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Abstract

A grouped-parallel low-density parity-check (LDPC) decoder is designed for the (2048,1723) Reed-

Solomon-based LDPC (RS-LDPC) code suitable for 10GBASE-T Ethernet. A two-step decoding scheme

reduces the wordlength to 4 bits while lowering the error floor to a 10−14 BER. The proposed post-

processor is conveniently integrated with the decoder adding minimal area and power. The decoder

architecture is optimized by groupings so as to localize irregular interconnects and regularize global

interconnects and the overall wiring overhead is minimized. The 5.35 mm2, 65nm CMOS chip achieves

a decoding throughput of 47.7 Gb/s. With scaled frequency and voltage, the chip delivers a 6.67 Gb/s

throughput necessary for 10GBASE-T while dissipating 144 mW of power.
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I. INTRODUCTION

Low-density parity-check (LDPC) codes have been demonstrated to perform very close to

the Shannon limit when decoded iteratively using message-passing algorithms [1]–[4]. A wide

array of the latest communication and storage systems have chosen LDPC codes for forward

error correction in applications including digital video broadcasting (DVB-S2) [5], [6], 10 Gigabit

Ethernet (10GBASE-T) [7], broadband wireless access (WiMax) [8], wireless local area network

(WiFi) [9], deep-space communications [10], and magnetic storage in hard disk drives [11]. The

adoption of the capacity-approaching LDPC codes is, at least in theory, one of the keys to

achieving a lower transmission power for a more reliable communication.

There is a challenge in implementing high-throughput LDPC decoders with a low area and

power on a silicon chip for practical applications. The intrinsically-parallel message-passing

decoding algorithm relies on the message exchange between variable processing nodes (VN)

and check processing nodes (CN) in the graph defined by the H matrix. A direct mapping of the

interconnection graph causes large wiring overhead and low area utilization. In the first silicon

implementation of a fully parallel decoder, Blanksby and Howland reported that the size of

the decoder was determined by routing congestion and not by the gate count [12]. Even with

optimized floor plan and buffer placement technique, the area utilization rate is only 50%.

Architectures with lower parallelism can be attractive, as the area efficiency can be improved.

In the paper [13], the H matrix is partitioned: partitions are time-multiplexed and each partition is

processed in a fully parallel manner. With structured codes, the routing can be further simplified.

Examples include the decoders for DVB-S2 standard [14], [15], where the connection between

memory and processors is realized using Barrel shifters. A more compact routing scheme,

only for codes constructed with circulant H matrices, is to fix the wiring between memory

and processors while rotating data stored in shift registers [16]. The more generic and most

common partially-parallel architecture is implemented in segmented memories to increase the

access bandwidth and the schedules are controlled by lookup tables. Architectures constructed

this way permit reconfigurability, as demonstrated by a WiMAX decoder [17].

Solely relying on architecture transformation could be limiting in producing the optimal

designs. Novel schemes have been proposed in achieving the design specification with no

addition (or even a reduction) of the architectural overhead. In the work [18], a layered decoding
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schedule was implemented by interleaving check and variable node operations in order to speed

up convergence and increase throughput. This scheme costs additional processing and a higher

power consumption. Other authors [19] have used a bit-serial arithmetic to reduce the number

of interconnects by a factor of the wordlength, thereby lowering the wiring overhead in a fully

parallel architecture. This bit-serial architecture was demonstrated for a small LDPC code with

a block length of 660. More complex codes can still be difficult due to the poor scalability of

global wires.

Aside from the implementation challenges, LDPC codes are not guaranteed to perform well in

every application either. Sometimes the excellent error-correction performance of LDPC codes

is only observed up until a moderate bit error rate (BER); at a lower BER, the error curve often

changes its slope, manifesting a so-called error floor [20]. With communication and storage

systems demanding data rates up to Gb/s, relatively high error floors degrade the quality of

service. To prevent such degradation, transmission power is raised or a more complex scheme,

such as an additional level of error-correction coding [5], is created. These approaches increase

the power consumption and complicate the system integration.

This work implements a post-processing algorithm that utilizes the graph-theoretic structure of

LDPC code [21], [22]. The post-processing approach is based on a message-passing algorithm

with selectively-biased messages. As a result, it can be seamlessly integrated with the message-

passing decoder. Results show performance improvement of orders of magnitude at low error

rates after post-processing even with short wordlengths. The wordlength reduction permits a

more compact physical implementation.

In formulating the hardware architecture of a high-throughput decoder, a grouping strategy

is applied in separating irregular local wires from regular global wires. The post-processor is

implemented as a small add-on to each local processing element without adding external wiring,

thus the area penalty is kept minimal. A low wiring overhead enables a highly parallel decoder

design that achieves a very high throughput. Frequency and voltage scaling can be applied to

improve power efficiency if a lower throughput is desired.

The remainder of this paper is organized as follows. Section II introduces the LDPC code

and the decoding algorithm. Emphasis is placed on LDPC codes constructed in a structured way

and its implication on the decoder architecture. In Section III, hardware emulation is applied in

choosing the decoding algorithm and wordlength. In particular, the post-processing algorithm is
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demonstrated to achieve an excellent decoding performance at a very short wordlength of 4 bits.

In Section IV, the architecture of the chip is determined based on a set of experiments to explore

how architectural grouping affects implementation results. Section V explains individual block

designs and Section VI presents steps in optimizing the overall area and power efficiencies. The

performance and power measurements of the fabricated test chip are presented in Section VII.

II. BACKGROUND

A low-density parity-check code is a linear block code, defined by a sparse M × N parity

check matrix H where N represents the number of bits in the code block (block length) and M

represents the number of parity checks. An example of the H matrix of an LDPC code is shown

in Fig. 1a. The H matrix can be represented graphically using a factor graph as in Fig. 1b, where

each bit is represented by a variable node and each check is represented by a factor (check)

node. An edge exists between the variable node i and the check node j if H(j, i) = 1.

A. Decoding Algorithm

Low-density parity-check codes are usually iteratively decoded using the belief propagation

algorithm, also known as the message-passing algorithm [1]. The message-passing algorithm

operates on a factor graph, where soft messages are exchanged between variable nodes and

check nodes. The algorithm can be formulated as follows: in the first step, variable nodes xi are

initialized with the prior log-likelihood ratios (LLR) defined in (1) using the channel outputs yi,

where σ2 represents the channel noise variance. This formulation assumes the information bits

take on 0 and 1 with equal probability.

Lpr(xi) = log
Pr (xi = 0 | yi)

Pr (xi = 1 | yi)
=

2

σ2
yi, (1)

The variable nodes send messages to the check nodes along the edges defined by the factor

graph. The LLRs are recomputed based on the parity constraints at each check node and returned

to the neighboring variable nodes. Each variable node then updates its decision based on the

channel output and the extrinsic information received from all the neighboring check nodes. The

marginalized posterior information is used as the variable-to-check message in the next iteration.

August 24, 2009 DRAFT



IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 6, NO. 1, JANUARY 2007 5

1) Sum-Product Algorithm: The sum-product algorithm is a common form of the message-

passing algorithm. A simplified illustration of which is shown in Fig. 2a. The block diagram is

for one slice of the factor graph showing a round trip from a variable node to a check node back

to the same variable node as highlighted in the Fig. 2b. Variable-to-check and check-to-variable

messages are computed using equations (2) and (3), where Φ(x) = − log
(
tanh

(
1
2
x
))
, x ≥ 0.

The messages qij and rij refer to the variable-to-check and check-to-variable messages, respec-

tively, that are passed between the ith variable node and the jth check node. In representing the

connectivity of the factor graph, Col[i] refers to the set of all the check nodes adjacent to the

ith variable node and Row[j] refers to the set of all the variable nodes adjacent the jth check

node. The posterior LLR is computed in each iteration using the update (4). A hard decision is

made based on the posterior LLR in every iteration. The iterative decoding algorithm is allowed

to run until the hard decisions satisfy all the parity check equations or when an upper limit on

the iteration number is reached, whichever occurs earlier.

L(qij) =
∑

j′∈Col[i]\j
L(rij′) + Lpr(xi), (2)

L(rij) = Φ−1

 ∑
i′∈Row[j]\i

Φ(|L(qi′j)|)

 ∏
i′∈Row[j]\i

sgn(L(qi′j))

 . (3)

Lps(xi) =
∑

j′∈Col[i]

L(rij′) + Lpr(xi), (4)

2) Min-Sum Approximation: Equation (3) can be simplified by observing that the magnitude

of L(rij) is usually dominated by the minimum |L(qi′j)| term, and thus this minimum term can

be used as an approximation of the magnitude of L(rij), as shown in the papers [23], [24]. The

magnitude of L(rij) computed using such min-sum approximation is usually overestimated and

correction terms are introduced to reduce the approximation error. The correction can be in the

form of an offset [25], [26], shown as β in the update (5).

L(rij) = max

{
min

i′∈Row[j]\i
|L(qi′j)| − β, 0

} ∏
i′∈Row[j]\i

sgn(L(qi′j)). (5)
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3) Reordered Schedule: The above equations can also be rearranged by taking into account the

relationship between consecutive decoding iterations. A variable-to-check message of iteration n

can be computed by subtracting the corresponding check-to-variable message from the posterior

LLR of iteration n − 1 as in (6), while the posterior LLR of iteration n can be computed

by updating the posterior LLR of the previous iteration with the check-to-variable message of

iteration n, as in (7).

Ln(qij) = Lps
n−1(xi)− Ln−1(rij), (6)

Lps
n (xi) = Lps

n−1(xi)− Ln−1(rij) + Ln(rij), j ∈ Col[i]. (7)

B. Structured LDPC Codes

A practical high-throughput LDPC decoder can be implemented in a fully parallel manner by

directly mapping the factor graph onto an array of processing elements interconnected by wires.

Each variable node is mapped to a variable processing node (VN) and each check node is mapped

to a check processing node (CN), such that all messages from variable nodes to check nodes and

then in reverse are processed concurrently. Practical high-performance LDPC codes commonly

feature block lengths on the order of 1kb and up to 64kb, requiring a large number of VNs. The

ensuing wiring overhead poses a substantial obstacle towards efficient silicon implementations.

Structured LDPC codes of moderate block lengths have received more attention in practice

recently because they prove amenable for efficient decoder architectures and recent published

standards have adopted such LDPC codes [7]–[9]. The H matrices of these structured LDPC

codes consist of component matrices, each of which is, or closely resembles, a permutation

matrix or a zero matrix. Structured codes open the door to a range of efficient high-throughput

decoder architectures by taking advantage of the regularity in wiring and data storage. In this

work, a highly parallel LDPC decoder design is demonstrated for a (6,32)-regular (2048,1723)

RS-LDPC code. This particular LDPC code has been adopted for the forward error correction in

the IEEE 802.3an 10GBASE-T standard [7], which governs the operation of 10 Gigabit Ethernet

over up to 100 m of CAT-6a unshielded twisted-pair (UTP) cable. The H matrix of this code

contains M = 384 rows and N = 2048 columns. This matrix can be partitioned into 6 row

groups and 32 column groups of 64 × 64 permutation submatrices.
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III. EMULATION-BASED STUDY

An FPGA-based hardware emulation has been used to initially investigate the low error rate

performance of this code, and it has been discovered that a class of (8,8) absorbing-set errors

dominate the error floors [22], [27]. A subgraph illustrating the (8,8) absorbing set is shown in

Fig. 3, representing a substructure of the factor graph associated with the LDPC code. Consider

a state with all eight variable nodes of an (8,8) absorbing set in error – a state that cannot be

decoded successfully by a message-passing decoder because the variable nodes that constitute

the absorbing set reinforce the incorrect values among themselves through the cycles in the

graph. More precisely, each variable node receives one message from a unsatisfied check node

attempting to correct the error, which is overpowered by five messages from satisfied check

nodes that reinforce the error.

It was also found that a sum-product decoder implementation tends to incur excessive nu-

merical saturation due to the finite-wordlength approximation of the Φ functions. The reliability

of messages is reduced with each iteration until the message-passing decoder is essentially

performing majority decoding, and the effect of absorbing sets is worsened. In comparison, an

offset min-sum decoder implementation eliminates the saturation problem due to the Φ functions.

A 6-bit offset min-sum decoder achieves a 0.5 dB SNR gain compared to a 6-bit sum-product

decoder as seen in Fig. 4. Despite the extra coding gain and lower error rate performance of

the offset min-sum decoder, its error floor emerges at a BER level of 10−11, which still renders

this implementation unacceptable for 10GBASE-T Ethernet that requires an error-free operation

below the BER level of 10−12 [7].

Brute-force performance improvement requires a longer wordlength, though the performance

gain with each additional bit of wordlength diminishes as the wordlength increases over 6 bits.

Further improvement should rely on adapting the message-passing algorithm to combat the

effect due to absorbing sets. A two-step decoding strategy can be applied: in the first step,

a regular message-passing decoding is performed. If it fails, the second step is invoked to

perform post-processing [21], [22]: the unsatisfied checks are marked and the messages via these

unsatisfied checks are strengthened and/or the messages via the satisfied checks are weakened.

Such a message biasing scheme introduces a systematic perturbation to the local minimum state.

Message biasing is followed by a few more iterations of regular message-passing decoding
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until post-processing converges or a failure is declared. The post-processor proves to be highly

effective: a 4-bit offset min-sum decoder, aided by the post-processor, surpasses the performance

of a 6-bit decoder below the BER level of 10−11.

IV. ARCHITECTURAL DESIGN

A high decoding throughput requires a high degree of parallelism and a large memory access

bandwidth. With the structured RS-LDPC code, VNs and CNs can be grouped and wires bundled

between the node groups, as illustrated in Fig. 5b for the H matrix in Fig. 5a. Irregular wires

are sorted within the group, similar to a routing operation. The fully parallel architecture with

all the routers expanded is shown in Fig. 5b.

Even with node grouping and wire bundling, the fully parallel architecture might not be

the most efficient for a complex LDPC decoder. To reduce the level of parallelism, individual

routers are combined and routing operations are time-multiplexed. Fig. 5c shows how the two

routers in every column are combined, leading to the creation of local units – 3 variable node

groups (VNG) and 1 check node group (CNG), that encapsulate irregular local wiring, and wires

outside of local units are regular and structured. The number of local units determines the level

of parallelism. A less parallel design uses fewer local units, but each one is more complex as

it needs to encapsulate more irregular wiring to support multiplexing; a highly parallel design

uses more local units and each one is simpler, but the amount of global wiring, though regular

and structured, would increase accordingly.

To explore the optimal level of parallelism targeting a lower wiring overhead, a new metric,

the area expansion factor, or AEF is defined as the ratio between the area of the complete system

and the total area of stand-alone component nodes. A few selected decoder architectures were

investigated for the (2048,1723) RS-LDPC code, listed in Table I with increasing degrees of

parallelism from top to bottom. The AEF of the designs is shown in Fig. 6 with the horizontal

axis displaying the approximate decoding throughput. The upward-facing AEF curve features

a flat middle segment at the 16VNG-1CNG architecture and the 32VNG-1CNG architecture.

Designs positioned in the flat segment achieve a balance of throughput and area – doubling the

throughput from 16VNG-1CNG to 32VNG-1CNG requires almost twice as many processing

nodes, but the AEF remains almost constant, so the area doubles. In the region where the AEF

is constant, the average global wiring overhead is constant and it is advantageous to increase
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the degree of parallelism for a higher throughput.

The AEF plot alone actually suggests a more serial architecture, e.g., 8VNG-1CNG, as it

incurs the lowest average global wiring overhead. However, the total on-chip signal wire length

of the 8VNG-1CNG architecture is still significant – an indication of the excessive local wiring

in supporting time-multiplexing. To supplement the AEF curve, the incremental wiring overhead

(measured in on-chip signal wire length) per additional processing node is shown in Fig. 6. As the

degree of parallelism increases from 8VNG-1CNG, the local wiring should be decreasing more

quickly while the global wiring increasing slowly, resulting in a decrease in the incremental

wiring overhead. The incremental wiring overhead eventually reaches the minimum with the

32VNG-1CNG architecture. This minimum corresponds to the balance of local wiring and global

wiring. Any further increase in the degree of parallelism causes a significant increase in the global

wiring overhead. The 32VNG-1CNG architecture is selected for implementation.

V. FUNCTIONAL DESIGN

A. Components

The 32VNG-1CNG decoder architecture consists of 2,048 VNs, representing the majority of

the chip area. The block diagram of the VN for the offset min-sum decoder is illustrated in

Fig. 7. Each VN sequentially sends six variable-to-check messages and receives six returning

messages from CNs per decoding iteration, as illustrated in the pipeline chart of Fig. 8. Three

storage elements are allocated: the posterior LLR memory which accumulates the check-to-

variable messages, the extrinsic memory which stores the check-to-variable messages in a shift

register, and the prior LLR memory.

Each VN participates in the operations in six horizontal rows. In each operation, a variable-

to-check message is computed by subtracting the corresponding check-to-variable message (of

the previous iteration) from the posterior LLR (of the previous iteration) as in equation (6) (refer

to Fig. 7). The variable-to-check message is converted to the sign-magnitude form before it is

sent to the VNG routers destined for a CN. The returning messages to the VN could be from

one of the six CNs. A multiplexer selects the appropriate message based on a schedule. The

check node operation described in equation (5) is completed in two steps: 1) the CN computes

the minimum (min1) and the second minimum (min2, min2 ≥ min1) among all the variable-

to-check messages received from the neighboring VNs, as well as the product of the signs (prd)
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of these messages; 2) the VN receives min1, min2, and prd, computes the marginals, which

is followed by the conversion to the two’s complement format and the offset correction. The

resulting check-to-variable message is accumulated serially to form the posterior LLR as in

equation (7). Hard decisions are made in every iteration.

Post-processing is enabled in the VN in three phases: pre-biasing, biasing, and follow-up. In

the pre-biasing phase (one iteration before post-processing), tag is enabled (refer to Fig. 7). If a

parity check is not satisfied, as indicated by prd, the edges emanating from the unsatisfied check

node are tagged by marking the messages on these edges, and the variable nodes neighboring the

unsatisfied check are also tagged. In the biasing phase, post-proc is enabled (refer to Fig. 7). Tags

are inspected, such that if a tagged variable node sends a message to a satisfied check node, the

magnitude of this message is weakened with the intention of reducing the reinforcement among

the possibly incorrect variable nodes. Finally in the follow-up phase, regular message passing

decoding is performed for a few iterations to clean up the possible errors after message biasing.

The VNG routers follow the structure shown in Fig. 5c with 64 6:1 multiplexers. The CN is

designed as a compare-select tree. The 32 input variable-to-check messages are sorted in pairs,

followed by four stages of 4-to-2 compare-selects. The outputs min1, min2, and product of

signs, prd are buffered and broadcast to the 32 VNGs.

B. Pipeline

A 7-stage pipeline is designed as in Fig. 8. One stage is allocated for the VN in preparing

variable-to-check message, and one stage for the delay through the VNG routers. Three stages are

dedicated to the compare-select tree in the CN – one for the sorting and the first-level compare-

select, one for the following two levels of compare-select, and one for the final compare-select

as well as the fanout. Two stages are set aside for processing the return messages from the CN –

one for preparing the check-to-variable message and one for accumulating the check-to-variable

message.

With the 7-stage pipeline and the minimum 2.5-ns clock period for the CMOS technology

being used, a decoding throughput of 6.83 Gb/s can be achieved, assuming 10 decoding iterations.

Trial placement and routing are performed to identify the critical paths and characterize the global

wiring delays. The clock period is set such that it accommodates the longest wire delay and the

wire’s driving or receiving gate delay with a sufficient margin. A deeper-pipelined design would
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require wire pipelining and an increase in area and power due to additional pipeline registers.

The two-iteration pipeline diagram is shown in Fig. 9. Due to the data dependency between

consecutive iterations, a 6-cycle stall is inserted between iterations such that the posterior LLR

can be fully updated in the current iteration before the next iteration starts. The stall means that

the first VC stage (refer to Fig. 9) of iteration i+ 1 has to wait for 6 cycles for the last PS stage

of iteration i to complete. No useful work is performed during the stall cycles, so the efficiency

is lower. The efficiency would be reduced even more if a turbo decoding schedule (also known

as a layered schedule) [28] or a shuffled schedule [29] is applied to such a pipeline, where

data dependency arises between layers within an iteration. If more pipeline stalls are inserted to

resolve the dependency, the efficiency is degraded to as low as 1/7, defeating the purpose of a

slightly higher convergence rate achieved with these schedules.

C. Density

The optimal density depends on the tradeoff between routability and wire distance. A lower-

density design can be easily routed, but it occupies a larger area and wires need to travel

longer distances. On the other hand, a high-density design cannot be routed easily, and the

clock frequency needs to be reduced as a compromise. Table II shows that timing closure

can be achieved with initial densities of 70% to 80%. The total signal wire length decreases

with increasing density due to the shorter wire distances even with increasing wire counts. An

initial density above 80% results in routing difficulty and the maximum clock frequency has to

be reduced to accomodate longer propagation delays. To maximize density without sacrificing

timing, an 80% initial density is selected.

VI. AREA AND POWER OPTIMIZATIONS

The block diagram of the complete decoder is shown in Fig. 10. Steps of area, performance,

power, and throughput improvements of this decoder are illustrated in Fig. 11a and 11b based

on synthesis, placement and routing results reported by CAD tools at the worst-case corner of

the ST 65nm low-power CMOS standard cell library at 0.9 V supply voltage and temperature of

105◦. The baseline design is a 6-bit sum-product decoder. It occupies 6.83 mm2 of core area and

consumes 1.38 W of power to deliver the 6.68 Gb/s throughput (assuming 8 decoding iterations)
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at the maximum 310 MHz clock frequency. This implementation incurs an error floor at a BER

level of 10−11.

FPGA emulation shows that the 6-bit sum-product decoder can be replaced by a 6-bit offset

min-sum decoder to gain 0.5 dB in SNR. The core area increases to 7.15 mm2 due to additional

routing required to send both min1 and min2 from CN to VN and this overhead is reflected

in the 15.6% increase in wiring and a lower clock frequency of 300 MHz. Despite the area

increase, the offset min-sum decoder consumes less power at 1.03 W – a saving attributed to the

reduction in dynamic power in the CN design. At high SNR levels or when decoding approaches

convergence, the majority of the messages are saturated and the wires in a compare-select tree

do not switch frequently, thus consuming less power.

To reduce the area and power further, the wordlength of the offset min-sum decoder is reduced

from 6 bits to 4 bits. Wordlength reduction cuts the total wire length by 41.2%, shrinks the core

area by 37.9% down to 4.44 mm2. With a reduced wiring overhead, the maximum clock frequency

can be raised to 400 MHz, reaching a 8.53 Gb/s throughput while consuming only 690 mW.

Wordlength reduction causes the error floor to be elevated by an order of magnitude, as seen in

Fig. 4. To fix the error floor, the post-processor is added to the 4-bit decoder. The post-processor

increases the core area by 13.7% to 5.05 mm2 and the power consumption by 17.6% to 810

mW. However, as an internal addition to the VN, the post-processor does not contribute to the

wiring external to the VN. Overall wiring overhead increases by only 1.7%, indicating that the

majority of the area and power increase is attributed to the extra logic and storage in the VN.

The almost constant wiring overhead allows the maximum clock frequency to be maintained,

and the decoding throughput is kept at 8.53 Gb/s.

To increase the decoding throughput further, an early termination scheme [17], [19] is im-

plemented on-chip to detect early convergence by monitoring whether all the check nodes are

satisfied and if so, the decoder can immediately proceed to the next input frame. The early

termination scheme eliminates idle cycles and the processing nodes are kept busy constantly.

The throughput gain becomes significant at high SNR levels – at an SNR level of 5.5 dB,

convergence can be achieved in 1.47 iterations on average. Even accounting for one additional

iteration in detecting convergence, the average throughput can be improved to 27.7 Gb/s as

shown in Fig. 12. With early termination, the power consumption increases by 18.4% to 960

mW due to a higher activity factor. Now with a much higher throughput, the clock frequency
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and supply voltage can be aggressively scaled down to reduce the power consumption. To reach

the required throughput of 6.67 Gb/s, the clock frequency can be scaled to 100 MHz and the

supply voltage scaled to 0.7 V to reduce the power consumption by almost 85% to 145 mW.

The decoding throughput quoted for an early-termination-enabled decoder is an average through-

put at a specific SNR point. A maximum iteration limit is still imposed to prevent running an

excessive number of iterations due to the occasional failures. A higher maximum iteration limit

calls for a larger input and output buffering to provide the necessary timing slacks. A detailed

analysis can be performed to determine the optimal buffer length for a performance target [30].

VII. CHIP IMPLEMENTATION

The decoder is implemented in ST 65nm 7-metal low-power CMOS technology [31]. An

initial density of 80% is used in placement and routing to produce the final density of 84.5%

in a 5.35 mm2 core. The decoder occupies 5.05 mm2 of area, while the remaining 0.30 mm2

is dedicated to on-chip AWGN noise generation, error collection, and I/O compensation. The

chip microphotograph is shown in Fig. 13, featuring the dimensions of 2.556 × 2.608 mm for a

chip area of 6.67 mm2. The nominal core supply voltage is 1.2 V. The clock signal is externally

generated.

A. Chip Testing Setup

The chip supports automated, real-time functional testing by incorporating AWGN noise

generators and error collection. AWGN noise is implemented by the Box-Muller algorithm and

the unit Gaussian random noise is scaled by pre-stored multipliers to emulate an AWGN channel

at a particular SNR level. The automated functional testing assumes either all-zeros or all-ones

codeword. The output hard decisions are compared to the expected codeword, and the number

of bit and frame mismatches are accumulated in the error counters.

An internally-developed FPGA board is programmed to be the equivalent logic analyzer that

can be attached to the chip test board. In the simplest setup, the registers can be programmed

on the FPGA to connect to the corresponding interface pins to the test board. A write operation

to the register functions as an input to the chip under test and a read functions as an output

from the chip. This simplest form is used in automated testing, where the control signals (start,

load, reset) and configuration (limit on iteration count, SNR level, limit on the number of input
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frames) are set via the FPGA board. The progress of decoding (number of frames processed)

can be monitored by polling the corresponding registers. Decoding results (bit and frame error

counts) are collected by the decoder chip and can be read through the FPGA.

In a more elaborate testing scheme, the FPGA is programmed to generate the input data

which are scanned in. A functionally-equivalent LDPC decoder (of a much lower throughput

due to resource limitations) is programmed on the FPGA, which runs concurrently with the

decoder chip. The output from the chip through output scan chains is compared to the on-FPGA

emulation to check for errors. This elaborate testing scheme enables more flexibility of operating

on any codeword, however the decoder needs to be paused in waiting for scan-in and scan-out

to complete loading and unloading, resulting in a much lower decoding throughput.

B. Measurement Results

The chip is fully functional. Automated functional testing has been used to collect error

counts at a range of SNR levels to generate the waterfall curve. Early termination is applied in

increasing the decoding throughput while the maximum iteration limit is set to 20 for regular

decoding. Without post-processing, the waterfall curve displays a change of slope below the

BER of 10−11. After enabling post-processing, the error floor is lowered and an excellent error

correction performance is measured below the BER of 10−14, as shown in Fig. 14. The measured

waterfall curve matches the performance obtained from hardware emulation shown in Fig. 4 with

extended BER by more than two orders of magnitude at high SNR levels. The post-processor

suppresses the error floor by eliminating the absorbing errors, which is evident in Table III.

Five of the seven unresolved errors at the highest SNR point on the curve (5.2 dB) are due

to undetected errors – errors that are valid codewords, but not the intended codeword. It was

empirically discovered that the minimum distance is 14 for the (2048,1723) RS-LDPC code.

The eventual elimination of absorbing errors and the emergence of weight-14 undetected errors

indicate the near maximum-likelihood decoding performance.

The decoder chip operates at a maximum clock frequency of 700 MHz at the nominal 1.2 V

supply, delivering a throughput of 47.7 Gb/s. The throughput is measured at an SNR level of

5.5 dB with early termination enabled on-chip. To achieve the required 6.67 Gb/s of throughput

for 10GBASE-T Ethernet, the chip can be frequency and voltage scaled to operate at 100 MHz

at a 0.7 V supply, while dissipating only 144 mW. At the maximum allowed supply voltage of
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1.32 V, a decoding throughput of 53.3 Gb/s is achieved at the clock frequency of 780 MHz.

The maximum clock frequency and decoding throughput are measured at each supply voltage.

The measurements are performed by fixing the supply voltage while ramping up the clock

frequency until the FER and BER performance start to deviate. The power consumption and

decoding throughput are shown against the clock frequency in Fig. 15. Quadratic power savings

can be realized by the simultaneous voltage and frequency scaling. It is therefore more power

efficient to operate at the lowest supply voltage and clock frequency to deliver the required

throughput within this range of operation.

The features of the decoder chip are summarized in Table IV. At the nominal supply voltage

and the maximum 700 MHz of clock frequency, the decoder experiences the worst latency of

137 ns assuming an 8-iteration regular decoding limit, or 206 ns if an additional 4-iteration

post-processing is accounted for. The energy per coded bit is 58.7 pJ/bit. At the 100 MHz clock

frequency and a 0.7 V supply voltage, the worst latency is 960 ns (or 1440 ns with a 4-iteration

post-processing), but the energy per coded bit is reduced to 21.5 pJ/bit. These implementation

results compare favorably to the state-of-the-art high-throughput LDPC decoder implementations.

VIII. CONCLUSION

A highly parallel LDPC decoder is designed for the (2048,1723) RS-LDPC codes suitable for

10GBASE-T Ethernet. A two-step decoding scheme shortens the minimum wordlength required

to achieve a good decoding performance. A grouping strategy is applied in the architectural

design to divide wires into global wires and local wires. The optimal architecture lies in the

point where the incremental wiring per additional degree of parallelism reaches the minimum,

which coincides with the balance point between area and throughput. The LDPC decoder is

synthesized, placed and routed to achieve a 84.5% density without sacrificing the maximum

clock frequency. The message-passing decoding is scheduled based on a 7-stage pipeline to

deliver a high effective throughput.

The optimized decoder architecture, when aided by an early termination scheme, achieves a

maximum 47.7 Gb/s decoding throughput at the nominal supply voltage. The high throughput

capacity allows the voltage and frequency to be scaled to reduce the power dissipation to 144

mW while delivering a 6.67 Gb/s throughput. Automated functional testing with real-time noise

generation and error collection extends the BER measurements below 10−14, where no error
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floor is observed.

Techniques applied in this decoder chip design can be extended to many other high-throughput

applications, including data storage, optical communications, and high-speed wireless. Enabling

the reconfigurability of such a high-throughput architecture is the topic of future work.
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[11] A. Kavčić and A. Patapoutian, “The read channel,” Proceedings of the IEEE, vol. 96, no. 11, pp. 1761–1774, Nov. 2008.

[12] A. J. Blanksby and C. J. Howland, “A 690-mW 1-Gb/s 1024-b, rate-1/2 low-density parity-check code decoder,” IEEE

Journal of Solid-State Circuits, vol. 37, no. 3, pp. 404–412, Mar. 2002.

[13] H. Liu, C. Lin, Y. Lin, C. Chung, K. Lin, W. Chang, L. Chen, H. Chang, and C. Lee, “A 480Mb/s LDPC-COFDM-based

UWB baseband transceiver,” in Proc. IEEE International Solid-State Circuits Conference, San Francisco, CA, Feb. 2005,

pp. 444–445.

[14] P. Urard, E. Yeo, L. Paumier, P. Georgelin, T. Michel, V. Lebars, E. Lantreibecq, and B. Gupta, “A 135Mb/s DVB-S2

compliant codec based on 64800b LDPC and BCH codes,” in Proc. IEEE International Solid-State Circuits Conference,

San Francisco, CA, Feb. 2005, pp. 446–447.

[15] P. Urard, L. Paumier, V. Heinrich, N. Raina, and N. Chawla, “A 360mW 105Mb/s DVB-S2 compliant codec based on

64800b LDPC and BCH codes enabling satellite-transmission portable devices,” in Proc. IEEE International Solid-State

Circuits Conference, San Francisco, CA, Feb. 2008, pp. 310–311.
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Fig. 1. Representation of an LDPC code in (a) a parity-check matrix (H matrix), (b) a factor graph.
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Fig. 2. Message-passing decoding implementation showing (a) sum-product message-passing decoding, (b) the corresponding

one slice of a factor graph, (c) min-sum message-passing decoding.
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Fig. 5. Architectural mapping and transformation: (a) a simple structured H matrix, (b) the fully parallel architecture, (c) a

3VNG-1CNG parallel architecture.
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Fig. 8. Pipeline design of the 32VNG-1CNG decoder.
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Fig. 9. Two-iteration pipeline chart with pipeline stalls.
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Fig. 11. Steps of improvement evaluated on the 32VNG-1CNG architecture using synthesis, place and route results in the

worst-case corner: (a) area and performance improvement, (b) power and throughput improvement.
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Fig. 12. Power reduction steps with results from synthesis, place and route in the worst-case corner.

Fig. 13. Chip microphotograph.
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TABLE I

ARCHITECTURAL SELECTION BASED ON SYNTHESIS, PLACE AND ROUTE RESULTS IN THE WORST-CASE CORNER

Architecture VN CN Freq(MHz) Density AEF Wire length(m)

8VNG-1CNG 512 64 400 91.01% 1.331 20.343

16VNG-1CNG 1024 64 400 91.21% 1.471 24.614

32VNG-1CNG 2048 64 400 84.17% 1.465 30.598

64VNG-2CNG 4096 128 350 86.84% 1.738 65.504

TABLE II

DENSITY SELECTION BASED ON SYNTHESIS, PLACE AND ROUTE RESULTS IN THE WORST-CASE CORNER

Initial density Final Density Frequency(MHz) Wire length(m) Wire count(,000)

70% 74.43% 400 31.884 9,071

75% 79.73% 400 31.868 9,270

80% 84.17% 400 30.598 9,295

85% 90.48% 360 32.118 10,258

90% 96.29% 350 31.431 10,308

TABLE III

ERROR STATISTICS BASED ON CHIP MEASUREMENTS

SNR (dB)
Before post-processing After post-processing

Errors Average weight Errors Average weight

4.8 3396 8.72 95 30.66

4.9 4229 8.23 40 28.20

5.0 4553 8.08 18 20.22

5.1 5714 8.04 11 15.36

5.2 7038 8.01 7 13.43
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TABLE IV

CHIP FEATURES

Technology ST 65nm low-power CMOS

Core area 2.316 × 2.311 mm

Chip area 2.556 × 2.608 mm

Area utilization 80% initial, 84.5% final

Clock Frequency 100 MHz 700 MHz

Supply Voltage 0.7 V 1.2 V

Power Consumption 144 mW 2.80 W

Decoding Throughput1 6.67 Gb/s 47.7 Gb/s

Decoding Latency2 960 ns 137 ns

Energy Efficiency 21.5 pJ/bit 58.7 pJ/bit

1 At SNR = 5.5 dB with early termination.
2 Assumes an 8-iteration decoding limit for regular

decoding at a low SNR point. The worst latencies

are longer if the post-processing is accounted for.
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