1l. CONNECTION WITH CHANNEL CODING HU)+HV)+HU&a&V) - H(U,V) ; 1. (14)

Consider a Bernoullg) .random Va”at_"eX' which IS 1€ Byt this conjecture is also not true in general; as a counter-
peatedly observed over binary symmetric channels with no'é?ample consider the joint distribution given BYU = V —

varlablele,...,Zym. ' 0 =0PU =0V =1)=PU =1,V =0) = %7 and
Then unlessX is completely determined by the preV|ou%3(U —V=1)=1. Then

observations, one might want to obser¥e yet again to 2

reduce uncertainty. We_ are the_n |n.terested in determining th) YHWV)+HUGV)-HU,V) =1+ (1— §log §)7

amount of redundant information if we were to obset¥e 2 2

one more time over another BSC with independent ndige which can be readily seen to be larger thanfrom the

Intuitively, this is the amount of potential information that theonvexity of the functiorn(x) := zlogz, and the fact that

observer gives up in using the channel to observe a less-thafi) = 0 andn(2) = 2.

completely-random variable, see e.g. [2] and [3] for the relatedIndeed, using numerical methods, it appears that the set of

analysis. joint distributions that satisfy (14), i.¢.Py v (u,v) : H(U)+



HV)+HU@V)—H(U,V) < 1}, is closely approximated
by distributions of the formPx ¢y yez(u,v) for independent
Bernoulli variablesX,Y and Z.

The monotonicity results in Lemma 1 and Proposition 3
resemble some of the results on degradation over BIMSCs as
discussed in [5]. It would be interesting to explore to what
extent a stronger statement with regards to the monotonicity
of the mutual information holds while not requiring the
independence assumptions we have used.
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