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Abstract—We present some simple information inequalities on
binary sums of Bernoulli random variables that appear to be new.
Consequences for information across binary input memoryless
symmetric channels are also presented.

I. SETUP AND PRELIMINARY RESULTS

Consider a collection of independent Bernoulli random vari-
ables{B1, . . . , Bk}. Let ‘⊕’ denote the binary sum operation.
If S is a binary sum of the Bernoulli variablesBi, 1 ≤ i ≤ k,
i.e. S :=

⊕k
i=1 giBi wheregi ∈ {0, 1}, thenS will be called

a BSBVvariable and we will refer to theBi’s as thebase
variables in the definition ofS.

For each integerm, define the following function on[0, 1]m:

S(p1, . . . , pm) :=
m∏

i=1

pi +
m∏

i=1

(1− pi) . (1)

Then S(p1, . . . , pm) can be interpreted as the probability
that all BSBVs comprised of pairwise binary sums onm
base variables with parametersp1, . . . , pm respectively are
simultaneously0.

Our first result is the following, which, to the best of our
knowledge, is new:

Lemma 1:Let E,X and Y be independent Bernoulli
random variables with parametersλ := P (E = 1), p :=
P (X = 1), q := P (Y = 1), wherep, q ≤ 1

2 . Then the mutual
information I(E ⊕X ; E ⊕ Y ) is a non-decreasing function
of λ for 0 ≤ λ ≤ 1

2 .

Proof: We demonstrate that the derivative of the mutual
information term in question w.r.t.λ is non-negative for all
λ ∈ [0, 1

2 ].
Let p(i) denoteP (X = i) and q(j) denoteP (Y = j),

wherei, j ∈ {0, 1}. Also, for real valued0 ≤ u, v ≤ 1 define

F (u, v) := log
S(λ, u, v)

S(λ, u)S(λ, v)
,

whereS(.) is as defined in (1). Then we have

D :=
∂

∂λ
I(E ⊕X ; E ⊕ Y )

=
∂

∂λ

∑
i,j∈{0,1}

S(λ, p(i), q(j)) log
S(λ, p(i), q(j))

S(λ, p(i))S(λ, q(j))

=
∑
i,j

(
p(i)q(j)− (1− p(i))(1− q(j))

)
· F

(
p(i), q(j)

)
(2)

where in the last equality, all the terms obtained by taking
derivative of the terms under the logarithm sum to zero. Next,
combining the similar terms we get the following expression
for the derivative:

D =
(
(1− p)(1− q)− p q

)[
F (1− p, 1− q)− F (p, q)

]
+

(
p(1− q)− (1− p)q

)[
F (p, 1− q)− F (1− p, q)

]
= (1− p− q)

[
F (1− p, 1− q)− F (p, q)

]
+ (p− q)

[
F (p, 1− q)− F (1− p, q)

]
(3)

We will now examine the signs of each of the four terms
involved in (3). We will assume for convenience thatp ≤ q ≤
1
2 , although the other combinations can be treated in a similar
fashion. Then(p− q) ≤ 0 and (1− p− q) ≥ 0.

Next, expanding out the terms for the expression
[F (1− p, 1− q)− F (p, q)] in (3), we get

F (1− p, 1− q)− F (p, q) (4)

= log
S(λ, 1− p, 1− q)S(λ, p)S(λ, q)
S(λ, p, q)S(λ, 1− p)S(λ, 1− q)

= log
λ3a+ λ2(1− λ)b+ λ(1− λ)2c+ (1− λ)3a
λ3a+ λ2(1− λ)c+ λ(1− λ)2b+ (1− λ)3a

for appropriatea, b, c, d wherec−b = (1−p−q)(1−2p)(1−
2q) ≥ 0. It then follows that, forλ ≤ 1

2 ≤ (1 − λ) the
numerator is greater than or equal to the denominator, and
hence the expression (4) is non-negative.

Using transformationp→ (1−p) in (4) we similarly obtain

F (p, 1− q)− F (1− p, q)

= log
λ3a′ + λ2(1− λ)b′ + λ(1− λ)2c′ + (1− λ)3a′

λ3a′ + λ2(1− λ)c′ + λ(1− λ)2b′ + (1− λ)3a′

where c′ − b′ = (q − p)(1 − 2p)(1 − 2q) ≥ 0, proving that
F (p, 1− q)− F (1− p, q) ≥ 0.



Finally, since(1− p− q) ≥ (q − p), in order to show that
D ≥ 0 in (3), it suffices to show that[
F (1−p, 1−q)−F (p, q)

]
−

[
F (p, 1−q)−F (1−p, q)

]
≥ 0 (5)

Once again we expand the terms in (5), cancelling out the
identical terms:

F (1− p, 1− q)− F (p, q)− F (p, 1− q) + F (1− p, q)

= log
S(λ, 1− p, 1− q)S(λ, 1− p, q)S(λ, p)2

S(λ, p, q)S(λ, p, 1− q)S(λ, 1− p)2

= log
(φ+ γ τ)(ψ + 2τ)
(ψ + γ τ)(φ+ 2τ)

(6)

where

φ = λ2(1− p)2 + (1− λ)2p2,

ψ = λ2p2 + (1− λ)2(1− p)2,
τ = λ(1− λ)p(1− p), and

γ =
q2 + (1− q)2

q(1− q)

It can then be seen thatψ − φ = (1 − 2λ)(1 − 2p) ≥ 0, and
τ ≥ 0, andγ ≥ 2. It follows that

(φ+ γ τ)(ψ+2τ)− (ψ+ γ τ)(φ+2τ) = (γ− 2)(ψ−φ) ≥ 0

The fraction under the logarithm in (6) is thus bounded below
by unity, and hence the expression in (5) is non-negative, as
required. This completes the proof.

Regarding the statement of Lemma 1, note that the
restriction onp, q ≤ 1

2 is in fact unnecessary, as clearly the
mutual information is unchanged ifX is replaced by1 −X
(or Y by 1−Y ). It can also be easily verified that this mutual
information is a symmetric function ofλ around the point
λ = 1

2 .

A slightly more general version of the result of Lemma 1
can be immediately derived:

Lemma 2:Let A andB be BSBV variables over the base
{E,X1, . . . , Xm}, and letλ := P (E = 1) as before. Then
the mutual informationI(A ; B) is a monotonic function of
λ for 0 ≤ λ ≤ 1

2 .
Proof: Depending on how the variableE is involved

in the linear combinations that determineA andB, we will
have three scenarios:

If E does not appear in neither ofA andB, thenI(A;B)
is constant with respect toλ, and the statement is vacuous.

If E is involved in both, then we must haveA = E⊕F⊕X,
andB = E ⊕ F ⊕ Y , whereF contains the common base
variables appearing in bothA andB, andX andY contains
the distinct variables. Then, withE′ := E⊕F , it follows from
the previous lemma thatI(A;B) = I(E′ ⊕ X ; E′ ⊕ Y ) is
a non-decreasing function ofP (E′ = 1) = S(λ, P (F = 0)).

Now S(λ, P (F = 0)) is itself a monotonic function ofλ ∈
[0, 1

2 ], which proves the statement.

If E appears in exactly one ofA andB, sayA = E ⊕
F ⊕X, andB = F ⊕ Y , thenI(A;B) = H(B)−H(B|A).
The first term does not depend onλ, and the second term
H(F ⊕Y |E⊕F ⊕X) is a monotonically decreasing function
of λ for λ ∈ [0, 1

2 ]. This completes the proof.

Consider the problem of transmission of a codeword of
a binary linear code over a memoryless binary symmetric
channel (BSC); then each noisy observation corresponds to
a BSBV, where the base variables consist of the original
source bits and the BSC noise variables. With this viewpoint
the preceding results can be generalized tobinary input
memoryless symmetric channels, defined as follows:

Definition 1: A Binary Input Memoryless Symmetric
Channel (BIMSC) with (countable) output alphabetA is a
channelC with a binary inputb and (random) outputC(b) ∈ A
such that for everyx ∈ A, there exists ay ∈ A, denoted by
y = x̂, such that̂y = x, andP (C(0) = x) = P (C(1) = x̂).

Note from the above definition that the vector channel
created from finitely many independent BIMSCs is itself a
BIMSC. To see this, supposeC1 andC2 are two independent
BIMSCs with output alphabetsA1 andA2 respectively. The
vector channelC1,2 :=

(
C1, C2

)
, is defined to have output

C1,2(X) :=
(
C1(X), C2(X)

)
∈ A1,2 := A1 × A2. Then for

everyz = (x, y) ∈ A1,2, and with ẑ := (x̂, ŷ) we have

P
(
C1,2(0) = z

)
= P

(
C1(0) = x, C2(0) = y

)
= P

(
C1(0) = x

)
· P

(
C2(0) = y

)
= P

(
C1(1) = x̂

)
· P

(
C2(1) = ŷ

)
= P

(
C1,2(1) = ẑ

)
where we have used the independence and the BIMSC
properties of theC1 andC2. This shows thatC1,2 is a BIMSC.
The argument extends to the vector channel created from
finitely many BIMSCs by induction.

We now generalize the result of Lemma 2:

Proposition 3: Let E be a Bernoulli(λ) random variable,
and letC1 andC2 denote two independent BIMSCs with output
alphabetA1 andA2, respectively. Then the mutual information
I(C1(E) ; C2(E)) is a non-decreasing function ofλ for 0 ≤
λ ≤ 1

2 .

Proof: For convenience, we define the following func-
tions: pi(x) := P (Ci(0) = x), πi(x) := πi(x̂) := pi(x) +
pi(x̂), and p̄i(x) := pi(x)

πi(x) . It follows thatπi(x) = πi(x̂), and



p̄i(x̂) = 1− p̄i(x). Then we have

I(C1(E) ; C2(E))

=
∑

x∈A1,y∈A2

P (C1 = x, C2 = y) log
P (C1 = x, C2 = y)
P (C1 = x)P (C2 = y)

=
∑
x,y

(
λ p1(x)p2(y) + (1− λ)p1(x̂)p2(ŷ)

)
·

log
λ p1(x)p2(y) + (1− λ)p1(x̂)p2(ŷ)(

λ p1(x) + (1− λ)p1(x̂)
)(
λ p2(y) + (1− λ)p2(ŷ)

)
=

∑
x,y

π1(x)π2(y)·

S
(
λ, p̄1(x), p̄2(y)

)
· log

S
(
λ, p̄1(x), p̄2(y)

)
S

(
λ, p̄1(x)

)
S

(
λ, p̄2(y)

)
=

1
4

∑
x,y

π1(x)π2(y) I(E ⊕Nx ; E ⊕Ny) (7)

whereNx andNy are (dummy) independent Bernoulli random
variables with parameters̄p1(x) and p̄2(y): in the second
equality we have used the fact that conditioned on the value
of E, C1(E) and C2(E) are independent; the third equality
follows from definitions; to see the last equality, note that for
each pair(x, y) with x̂ 6= x and ŷ 6= y, the summand in the
final expression represents four distinct terms, corresponding
to (x, y), (x̂, y), (x, ŷ) and (x̂, ŷ). If on the other handx = x̂
(or y = ŷ), then p1(x) = p1(x̂) and hencep̄1(x) = 1

2 ,
thereforeI(E⊕Nx ; E⊕Ny) = 0, which does not contribute
to the sum.

The claim now follows, since by Lemma 1 each term under
the sum is a non-decreasing function ofλ in [0, 1

2 ].

Equation (7) is an example of a useful technique in dealing
with arbitrary BIMSCs, when it is possible to reduce the
problem as an appropriately weighted superposition of BSCs
with different parameters.

II. A N UPPER BOUND ON THEMUTUAL INFORMATION OF

SUMS OF INDEPENDENTRANDOM VARIABLES

We start with the simpler case of independent Bernoulli
variables:

Proposition 4: Let X be a Bernoulli(12 ) random variable,
andN0, N1, . . . , Nm be independent Bernoulli variables. Then
the following inequality holds:

I(X⊕N0 ; X⊕N1, . . . , X⊕Nm) ≤
m∑

i=1

I(X⊕N0 ; X⊕Ni)

(8)
Proof: The statement is clearly correct form = 1. To

prove for the casem > 1 we proceed by induction. We first
expand the mutual information as follows:

I(X⊕N0 ; X ⊕N1, . . . , X ⊕Nm)
= H(X ⊕N0)−H(X ⊕N0 | X ⊕N1, . . . , X ⊕Nm)
= 1−H(N0 ⊕N1 | X ⊕N1, N1 ⊕N2, . . . , N1 ⊕Nm)
= 1−H(N0 ⊕N1 | N1 ⊕N2, . . . , N1 ⊕Nm) (9)

where the second equality follows from the fact thatX is an
independent Bernoulli(12 ) variable, and where we have added
the termX ⊕N1 to all other terms; the third equality follows
from the fact thatX⊕N1 is independent of(N0, N1, . . . , Nm).

Similarly we can show that for eachi ∈ {1, . . . ,m}

I(X ⊕N0 ; X ⊕Ni) = 1−H(N0 ⊕Ni) (10)

Applying (9) and (10) to (8), we get

D := I(X ⊕N0 ; X ⊕N1, . . . , X ⊕Nm)−
m∑

i=1

I(X ⊕N0 ; X ⊕Ni)

= 1−H(N0 ⊕N1 | N1 ⊕N2, . . . , N1 ⊕Nm)−
m∑

i=1

(
1−H(N0 ⊕Ni)

)
= I(N0 ⊕N1 ; N1 ⊕N2, . . . , N1 ⊕Nm)−

m∑
i=2

(
1−H(N0 ⊕Ni)

)
(11)

where in the last equality we have combined the first term
of the sum with the conditional entropy to obtain the mutual
information term.

Now for fixed distribution of(N0, N2, . . . , Nm), the expres-
sion in (11) is only a function ofp1 = P (N1 = 1) through
the mutual information term. Next note that the combination
of the variables(N1 ⊕ N2, . . . , N1 ⊕ Nm) is equivalent to a
noisy observation ofN1 over a BIMSC with output alphabet
GF(2)m−1. Using Proposition 3 then (11) is a non-decreasing
function ofp1 in [0, 1

2 ]. It thus suffices to show thatD in (11)
is less than or equal to zero forp1 = 1

2 . But with p1 = 1
2 , this

condition is simply a restatement of the claim with(m − 1)
variables, where by (10), each term(1−H(N0⊕Ni)) can be
viewed asI(N1 ⊕N0 ; N1 ⊕Ni). This completes the proof.

The above result can be expressed in the following
alternative form:

Proposition 5: Let X,N0, N1, . . . , Nm be independent
Bernoulli variables. Then the following inequality holds:

I(X ⊕N0 ; X ⊕N1, . . . , X ⊕Nm) +
m∑

i=1

H(N0 ⊕Ni) ≤ m

(12)
Note thatX is no longer restricted to have entropy1.

Proof: The proof follows using the manipulation used in
the proof of Proposition 4. Using the expression in (11) forD,
we showed that for arbitrary independent Bernoulli variables
N0, N1, . . . , Nm,

I(N0 ⊕N1 ; N1 ⊕N2, . . . , N1 ⊕Nm)−
m∑

i=2

(
1−H(N0 ⊕Ni)

)
≤ 0



The result follows immediately from the instance of the above
expression withm+2 Bernoulli variables, and after renaming
variable.

Note that using simple upper bounds of1 on each of
the terms in (12), it is trivially seen that the LHS is upper
bounded bym + 1; the stronger result shown here has been
somewhat harder to prove.

A more general form of Proposition 4 can be derived for
independent BIMSCs:

Proposition 6: Let X be a Bernoulli(12 ) random variable,
andC0, C1, . . . , Cm be independent BIMSCs. Then the follow-
ing inequality holds:

I(C0(X) ; C1(X), . . . , Cm(X)) ≤
m∑

i=1

I(C0(X) ; Ci(X))

(13)
Proof: As argued before, the vector channel created from

finitely many BIMSCs is itself a BIMSC. It thus suffices to
prove the proposition for the case ofm = 2, and the general
statement will follow by simple induction.

We proceed with the notation used in the proof of Proposi-
tion 3, to show that

I(C0(X) ; C1(X), C2(X))

=
1
8

∑
x,y,z

π0(x)π1(y)π2(z)I(X ⊕Nx ; X ⊕Ny, X ⊕Nz)

≤ 1
8

∑
x,y,z

π0(x)π1(y)π2(z)
(
I(X ⊕Nx ; X ⊕Ny)

+ I(X ⊕Nx ; X ⊕Nz)
)

= I(C0(X) ; C1(X)) + I(C0(X) ; C2(X)),

where the first equality follows from a similar argument
leading to (7); the inequality follows from application of
Proposition 4; and the last equality follows from two appli-
cations of (7), noting also that

∑
x∈Ai

πi(x) = 2. As before,
Nx, Ny and Nz are dummy independent Bernoulli random
variables with parameters̄p0(x), p̄1(y) andp̄2(z) respectively.

III. C ONNECTION WITH CHANNEL CODING

Consider a Bernoulli(12 ) random variableX, which is re-
peatedly observed over binary symmetric channels with noise
variablesN1, . . . , Nm.

Then unlessX is completely determined by the previous
observations, one might want to observeX yet again to
reduce uncertainty. We are then interested in determining the
amount of redundant information if we were to observeX
one more time over another BSC with independent noiseN0.
Intuitively, this is the amount of potential information that the
observer gives up in using the channel to observe a less-than-
completely-random variable, see e.g. [2] and [3] for the related
analysis.

The redundant information in the case above is then

L := I(X ⊕N0 ; X ⊕N1, . . . , X ⊕Nm).

In practice, this exact expression is not tractable, and it gener-
ally suffices to find simple upper bounds onL. Proposition 4
immediately addresses this problem, whereL is bounded in
terms of I(X ⊕ N0 ; X ⊕ Ni)’s, i.e. the amount of redun-
dant information when considering each previous observation
individually.

A more realistic setting would involveindirect observations
of each output variableX, in terms of linear combinations of
observations of other output variables that sum up toX. In
that case, the effective noise BSC variablesN1, . . . , Nm are
no longer independent, but rather are BSBVs over a common
set of base random variables.

IV. D ISCUSSION

The results of (8) and (12) are at some level intuitive. In
particular, the inequality in (8) resembles some kind of a
independence bound on the mutual informations. It may then
be expected that a generalization of such result is true, where
the variables are not restricted to be all mutually independent.
There are however serious pitfalls in expecting too much to be
true on these matters. For example, the symmetry assumption
that results from the setup of the Proposition 4 seems to be
crucial.

As another example, consider the simplest non-trivial case
of m = 1 in (12): After simple manipulation, it is shown that
for independent Bernoulli variablesX,Y, Z,

H(X ⊕ Y ) +H(Y ⊕ Z) +H(Z ⊕X)

−H(X ⊕ Y, Y ⊕ Z,Z ⊕X) ≤ 1

One might be tempted to try and prove that for arbitrary
Bernoulli U, V,W ,

H(U) +H(V ) +H(W )−H(U, V,W )
?
≤ 1,

but this inequality is certainly not true in general; for example
if U = V = W is the same Bernoulli(12 ) random variable,
then the LHS will equal2.

A slightly less ambitious generalization is the following
conjecture for arbitrary Bernoulli variablesU andV :

H(U) +H(V ) +H(U ⊕ V )−H(U, V )
?
≤ 1. (14)

But this conjecture is also not true in general; as a counter-
example consider the joint distribution given byP (U = V =
0) = 0;P (U = 0, V = 1) = P (U = 1, V = 0) = 1

4 , and
P (U = V = 1) = 1

2 . Then

H(U) +H(V ) +H(U ⊕ V )−H(U, V ) = 1 + (1− 3
2

log
3
2
),

which can be readily seen to be larger than1 from the
convexity of the functionη(x) := x log x, and the fact that
η(1) = 0 andη(2) = 2.

Indeed, using numerical methods, it appears that the set of
joint distributions that satisfy (14), i.e.{PU,V (u, v) : H(U)+



H(V )+H(U ⊕V )−H(U, V ) ≤ 1}, is closely approximated
by distributions of the formPX⊕Y,Y⊕Z(u, v) for independent
Bernoulli variablesX,Y andZ.

The monotonicity results in Lemma 1 and Proposition 3
resemble some of the results on degradation over BIMSCs as
discussed in [5]. It would be interesting to explore to what
extent a stronger statement with regards to the monotonicity
of the mutual information holds while not requiring the
independence assumptions we have used.
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