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Abstract. We study thestrategicinteraction between a network manager whose
goal is to choose (as communication infrastructure) a dpgriree of a network
given as an undirected graph, and an attacker who is caphhteaoking a link
in the network. We model their interaction as a zero-sum gamaediscuss a par-
ticular set of Nash equilibria. More specifically, we showttthere always exists
a Nash equilibrium under which the attacker targetsitical set of links. A set
of links is calledcritical if it has maximum vulnerability, and theulnerability of

a set of links is defined as the minimum fraction of links thelses in common
with a spanning tree. Using simple examples, we discusstipertance of criti-
cal subsets in the design of networks that are aimed to betalainst attackers.
Finally, an algorithm is provided, to compute a critical setbof a given graph.
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1 Introduction

In this work, we aim to study thstrategicinteraction between a network manager
whose goal is to choose a spanning tree of the network as caiation infrastructure,
and an attacker who tries to disrupt the communication tyesttacking one link in the
network.

The network topology is given as a connected undirectedhgréipe formulation
of the problem extends naturally to the manager choosihgcannected component
and the attacker selectirig > k links to attack. For example, ¥ = 2, this problem
models the situation where the manager is choosing a prictarnynunication tree and
a backup tree in the presence of an attacker who can attack timan 2 links in the
network. The discussion in the present paper, howeverséxattention only on the
casek = k' = 1.

In general, each tree has a given cost which is the loss set@e byanager when one
of the edges of that tree is attacked. This cost (or a funatfat) goes to the attacker.
Also, it is conceivable that the attacker incurs some cosdttacking a link. The goal
of the network manager is to minimize the cost of attack wthiteattacker is trying to
maximize the net attack reward.



In a non-adversarial environment, choosing a minimum ceatsing tree (MST)
of the graph would be optimal for the network manager. Altdpnis for calculating the
MST have been studied extensively since the work of Kruska] §nd Prim [20].

In this paper, we will assume that every tree has equal dastalso assumed that
the cost of attacking any given link is zero for the attackéiese assumptions will be
relaxed in subsequent studies of the problem.

The communication networks community has spent a lot ofreffindying the re-
liability/robustness of networks. The interested readeeferred to [21] and [12] and
the references therein. Robustness has mostly been cetsidgainshon-strategic
phenomena (e.g. random failures). However, network digyogan also be due to ma-
licious attackers. The nature of the attack can be variednlavailability attack, the
attacker might be launching a denial of service (DoS) at@mtlsome node/link, or
simply jam a communication channel. Ircanfidentialityattack, the attacker could be
choosing a link and observe/analyze the traffic that it earrinintegrity attack could
also be launched, where the attacker will try to modify tledfic (or generate traffic)
for a target link/node.

These problems have received a lot of attention specialiiyerarea of mobile and
ad-hocnetworks [5], [1] and mostly in a non-strategic frameworkan environment
where the adversary is cognitive, most of the results foaride literature do not apply
any more. For example, in the graph connectivity problensered here, when the
attacker strategically chooses the edge to attack, it ismgdr obvious how the network
manager should choose a spanning tree. For example, if thememanager were to
always choose a specific MST, the attacker could computévif and attack one of
its links to disconnect the network.

To understand how the network manager should choose a spominponent as
well as how an attacker could break the communication, weaitheir interaction as
a game where:

— the manager’s strategy set is the set of spanning trees gfaipé;

— the attacker’s strategy set is the set of links;

— the goal of the manager is to minimize the average cost oihgedttacked while
the goal of the attacker is to maximize that cost.

We assume that the network topology is known to both playdrsiees have the same
cost, and there is no cost of attack. We would like to undadsthe structure of the (or
at least some) set of Nash equilibria of this one-shot, sero-game.

The organization of this paper is as follows. In the nextisactwe present the
model of the game considered in this paper. The notion atatisubset is discussed
in subsection 2.1, followed by illustrative examples insedtion 2.2. The main result
of the paper (the critical subset attack theorem) is preseimt subsection 2.3 and a
brief discussion of this result is provided in subsectioh 2 proof of the theorem is
provided in section 3. This proof requires the notionblotking pairs of polyhedrand
a characterization of thgpanning tree polyhedraA tutorial presenting those notions
is given in appendix A. Section 4 presents an algorithm topmam a critical subset
of a graph. The algorithm is essentially based on the thebpplymatroidswvhich we
discuss in section B. Concluding remarks and directionguure work are given in
section 5.



2 The Game

The network topology is given by a connected undirectedly€ap- (1, £) with |£] =
m links and|V| = n nodes. Let be the set of spanning trees, and\etlenote 7 |.

We consider the 2-player, zero-sum game where player 1 @hgonk manager)
chooses a spanning tree according to some distributidh tmminimize the probabil-
ity (which, for equal unit cost of trees, corresponds to thstcthat the spanning tree
is disrupted. Player 2 (the attacker) chooses a link tolatiacording to some distribu-
tion on& to maximize this probability. A tree gets “disconnectedthié attacked link
belongs to it. We aim to analyze the set of Nash equilibridnisf game.

More precisely, letd := {a € RY | 3", ar = 1} be the set of mixed strategies
of the network manager arigl:= {3 € R | > ..o B = 1} the set of mixed strategies
of the attacker.

The manager wants to minimize and the attacker wants to mizeit{«, 5) where

Cla,8) =YY arBl{eeT}. (1)

ecETeT

2.1 Critical Set

We first characterize some subsets of edges as being mostable to attack.

Definition 1 (Critical Set). For any nonempty subset of eddges_ &, define

i _ M(E)
M(E) = Inin |TNE| andd(E) := B (2)
We calld(E) thevulnerabilityof E. It is the minimum fraction of links the sgthas in

common with a spanning tree. A nonempty subbset edges is said to beritical if
19(E) =MmMaxrg'ce {ﬁ(E/)} . (3)

In other words, a subset of linksdsitical if it has maximunvulnerability. The vulnera-
bility of a graphG is defined as the vulnerability of its critical subset(s)damdenoted
HG).

ForeachFE C & we defineZp C 7 by:

TeTp<|TNE|=M(E). 4)
We will call anyT’ € 7 an E-minimal spanning tree

Our notion of graph vulnerability is related to a notion whitas previously been pro-

posed in the graph theory literature (see [13], [8], [3])wdwer, to the authors’s knowl-

edge it seems to have not received a lot of attention. We pdeftuss those references
in section 2.4.



2.2 Examples of Critical Sets

Let us illustrate the definitions with some examples, shawRig.1. For the network
in Fig.1(a), all spanning trees must go through the middille (called abridge), so that
J(F) = 1if E is the set with only that link. That set is critical and theaaker can
attack it and achieves the maximum cost of one.

In general, an edge that must be part of every spanning teediésl a bridge. Also,
it is not difficult to verify that the vulnerability of a subis&’ is equal to the maximum
value of 1 if and only ifE is only composed of bridges.

The graph in Fig.1(b) contains 8 nodes and 14 links. It hasmimémum cut set
composed of the links 6 and 8. F = {6, 8}, then any spanning tree contains at least
onelink in E. Thus,|T' N E| > 1 for any tree T. Furthermore, there exigtsuch that
TNE = {6}. Thus, M(E) = 1, giving a vulnerability of}(E) = 1/2. This is the
maximum vulnerability of this graph (verification is left as exercise for the interested
reader), which implies thal = {6, 8} is a critical subset. If we consider the set of all
links E = &, then|T'N E| = n — 1 = 7 for any treeT because any spanning tree
containsn — 1 links. This set is also critical becausér) = - = 1/2.

In general, there might be many critical subsets for a givaply. For instance, in
Fig.1(b), as shown abové&; = {1,2,3,4,5,6,7,8} is another critical subset. I =
{1,2,4}, choosingl’ = {3,6,7,8,9,13,14} givesT N E = (). Hence M (E) = 0.

The minimum cut set of a graph is not always critical. In F{g)If £ = {6, 8} then
J(F) = 1/2. However choosingz = {6,8,9,10,11, 12,13} gives¥(E) = 4/7 >
1/2. One can show that = {6,8,9,10,11, 12,13} is critical butE = {6, 8} is not.

(a) Graph with bridge (b) Network where minimum (c) Minimum cut setis not crit-
cut set is critical ical

Fig. 1. lllustrative network examples. Example 1(a) is a network ttontains a bridge (dotted
link). A bridge is always a critical set. The network in 1(ls)an example of graph where the
minimum cut set (dashed links) corresponds to a criticabsulExample 1(c) shows a graph
where the minimum cut set is not critical.

2.3 Critical Subset Attack

Next we give the structure of one particular class of Nasliliegia (NE) of the game
defined above. First, we let

ale) == Z arl{ee T}, fore e €. (5)
TeT



Theorem 1 (Critical Subset Attack Theorem).For each critical subset of edges,

there exists a NE under which the attacksiformly and exclusivelyargets the edges

of the critical subsefy and the network manager chooses only trees inside the set of
E-minimal spanning trees. Specifically, the strategy of titecher is

g.= T2 ©)

and the strategy of the managerds= A such that

ar > 0if T eT;
{ ai =0 otherwisi (7)
ale) ==Y arl{e €T} =9(E),Ve € E (8)
TeT
a(f) <I(E),Vf ¢ E. )

The corresponding optimal payoff is equaltgF).

A proof of the theorem is provided in section 3.

2.4 Comments
A certain number of remarks are to be made about the prevésustr

— The equilibrium strategy for the networkis such that each element of its support
(7g) meets the critical set in the minimum number of links. Farthore, the sum
(a(e)) of the probability assigned to the trees crossing eacheliakF is the same
for all links in the critical subset. This sum is equal to thénerability of the subset
E.

— As we have seen in the examples of the previous section, & d¢rapin general
many critical subsets. As a consequence, there might be K&ngeach with a
different o« and 3). There might even exist other Nash equilibria than the ones
isolated above. However, because the game is zero-surgudibeia have the same
payoff [24]. As a consequence, it is reasonable to use thenetogy "vulnerability
of a graph" ford(G), defined earlier as the vulnerability of any critical sulisfats
links.

— Theorem 1 implies that every critical subset supports somEhNquilibrium (for
instance the critical subset attack equilibrium).

— Knowing the critical subsets (the weakest points of the pétyvis important for
the network manager. The example in Fig.2 is an illustraf@onsider the network
in Fig.2(a) whose vulnerability is equal g) In all these figures, the critical subset
is represented by the dashed edges. Suppose that the netawoager has an extra
link to add to this network and would like to know the optimalyto add this link.

If the additional link is put in the position as in Fig.2(bhen the vulnerability of
the graph becomeo% < % (the graph is always less vulnerable with an additional
link). If instead the link is added as in Fig.2(c), the vulalgitity of the graph is

2 > £ leading to a less robust network.



a) b) C)

Fig. 2. Critical subset and topology design. Graphs (b) and (c)weoeifferent ways of adding a
link to graph (a) which have a vulnerability of 3/4. If it is@ed as in (b), then the vulnerability
is f Ifitis done as in (c), the vulnerability i%. > f which is leads to a less robust network.

— As was mentioned in section 2, the notion of graph vulneitgtibnsidered in this
paper has been previously (with some differences) definadéhated but slightly
different context. In [13], Gusfield discussed the conseqas of Tutte [23] and
Nash-Williams’ theorem [19] and was particularly inteegbin the maximum num-
ber (M) of edge-disjoint spanning trees of a graphTwo spanning trees d@F are
called disjoint if they have no edge in common.

Gusfield showed that

S T (10)

whereG g is the graph resulting from deleting the edge&ifrom G, andQ(G ;)

is the number of connected component&ig. E denotes the complement &fin

E.

The quantitys(G) = mingce (%) was then used as a measure ofithe
vulnerabilityof the graph, i.e. the smaller this is the more vulnerablgthgh is, in

the sense of Gusfield. In that paper, any minimizing set fisrgbantity was inter-
preted as set of edges whose removal fréiimaximizes the number of additional
components created, per edge removitk main question that was asked in that
paper was whether there exists a polynomial time algorithootputer (G).
Cunningham provided such an algorithm in [8]. Considerii§) as thestrength

of GG, he defined (in a non-game theoretic settingpptimal attackproblem as well

as anetwork reinforcemerroblem. The optimal attack problem consists of com-
puting the strength aff and determining a minimizing set. Cunningham considered
edge-weighted graphs, with edgéaving strengtls;; the strength of the graph is
defined ag(G) = mingce (% , which corresponds to the invulnerability
defined by Gusfield whegs; = 1 for all j € £. The network reinforcement prob-
lem of [8] is related to minimizing the cost of increasing gteengths of individual
edges in order to achieve a target strength for the graphddtails, see [8].

Using polymatroid theoryandnetwork flow analysisCunningham provided poly-
nomial time algorithmic solutions to both problems. In gmti4, we discuss this
algorithm in the context of the present paper.

A more recent paper by Catlet al.[3] generalizes Gusfield’s notion of invulnera-
bility by imposing bounds on the number of connected compn€ (G z).



Inthe present paper, the critical subsets, in our sense bd&en found to correspond
to Nash equilibria of a zero-sum game. It is to be noticed thatdefinition of
vulnerability verifiesd(G) = o(G) ™. To see that, one needs to show that,

Lemma 1. ForanyE C €&,
M(E) = Q(Gg) — 1. (11)

Proof. The ideas in the proof is as follows. Consider the differemrected com-
ponents of the graph when the edgegirare removed. Any spanning tree of the
original graph has to connected those components, anddhigection is done by
only using edges iE. Since there ar€)(G ;) connected components, one needs
exactlyQ (G z)-1 to connect them in a cycle-free way. A complete proof i€giin
[11].

Itis interesting to note that, despite the fact that thisrioét(G)) is more refined
than theedge connectivityi.e. size of minimum cut set), it has largely not been
used in the graph theory community. One reason suggested$fije@ is the com-
plexity of its computation. As was stated earlier, Cunniagt{8] has subsequently
provided a polynomial time algorithm to computéG) as well as a minimizing
subset.

Our result shows that, in a environment where the adversasggnitive,)(G) is
indeed an appropriate metric of graph vulnerability.

From the discussion above, we can, by using Cunninghandsitiigh, compute a
critical set of a given graph. We present the details of therithm in section 4.

3 Proof of the critical subset attack theorem

In this section we present a proof of the critical subsetcattaeorem. The proof is
done in two parts. In the first part (section 3.1), we show theatstrategy pair given in
Theorem 1 forms a pair of best responses to each other. Iretioag part of the proof
(section 3.2), we show that for any critical subset, thedeéad exists a probability
distributiona that satisfies conditions (7-9).

3.1 Best Responses
Let (o, 8) be a strategy pair. Observe that the attack cost is given by
Cla,f)=>_3 arBel{eeT}t="" Beale). (12)
ecETeT ecE

Let £ C £ be a critical subset and assume thegatisfies the conditions (7-9). Then,
any distributiong concentrated orE’ achieves the cost(FE). This is the maximum
possible cost achievable for the attacker. To see this robseat for anys,

Cla, B) =D Bra(f) < Bri(E) < I(E). (13)
f f



Now assume that is uniform on a critical sefl. Then the distributionx achieves
the cost}(E). This is the minimum possible cost. To see this, note thagfig o,

Cla, B) = ﬁ S Y arlf{eet} = ﬁ szaT|TmE| > ﬁ ZTjaTM(E) — 9(E),

ecE T
(14)
where the next-to-last inequality uses the fact ffiat E| > M(FE) forall T'.

3.2 Existence of the Equilibrium Distribution

The claim is that one can find € A that satisfies (7-9). To prove that fact, we formulate

an optimization problem and we show in Theorem 2 that thetisolus the desired.
Let A be the edge-tree incidence matrix witi f,T') = 1{f € T'} for f € £ and

T € 7. Thespanning tree polyhedroR is defined as the vector sum of the convex hull

of the columns of4 and the nonnegative orthaRt" (see appendix A.2, and references

[10], [7])- Itis known [4] that

P = {xe R |x(E(P)) > |P|-1, for all feasible partitiond®> = {V1, Va,...,V|p|}}.
(15)

In (15), P = {V1,Va,...,V|p|} is feasibleif eachV; induces a connected subgraph

G(V;) of G (see appendix A).P| is the size of the partition. The notatienE(P)) is

defined asx (£(P)) = > ;ce(p) zi» WhereE(P) is the set of all edges af having

endpoints in different members of the partition.

Theorem 2. Let E be a critical subset of edges. Let € R" be the solution of the
following problem:

Maximizel’'x
subjecttoAx < ¥(E)1,x > 0. (16)
Then
a)l’x* <1;
b) 1'x* > 1;

c) Ax*(e) = 9(E),Ve € E.
As a consequence,= x* satisfies (7)-(9).

Proof. a) Letw(f) = 1{f € E} for f € £. Note thatd'w > M(E)1, by definition
of M(E). Hence, for allk € R satisfying (16),

1'x < M(E) 'wAx < M(E) 'w9(E)1 =1, a7)

sincew’l = |E|.

b) The dual of the program (see [2]) is
Minimize ¥(E)y’1
subjecttod’y > 1,y > 0.



The constraints of the dual program define the following petjron
P={yeR7, stAy>1}. (18)

By results of linear programming (strong duality [2]), thedwe of the dual program is
identical to that of the original program. Now we would likeghow that the value of
the dual program is at leasti.e.9(E)y’1 > 1 forally € P.

An equivalent way of saying this is that:= ¥(F)1 belongs to the set

b(ﬁ):{zeR’f, s.tz-7521}, (19)

wherez - P defines the inner product afwith any vector irP.

According to standard terminology (see Fulkerson [10, @3] br Chopra [4]), this
set is called thélockerof the polyhedrorP. SinceA is defined as (the transpose of)
the incidence matrix of the spanning treBsin (18) is also the blocker of the spanning
tree polyhedrorP [4]. From the theory of blocking pairs of polyhedra (see ayfe
A), we have: ifB is a polyhedron an#l(B) its blocker, therb (b(B)) = B. (B andb(B)
are said to form a blocking pair of polyhedra.)

Thus, sinceP is the blocker ofP, b(P) = P. Now,y’y > 1forally € Pis
equivalent to saying that b(75) = P. From (15), this means

Y(EP) = |P[ -1 (20)

for all feasible partitions?, £(P) C &.
Now assume that this is not the caseni.€(P)) < |P| — 1 for someP. Then

3 %:% 3 1:%|5(p)|<|13|—1, (21)
i€E(P) i€E(P)

which implies that
M(E) P-1
—_— < = (22)
Bl |e(P)
This means tha€(P) is more vulnerable tha®. Indeed,|P| — 1 is the minimum
number of edges in common wii{ P) that a spanning tree @f has.
Now, since the value of the dual program is at lelgsind the value of the primal
program is at most, we can conclude that the value of the primal problem is one.
c) Note that,1’x* = 1 and (17) imply

w'Ax* = M(E). (23)

By (16), we havedx*(e) < 9(F) for all e € £. Thusw’ Ax* < M(E), but then by
(23) we also havelx*(e) = ¥(F) for all e € E. Finally, we see that it*(7") > 0 for
anyT ¢ Tg, we would havew’ Ax* > M(E), contradicting (23).



4 An Algorithm to Compute a Critical Subset

In this section, we present an algorithm to compute the valvibty of a graph)(G) =
maxgce {9(E)}, as well as a maximizing subset (i.e. a critical subset).dlgerithm
was first presented by Cunningham in [8]. For the sake of cetapkss, we discuss it
here, and adapt it to the context of this paper. A summaryestaps of the algorithm
is presented in section 4.1, and its details are discusssstiion 4.2.

The discussion of section 4.2 needs the notiommatroid andpolymatroid which we
present in appendix B.1.
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Fig. 3. An illustration of the 2-dimensional search algorithm taifthe vulnerability of a graph.
The dark (blue) region consists pfand g verifying p/q > 1. Sinced(G) < 1, those values
do not need to be tested. The light (blue) consist of valugsaifdg such thatf > o (here
B = H. 1 9(G) < £o, then, those values can be discarded from the test. The mamai
(uncolored) values are the only ones that need to be tested.

4.1 Summary of the Algorithm

Observing thaﬁ% takes values in a finite seb (< M(E) < [V — 1| and1 <
|E| < |£]), we propose &inary searchalgorithm to findd(G) (BinarySearch2D)This
requires aroracleto perform the tes#(G) < § forsomepandg, 1 <p <|V-1|and
1<qg<E
We show that such an oracle is equivalent to one that solvesimimation problem
on the subsets .
Solving this optimization problem will be further shown te the same as finding/a-
basisof some properly defined polymatraiel(those notions are presented in appendix
B.1). A simple, greedy algorithifCunninghamMinvill be used to find sucli-basis.
The greedy algorithm will successively visit the edges &f ginaph, and for each
edge, solve a minimization problem that is related to theding. This last minimization
can be solved by running a network flow algorithm on an appatgly defined graph.



4.2 Details of the Algorithm

In the process of computing the quantityG) = maxgce (%) we first notice
that, if there exists an oracle to test whettié&) < Z, then one will be able to compute

Y¥(G) using an efficient search algorithm. Indeed, the valugsafdq for which one
needs to test are in a finite range. We illustrate this 2-dgioeral search in Figure 3.
Details of the algorithm will be discussed later.

Related to the test(G) < Z, we define the following problem (that Cunningham
calls theoptimal attackproblem)

minimize<3|E| - M(E)) , (24)
q
where the minimization is carried out over all subsets ofesdg C £, andp andq are

given numbers. The next lemma shows an equivalence betestemgd(G) < § and
verifying whether the minimum in (24) is greater than or ddoaero.

Lemma 2. For fixed values op andq (definep := 5), we have
I(G) <p & 0<min(plE| - M(E)) . (25)

Proof. The proof of the lemma is as follows:

< — ) < < C
ﬁ(G)_p@Iélg§< ] >_p<:> ] <p, VECE

& 0<plE|-M(E), YV ECE
< 0 < min (p|E| - M(E)).

Now, we show how, by Lemma 1, we can rewrite the minimizatising a function
on subsets of the edges of the gr&ptMore precisely, we defing(-) such thatf (E) =
V| — Q(GE), whereQ(Gg) is the number connected components of the subgraph
Gg = (V, E), that only contains the edges i (in the terminology of Appendix B,
f () is the rank function of the graphic matroid associated vi}jh
By definition of f(-), f(E) = |V| — Q(G ), whereE, denotes the complement of set
the £. Using Lemma 1, we can writd1(E) = |[V| — 1 — f(E).

The minimization in (24) can now be written as

minimizegce ((p|E| + f(E)) — (V| - 1)). (26)
Thus, we can conclude that testing whethig#) < p is equivalent to testing

VI-1<min (plE + /(E)) - (27)

Since f(-) is the rank function of a matroid, it satisfies the hypothe$i$heorem 3
of appendix B. Using that theorem, the minimum in the RHS eaed at anP(f)-

basis of the vectorl € R'g‘, whereP(f) is thepolymatroidassociated wittf (-) (see



appendix B.1). Thus, any oracle that computeB(g)-basis for the polymatroid will
suffice to compute a minimizer of (27) (and the minimum). gsguch an oracle, we
can now implement the following search algorithm that cotepu(G), as well as a
critical set which is the minimizer provided by the algonithvhen it terminates.

The search algorithm (summarized in Table 1) keeps a setafidate valuesr
for p, and for eachy € Pr, arang€{gmin(p), - - -, |E|} of values ofq for which the test
in (27) will be carried out.

At each iteration, for somg € Pr andq € {gmin(p),-..,|E|}, a call is made to
the oracle; therPr andgq,,,;,, are updatedPr is defined as®, = {1,...,|V| — 1} at
initial time, and maintained as follows.

Since the vulnerability of a graph is always less than or Eguh the values op andg
for whichp/q > 1 can be ignored from the test. These values correspond taltre™
(blue) region above the first diagonal of Figure 3 (if the grdpes not contain a bridge,
one can eliminate the values in the first diagonal as welljs thplies that for each,
there is a minimum value fof, call it ¢....(p); i-e. whenp is considered in a given
iteration, only values of in the rang€{¢,n.» (p), - . ., |€|} need to be used for testing.

Also, if 9 < Z—g for some fixed(po, o), theny < Z for all § > 7;’—2. As such,
those values can be safely discarded from the set o? valules tested. In Figure 3,
that set is represented by the “light” (blue) region fgr= 4 andgy, = 7. It is the
set of numbers that are located in the 135 degrees range,tfrerfirst diagonal to
the horizontal axis (traveling counterclockwise). Aftermoving this set, the values of
gmin(p) Need to be updated for all> py. If qo is the first value of; (starting from|&|
going down) for which the test succeeds (i%G) < Z—“), thengin(po) = qo + 1,

0
and forp € {po+1,...,V — 1}, gmin(p) is obtained by adding 1 t@,,;,(p — 1). If
qmin(p) > |€|, thenp can be removed from the sBt- of candidate values far. If for
somep, the test fails for aly € {¢nin, - - -, |E|}, thenp can also be discarded frofv.
The algorithm stops when the test succeeds|@nd = 1.

For each value gp, the algorithm makes less th&fy calls to the oracle, and there
are at most)| possible values fop (this is the worst case). Thus, computing a critical
subset will take a polynomial time provided that Cunninglsaatgorithm is polyno-
mial. We will see that it is indeed the case.

5 Conclusion and future work

The paper studies Bconnectiorgame where a network manager is choosing a span-
ning tree of a graph as communication infrastructure, arattacker is trying to disrupt
the communication tree by attacking one link of the graphdieovered that for every
critical subset of edges (a subset of edges of maximum \vaihiléy) there is a Nash
equilibrium such that the attacker attacks uniformly ati@n over this subset of edges.
The vulnerability of a subset of linkg' is defined as the minimum fraction of links it
has in common with any spanning tree. More precisely, we ghaithere always ex-
ists a NE under which an attacker targets uniformly and eskoblly a critical subset

of links. The network manager chooses spanning trees tbhas ¢he critical set in the
minimum number of edges and such that the sum of the probebitif all trees going



Table 1. Left: Pseudocode of thBinarySearch2Dalgorithm to compute the vulnerability(G)
of a graph and a critical subset. The algorit@unninghamMiris discussed in Appendix B. The
updatemethod is presented in the right TabRight: Pseudocode of thdpdatemethod.

BinarySearch2D
Input: connected grapy = (V,€),V =n,E =m
Outputy)(G) of G, E C & critical Update
Input: Pr,p € Pr, q € {gmin, |E|}
1 begin Output: NewPr, gmin
2 Pr ={1,2,..., n-1}
3 qgmn={12,..., n- 1}
4 while |Pr|>0 1 begin
5 p <-- randon(Pr) 2 gmn(p) = g+l
6 for g=m downto qm n(p) 3 for j=p+1 to |n|-1
7 (E, minpg) = Cunni nghanM n((p/q)*1, G 4 gmn(j) = gmn(j-1)+1
8 if n-1 <= mnpq then 5 if gqmn(j)>m
9 (Pr,gmn) = update(Pr,p,q) 6 Pr =Pr - j
10 goto 4 7 end /1if
11 end //if 8 end /1 for
12 end /1 for 9 return Pr, gmn
13 Pr = Pr-p 10 end // begin
14 end [1while
15 return E, minpq
16 end /'l begin

through any link in the critical set is the same. Since theistein general, multiple
critical subsets, the NE of this game is typically not unige show, using a simple
example, the importance of the critical subsets in the desig robust network.

A polynomial time algorithm is presented, to compute theneuhbility of a graph
as well as a critical set. The algorithm was previously prnesgin the literature. We
discuss it and adapt it to the context of this paper.

A certain number of future directions are being explored ly &uthors. In the
present paper, results have been obtained by assumingttaot-cost for the attacker
and an equal cost for all spanning trees in the network. Euitivestigations have
shown that the notion of criticality of a set generalizeshie tase where the attacker
pays a certain cost to attack an edge. In this case, the d&finitvulnerability needs a
slight change to reflect the cost of attack.

Finally, in this paper, we only discuss theconnectiorgame in a graph. The case
where the network chooseskaconnecteccomponent (fork > 2) and the attacker
simultaneously attackisor more links will be the subject of subsequent publications
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A Blocking Pairs of Polyhedra and the Spanning Tree Polyhedsn

A.1 Blockers

Let N be a nonempty set that we will call tiggound setand let7 = {Ji,...,J,} be
a family of nonempty subsets of. A subset/, of NV is said to be &lockingset forJ
if |[JonJg| >0forallk e {1,...,p}. Theblockerof J is the family of all inclusion-
wise minimal blocking sets of . As an example consider the gragh= (V, £) and let
N = & the set of edges af. Then the sef of spanning trees aff forms a family of
subsets of. Any edge-cutset of the graph is blockifig The blocker of7 is the set of
all minimal cutsets of=.

In [6], [17], [18], the concept of blocker is defined as a magpon families of
subsets. More precisely:

Definition 2. Given a ground sedV, theblocker map)(-) is a function from the class
Jn of all families of subsets oN to itself which associates to each family its blocker

WJT)=min{J : JJCN, JNJ#0, VJeT}. (28)

It has been shown [9] that if is a family such that each element is not contained in an-
other element (e.g. family of spanning trees), then thekelpmap satisfies (b(J)) =
J . As a consequence (sintéb(7)) uniquely definesr); 7 andb(7) are said to form
ablocking pair.

Itis easy to see thatif = {J1, Ja,..., Ji.} isthe blockerot/’ = {Ji, J5,..., J,},
then|J; N Ji| >0V J; € J andforalli = 1,...,k. Thus, anyJ; € J is actually
blocking the family.7”’.

A.2 Characterization of the spanning tree family

We have seen above that the blocker of theZsef spanning trees is the set of minimum
cuts of the graph. Let be thetree-link incidence matrix of7. It characterizes the
spanning tree polyhedroR which is defined as the vector sum of the convex hull of
the rows ofM and the nonnegative orthant:

P = conv{x | x is arow of M} + R’ (29)

wherem = |£].

Next we give another characterizationf Recall that for a connected graph=
(V, £), aminimum cut partitions the node 3éinto two subset¥; and)%, and includes
all the edges having one end pointlih and the other one iW,. Furthermore, the
subgraphsi; = (V;, E(V)), i = 1,2 are connected. This notion can be generalized.
Consider a partitior? = (V1,..., Vs, ) of the nodes of7 such that each subgraph
Gi= Wi, EV:)), i = 1,..., kp is connected. Such partition is said tofeasible

The spanning tree polyhedron of the gra@his characterized by the following
proposition [4].



Proposition 1. The spanning tree polyhedron of the gra@ttorresponds to the set

P = {x € R | Z ze >k, — 1, V P feasible partition} ,
ec&(P)

where&(P) denotes the subset of edges that go between vertices imctlisiéments of
the partition P.

The blocking polyhedrorof P (corresponding to the minimal cuts) is given by (see
[101.[4], [7]) )
P={yeRy|y-P>1}.

In other words;P consists of all nonnegative-vectorsy such thaty - = > 1 for all
reP.
Let M be theK x m matrix whose rows correspond to the extreme pointB .of

Proposition 2. The polyhedrorP is given by

ﬁ:{yeRmMyzl}.

B Matroids, Polymatroids, and Network Flow

B.1 Matroids and Polymatroids

Let NV be a finite set, and let: 2V — N be a function from the family of subsets of
N to the set of non-negative integé¥s

Definition 3. M = (N, r) is called a matroid if it satisfies the following properties:

r.0: Forall J C N, r(J) < |J|,
rl: If J CJ CN,thenr(J") <r(J),
r2: If J,J" C N, thenr(JUJ ) +r(JNJ) <r(J)+r(J") (i.e.r(-) is submodular).

The subsets C N that verifyr(I) = |I| are called the independent sets of the matroid.
LetZ be the family of all independent sets. Sometime, the masroédlerred to by using
the notationM = (N,7)

An example of a matroid is the collection of cycle-free subsH# edges of a graph
G = (V,€) on the ground sef. It is called thegraphic matroidof the graph. Its rank
function is given by letting (F) be defined as the maximum size of a subset of edges in
E that does not contain a loop. It is known to be equal®) = |V| — Q(Gg), where
Q(GE) is the number of connected components of the subgéaph= (V, E). The
graphic matroid and its rank function will be very usefulliretrest of this appendix.
More details about matroids can be found in [25].
In section 4, we have seen that, to compute the vulnerabilisygraph, the search
algorithm needs an oracle that solves

min (yo(E)+ f(E)) , (30)



wherey, = 51 for p andq given by the search algorithm. Notice that(E) = §|E|
for any subset of edgds C £ of the graph. In this section of the appendix, we discuss
how such an oracle can be built. We start by defining the natf@polymatroid

Definition 4. A real-valued functiorf(-), defined on subsets 8f, is called apolyma-
troid function if it verifies

P.0: f(0) =0,

P.1: If J C J C N, thenf(J) < f(J) (i.e. f(-) is non-decreasing),

P2: If J,J' C N, thenf(JUJ )+ f(JNJ") < f(J)+ f(J') (i-e. f(-) is submodular) .
(-

Given a polymatroid functiorfi(-), the following polyhedron is called tiglymatroid
associated tg':

P(f) = {x e RN x() < £(J), ¥J C N} . (31)

Forany y € RN x e P(f)is called aP(f)-basis of y if x is a componentwise
maximal vector of the sdtx, x € P andx < y}.

The matroid rank function defined above is an example of patyond function.
The following (max-min) theorem relates the minimizing sets of (30) to the
P(f)-basis ofyq. The proof of the theorem can be found in [8].

Theorem 3. Let f(-) be a polymatroid function on subsets §t Then, for anyy €
RL{VI and anyP( f)-basisx of y, we have

x(N) =min (y(J)+ f(J), JC N) . (32)

From this theorem, we see that an oracle that compuigggbasis ofy, suffices for
the minimization in (30). Let's see how such an oracle canuik. b

The definition ofP( f)-basis implies a very simple method for findind4f )-basis
ofanyy € R'ﬁ”. Namely,
start withx = 0 and successively increase each componest & much as possible
while still satisfyingx <y, andx € P(f).

Implementing this simple and greedy algorithm might, hogremot be so simple.
In fact, it requires one to be able to compute, for a gixen P(f) and anyj € N, the
quantity

€maz(j) = max(e : x+¢el; € P(f)), (33)

where1l; is the incidence vector of subsgf}. €,,q42(j) is the maximum amount by
which componenj of x can be increased while keepirgn P(f).

Verifying that a vectok belongs to the polymatroid can be done using the following
idea: ifx ¢ P(f), then one can find a subsétfor whichx(.J) < f(J) is violated. If
x € P(f)andj € N, then anye such that > min;cn (f(J) —x(J), j € J) will
sendx + €1, out of P(f).

Also, if x is a P(f)-basis ofy, then for anyj € N, eitherx(j) = y(j) orx(J) =
f(J) for some subsef containing;. In fact, for allj € N

emaz(j) = min {y(j) — x(j), min (£(J) = x(J), j € J N)} . (39)



If the minimum is achieved ag(j) — x(j), thenx — X + €,,45(j)1,; will satisfy
x(j) = y(j). Otherwise, there exists sonde > j, such thatx(J;) = f(J;) (J; is
said to betight). Letting.J = Uj J;, andx being theP( f)-basis obtained after running
the greedy algorithm, it can be shown (see [8]) thal) = x(.J) (union of tight set is
tight). For such/, we have that

x(N) =x(J) +x(J) =y(J) + f(]) . (35)

This is because(J) = f(J) andifj ¢ J,x(j) = y(j).

Based on these observations, Cunningham [8] proposed diatbdérsion of the
greedy algorithm to computeR( f)-basis, as well as a minimizing subset for the min-
imization in (32). The algorithm is presented in Table 2.

It starts withx = 0 andJ = (). For eachj € N, the componenk(j) is in-
creased as much as possibtes— x + €,,44(7)1;. If the minimum in (34) is achieved
atminy (f(J') — x(J"), j € J'), then updatg « JU J’' whereJ' is a minimizer. At
the end of the algorithm/ is a tight set anc is maximal. Also, it satisfieg € P(f)
andx <y, withx(N) = y(J) + f(J).

To find a P(f)-basis, Cunningham’s algorithm perforf& computations of the
the minimization below:

mJin(f(J)—x(J),jngN) . (36)

Now, all that remains is to find an algorithm that computestir@mization in polyno-
mial time. This is the subject of the next section.

Table 2. Pseudocode of the oradunninghamMirthat solves the minimization (36).

Cunningham
Input: Polymatroid functiory, y € RLN‘
Output: minimum eps, minimizer

1 begin

2 x=0

3 J:={}

4 for j inN

5 eps :=mn(f(J)-x(J"): j inJd)

6 J'(j) := a mnimzer

7 if eps <= y(j)-x then J:=J U J (j)
8 else eps:= y(j)- x(j)

9 end [1if

10 x=x+eps*1(j)
11 end //for
12 end /1 begin




B.2 Network Flow

In the notation of the last two section$,below will be a ground set above), and
subsets of will be referred to using” (J and/ above).

LetG = (V, &) be a connected graph and J&t) the rank function of the graphic
matroid that is associated . \We have seen above thAtE) = |V| — Q(Gg). Let
P(f) be the polymatroid associated wifl{-). An equivalent description oP(f) is
given as follows (see [8]):

P(f) = {x e R x(y(B)) < |B| - 1forall B, 0 £ B C v} . @

wherevy(B) denotes the set of edges with both endBin
Recall that our goal is, for a givep to find a subsek, j € E C £ that minimizes
f(E) —x(E). This is equivalent to findind that minimize§ B| — 1 — x(y(B)), with
J €7(B).
To find the minimizing subset of nodeB, we define the following grapty’ for
a given polymatroid functiorf(-), x € P(f), and edgej € £. The vertices of’
areV U (r,s) for new verticesr ands. Eache € £ is an edge of’, having the
same ends and having capacﬁ;ce. There is an edge joining to s for eachv €
V, it has capacity 1. There is an edge joiningo v for eachv € V. It has ca-
pacity co if v is an end ofj, and otherwise it has capaci(d(v)). (Hered(B) =
{e € €, e has exactly one end iB C V}, 6(v) is shorthand fof({v}). This construc-
tion is illustrated in Figure 4(a). Its motivation is to ensthatj € v(B) as can be seen
next.
Now consider a cut it induced by the seB U {r}, wherej € B C V. Itis the set
of links that have one end iB U {r} and the other end in the complement®fJ {r}.
The capacity of such cut is (see an illustration in Figurdg)4(
(Bl + 3x (3(B) +x (+(B)) + 5x (5(B)) = |B| + (&) ~ x(1(B)) (38)
=[B] =1 =x(v(B)) + (x(£) +1).
(39)

The first term in the LHS of equation (38) corresponds to edgésy from nodes i3

to the sinks. There aréB| of them, each having capacity The next term corresponds
to edges going from a node i to a node in5. The last two terms correspond to edges
going from the root to nodes inB. For each such edde, u), the capacity is defined
as30({u}). Lete = (u,v) € §({u}). Then,ifv € B (i.e.e € §(B)), thenx(e) appears
only in the capacity ofr, u); implying the termix (6(B)). If, on the other hand; ¢ B
(i.e.e € v(B)), thenx(e) appears both in the capacity of, «), and in that of(r, v),
thus the ternx (v(B)).

Now, since a cut induced by a subset of edgewill have infinite capacity ifj ¢
~(B), a minimum cut inG’ will indeed have the fornB U {r} with j € B, hence,
minimizing |B| — 1 — x(y(B)). As a consequence, any network flow algorithm can
serve as an oracle for Cunningham'’s algorithm. Many polyiabimplementations of
network flow algorithms ([22], [14]) have been proposed sittte proof of the Max-
Flow Min-Cut theorem by Ford and Fulkerson [16] in 1962.
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(a) Constructing the grapfi’ from G for the network flow algorithm.
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Fig. 4. Constructing the grap&” for the network flow algorithm. Figure 4(a) shows the constru
tion of G’ from G. The edge under consideration in this examplg is 5. Examples in Figures
4(b) show the cut induced b U {r} for B C V. In the left figure,B = {a, b} does not contain

j = 5. The capacity of this cut is equal to infinity. In the right figuB = {a, ¢} which contains

edgej = 5 (the only edge). As can be seen in the figure, the capacityeofuhinduced by this
choice of B is2 + x(1) + x(2) + x(3) + x(4) which is finite.



