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Abstract. We study thestrategicinteraction between a network manager whose
goal is to choose (as communication infrastructure) a spanning tree of a network
given as an undirected graph, and an attacker who is capable of attacking a link
in the network. We model their interaction as a zero-sum gameand discuss a par-
ticular set of Nash equilibria. More specifically, we show that there always exists
a Nash equilibrium under which the attacker targets acritical set of links. A set
of links is calledcritical if it has maximum vulnerability, and thevulnerabilityof
a set of links is defined as the minimum fraction of links the set has in common
with a spanning tree. Using simple examples, we discuss the importance of criti-
cal subsets in the design of networks that are aimed to be robust against attackers.
Finally, an algorithm is provided, to compute a critical subset of a given graph.
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1 Introduction

In this work, we aim to study thestrategic interaction between a network manager
whose goal is to choose a spanning tree of the network as communication infrastructure,
and an attacker who tries to disrupt the communication tree by attacking one link in the
network.

The network topology is given as a connected undirected graph. The formulation
of the problem extends naturally to the manager choosing ak-connected component
and the attacker selectingk′ ≥ k links to attack. For example, ifk = 2, this problem
models the situation where the manager is choosing a primarycommunication tree and
a backup tree in the presence of an attacker who can attack more than 2 links in the
network. The discussion in the present paper, however, focuses attention only on the
casek = k′ = 1.

In general, each tree has a given cost which is the loss seen bythe manager when one
of the edges of that tree is attacked. This cost (or a functionof it) goes to the attacker.
Also, it is conceivable that the attacker incurs some cost byattacking a link. The goal
of the network manager is to minimize the cost of attack whilethe attacker is trying to
maximize the net attack reward.



In a non-adversarial environment, choosing a minimum cost spanning tree (MST)
of the graph would be optimal for the network manager. Algorithms for calculating the
MST have been studied extensively since the work of Kruskal [15] and Prim [20].

In this paper, we will assume that every tree has equal cost. It is also assumed that
the cost of attacking any given link is zero for the attacker.These assumptions will be
relaxed in subsequent studies of the problem.

The communication networks community has spent a lot of effort studying the re-
liability/robustness of networks. The interested reader is referred to [21] and [12] and
the references therein. Robustness has mostly been considered againstnon-strategic
phenomena (e.g. random failures). However, network disruption can also be due to ma-
licious attackers. The nature of the attack can be varied. Inan availability attack, the
attacker might be launching a denial of service (DoS) attackon some node/link, or
simply jam a communication channel. In aconfidentialityattack, the attacker could be
choosing a link and observe/analyze the traffic that it carries. Anintegrity attack could
also be launched, where the attacker will try to modify the traffic (or generate traffic)
for a target link/node.

These problems have received a lot of attention specially inthe area of mobile and
ad-hocnetworks [5], [1] and mostly in a non-strategic framework. In an environment
where the adversary is cognitive, most of the results found in the literature do not apply
any more. For example, in the graph connectivity problem considered here, when the
attacker strategically chooses the edge to attack, it is no longer obvious how the network
manager should choose a spanning tree. For example, if the network manager were to
always choose a specific MST, the attacker could compute thisMST and attack one of
its links to disconnect the network.

To understand how the network manager should choose a spanning component as
well as how an attacker could break the communication, we model their interaction as
a game where:

– the manager’s strategy set is the set of spanning trees of thegraph;
– the attacker’s strategy set is the set of links;
– the goal of the manager is to minimize the average cost of getting attacked while

the goal of the attacker is to maximize that cost.

We assume that the network topology is known to both players.All trees have the same
cost, and there is no cost of attack. We would like to understand the structure of the (or
at least some) set of Nash equilibria of this one-shot, zero-sum game.

The organization of this paper is as follows. In the next section, we present the
model of the game considered in this paper. The notion of critical subset is discussed
in subsection 2.1, followed by illustrative examples in subsection 2.2. The main result
of the paper (the critical subset attack theorem) is presented in subsection 2.3 and a
brief discussion of this result is provided in subsection 2.4. A proof of the theorem is
provided in section 3. This proof requires the notions ofblocking pairs of polyhedraand
a characterization of thespanning tree polyhedra. A tutorial presenting those notions
is given in appendix A. Section 4 presents an algorithm to compute a critical subset
of a graph. The algorithm is essentially based on the theory of polymatroidswhich we
discuss in section B. Concluding remarks and directions forfuture work are given in
section 5.



2 The Game

The network topology is given by a connected undirected graph G = (V , E) with |E| =
m links and|V| = n nodes. LetT be the set of spanning trees, and letN denote|T |.

We consider the 2-player, zero-sum game where player 1 (the network manager)
chooses a spanning tree according to some distribution onT to minimize the probabil-
ity (which, for equal unit cost of trees, corresponds to the cost) that the spanning tree
is disrupted. Player 2 (the attacker) chooses a link to attack according to some distribu-
tion onE to maximize this probability. A tree gets “disconnected” ifthe attacked link
belongs to it. We aim to analyze the set of Nash equilibria of this game.

More precisely, letA := {α ∈ ℜN
+ |

∑

T∈T αT = 1} be the set of mixed strategies
of the network manager andB := {β ∈ ℜm

+ |
∑

e∈E βe = 1} the set of mixed strategies
of the attacker.

The manager wants to minimize and the attacker wants to maximizeC(α, β) where

C(α, β) =
∑

e∈E

∑

T∈T

αT βe1{e ∈ T }. (1)

2.1 Critical Set

We first characterize some subsets of edges as being most vulnerable to attack.

Definition 1 (Critical Set). For any nonempty subset of edgesE ⊆ E , define

M(E) := min
T∈T

| T ∩ E | andϑ(E) :=
M(E)

|E|
. (2)

We callϑ(E) thevulnerabilityof E. It is the minimum fraction of links the setE has in
common with a spanning tree. A nonempty subsetE of edges is said to becritical if

ϑ(E) = maxE′⊆E {ϑ(E′)} . (3)

In other words, a subset of links iscritical if it has maximumvulnerability. The vulnera-
bility of a graphG is defined as the vulnerability of its critical subset(s), and is denoted
ϑ(G).

For eachE ⊆ E we defineTE ⊆ T by:

T ∈ TE ⇐⇒| T ∩ E |=M(E) . (4)

We will call anyT ∈ TE anE-minimal spanning tree.

Our notion of graph vulnerability is related to a notion which has previously been pro-
posed in the graph theory literature (see [13], [8], [3]). However, to the authors’s knowl-
edge it seems to have not received a lot of attention. We briefly discuss those references
in section 2.4.



2.2 Examples of Critical Sets

Let us illustrate the definitions with some examples, shown in Fig.1. For the network
in Fig.1(a), all spanning trees must go through the middle link (called abridge), so that
ϑ(E) = 1 if E is the set with only that link. That set is critical and the attacker can
attack it and achieves the maximum cost of one.

In general, an edge that must be part of every spanning tree iscalled a bridge. Also,
it is not difficult to verify that the vulnerability of a subset E is equal to the maximum
value of 1 if and only ifE is only composed of bridges.

The graph in Fig.1(b) contains 8 nodes and 14 links. It has oneminimum cut set
composed of the links 6 and 8. IfE = {6, 8}, then any spanning tree contains at least
one link inE. Thus,|T ∩ E| ≥ 1 for any tree T. Furthermore, there existsT such that
T ∩ E = {6}. Thus,M(E) = 1, giving a vulnerability ofϑ(E) = 1/2. This is the
maximum vulnerability of this graph (verification is left asan exercise for the interested
reader), which implies thatE = {6, 8} is a critical subset. If we consider the set of all
links E = E , then|T ∩ E| = n − 1 = 7 for any treeT because any spanning tree
containsn− 1 links. This set is also critical becauseϑ(E) = 7

14 = 1/2.
In general, there might be many critical subsets for a given graph. For instance, in

Fig.1(b), as shown above,E = {1, 2, 3, 4, 5, 6, 7, 8} is another critical subset. IfE =
{1, 2, 4}, choosingT = {3, 6, 7, 8, 9, 13, 14} givesT ∩ E = ∅. Hence,M(E) = 0.

The minimum cut set of a graph is not always critical. In Fig.1(c) if E = {6, 8} then
ϑ(E) = 1/2. However choosingE = {6, 8, 9, 10, 11, 12, 13} givesϑ(E) = 4/7 >
1/2. One can show thatE = {6, 8, 9, 10, 11, 12, 13} is critical butE = {6, 8} is not.

(a) Graph with bridge
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(b) Network where minimum
cut set is critical
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(c) Minimum cut set is not crit-
ical

Fig. 1. Illustrative network examples. Example 1(a) is a network that contains a bridge (dotted
link). A bridge is always a critical set. The network in 1(b) is an example of graph where the
minimum cut set (dashed links) corresponds to a critical subset. Example 1(c) shows a graph
where the minimum cut set is not critical.

2.3 Critical Subset Attack

Next we give the structure of one particular class of Nash equilibria (NE) of the game
defined above. First, we let

α(e) :=
∑

T∈T

αT 1{e ∈ T }, for e ∈ E . (5)



Theorem 1 (Critical Subset Attack Theorem).For each critical subset of edges,E,
there exists a NE under which the attackeruniformly and exclusivelytargets the edges
of the critical subsetE and the network manager chooses only trees inside the set of
E-minimal spanning trees. Specifically, the strategy of the attacker is

βe =
1e∈E

|E|
, (6)

and the strategy of the manager isα ∈ A such that
{

αT ≥ 0 if T ∈ TE

αT = 0 otherwise
(7)

α(e) :=
∑

T∈T

αT 1{e ∈ T } = ϑ(E), ∀e ∈ E (8)

α(f) ≤ ϑ(E), ∀f /∈ E. (9)

The corresponding optimal payoff is equal toϑ(E).

A proof of the theorem is provided in section 3.

2.4 Comments

A certain number of remarks are to be made about the previous result.

– The equilibrium strategy for the networkα is such that each element of its support
(TE) meets the critical set in the minimum number of links. Furthermore, the sum
(α(e)) of the probability assigned to the trees crossing each linke ∈ E is the same
for all links in the critical subset. This sum is equal to the vulnerability of the subset
E.

– As we have seen in the examples of the previous section, a graph has in general
many critical subsets. As a consequence, there might be manyNE (each with a
different α and β). There might even exist other Nash equilibria than the ones
isolated above. However, because the game is zero-sum, all equilibria have the same
payoff [24]. As a consequence, it is reasonable to use the terminology "vulnerability
of a graph" forϑ(G), defined earlier as the vulnerability of any critical subsetof its
links.

– Theorem 1 implies that every critical subset supports some Nash equilibrium (for
instance the critical subset attack equilibrium).

– Knowing the critical subsets (the weakest points of the network) is important for
the network manager. The example in Fig.2 is an illustration. Consider the network
in Fig.2(a) whose vulnerability is equal to34 . In all these figures, the critical subset
is represented by the dashed edges. Suppose that the networkmanager has an extra
link to add to this network and would like to know the optimal way to add this link.
If the additional link is put in the position as in Fig.2(b), then the vulnerability of
the graph becomes35 < 3

4 (the graph is always less vulnerable with an additional
link). If instead the link is added as in Fig.2(c), the vulnerability of the graph is
2
3 > 3

5 leading to a less robust network.
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Fig. 2.Critical subset and topology design. Graphs (b) and (c) are two different ways of adding a
link to graph (a) which have a vulnerability of 3/4. If it is added as in (b), then the vulnerability
is 3

5
. If it is done as in (c), the vulnerability is2

3
> 3

5
, which is leads to a less robust network.

– As was mentioned in section 2, the notion of graph vulnerability considered in this
paper has been previously (with some differences) defined ina related but slightly
different context. In [13], Gusfield discussed the consequences of Tutte [23] and
Nash-Williams’ theorem [19] and was particularly interested in the maximum num-
ber (M ) of edge-disjoint spanning trees of a graphG. Two spanning trees ofG are
called disjoint if they have no edge in common.
Gusfield showed that

M = min
E⊆E
⌊

|E|

Q(GĒ)− 1
⌋ , (10)

whereGĒ is the graph resulting from deleting the edges inE from G, andQ(GĒ)
is the number of connected components inGĒ . Ē denotes the complement ofE in
E .
The quantityσ(G) = minE⊆E

(

|E|
Q(GĒ)−1

)

was then used as a measure of thein-

vulnerabilityof the graph, i.e. the smaller this is the more vulnerable thegraph is, in
the sense of Gusfield. In that paper, any minimizing set for this quantity was inter-
preted asa set of edges whose removal fromG maximizes the number of additional
components created, per edge removed. The main question that was asked in that
paper was whether there exists a polynomial time algorithm to computeσ(G).
Cunningham provided such an algorithm in [8]. Consideringσ(G) as thestrength
of G, he defined (in a non-game theoretic setting) anoptimal attackproblem as well
as anetwork reinforcementproblem. The optimal attack problem consists of com-
puting the strength ofG and determining a minimizing set. Cunningham considered
edge-weighted graphs, with edgej having strengthsj ; the strength of the graph is

defined asσ(G) = minE⊆E

(
∑

j∈E
sj

Q(GĒ)−1

)

, which corresponds to the invulnerability

defined by Gusfield whensj = 1 for all j ∈ E . The network reinforcement prob-
lem of [8] is related to minimizing the cost of increasing thestrengths of individual
edges in order to achieve a target strength for the graph. Fordetails, see [8].
Usingpolymatroid theoryandnetwork flow analysis, Cunningham provided poly-
nomial time algorithmic solutions to both problems. In section 4, we discuss this
algorithm in the context of the present paper.
A more recent paper by Catlinet al. [3] generalizes Gusfield’s notion of invulnera-
bility by imposing bounds on the number of connected components,Q(GĒ).



In the present paper, the critical subsets, in our sense, have been found to correspond
to Nash equilibria of a zero-sum game. It is to be noticed thatour definition of
vulnerability verifiesϑ(G) = σ(G)−1. To see that, one needs to show that,

Lemma 1. For anyE ⊆ E ,

M(E) = Q(GĒ)− 1. (11)

Proof. The ideas in the proof is as follows. Consider the different connected com-
ponents of the graph when the edges inE are removed. Any spanning tree of the
original graph has to connected those components, and this connection is done by
only using edges inE. Since there areQ(GĒ) connected components, one needs
exactlyQ(GĒ)-1 to connect them in a cycle-free way. A complete proof is given in
[11].

It is interesting to note that, despite the fact that this metric (σ(G)) is more refined
than theedge connectivity(i.e. size of minimum cut set), it has largely not been
used in the graph theory community. One reason suggested by Gusfield is the com-
plexity of its computation. As was stated earlier, Cunningham [8] has subsequently
provided a polynomial time algorithm to computeσ(G) as well as a minimizing
subset.
Our result shows that, in a environment where the adversary is cognitive,ϑ(G) is
indeed an appropriate metric of graph vulnerability.
From the discussion above, we can, by using Cunningham’s algorithm, compute a
critical set of a given graph. We present the details of the algorithm in section 4.

3 Proof of the critical subset attack theorem

In this section we present a proof of the critical subset attack theorem. The proof is
done in two parts. In the first part (section 3.1), we show thatthe strategy pair given in
Theorem 1 forms a pair of best responses to each other. In the second part of the proof
(section 3.2), we show that for any critical subset, there indeed exists a probability
distributionα that satisfies conditions (7-9).

3.1 Best Responses

Let (α, β) be a strategy pair. Observe that the attack cost is given by

C(α, β) =
∑

e∈E

∑

T∈T

αT βe1{e ∈ T } =
∑

e∈E

βeα(e). (12)

Let E ⊆ E be a critical subset and assume thatα satisfies the conditions (7-9). Then,
any distributionβ concentrated onE achieves the costϑ(E). This is the maximum
possible cost achievable for the attacker. To see this, observe that for anyβ,

C(α, β) =
∑

f

βfα(f) ≤
∑

f

βfϑ(E) ≤ ϑ(E). (13)



Now assume thatβ is uniform on a critical setE. Then the distributionα achieves
the costϑ(E). This is the minimum possible cost. To see this, note that, for anyα,

C(α, β) =
1

|E|

∑

e∈E

∑

T

αT 1{e ∈ T } =
1

|E|

∑

T

αT |T∩E| ≥
1

|E|

∑

T

αTM(E) = ϑ(E),

(14)
where the next-to-last inequality uses the fact that|T ∩ E| ≥ M(E) for all T .

3.2 Existence of the Equilibrium Distribution

The claim is that one can findα ∈ A that satisfies (7-9). To prove that fact, we formulate
an optimization problem and we show in Theorem 2 that the solution is the desiredα.

Let A be the edge-tree incidence matrix withA(f, T ) = 1{f ∈ T } for f ∈ E and
T ∈ T . Thespanning tree polyhedronP is defined as the vector sum of the convex hull
of the columns ofA and the nonnegative orthantRm

+ (see appendix A.2, and references
[10], [7]). It is known [4] that

P = {x ∈ Rm
+ | x(E(P )) ≥ |P |−1, for all feasible partitionsP = {V1, V2, . . . , V|P |}}.

(15)
In (15), P = {V1, V2, . . . , V|P |} is feasibleif eachVi induces a connected subgraph
G(Vi) of G (see appendix A).|P | is the size of the partition. The notationx (E(P )) is
defined asx (E(P )) :=

∑

i∈E(P ) xi, whereE(P ) is the set of all edges ofG having
endpoints in different members of the partition.

Theorem 2. Let E be a critical subset of edges. Letx∗ ∈ RN be the solution of the
following problem:

Maximize1′x

subject toAx ≤ ϑ(E)1,x ≥ 0. (16)

Then
a) 1′x∗ ≤ 1;
b) 1′x∗ ≥ 1;
c) Ax∗(e) = ϑ(E), ∀e ∈ E.
As a consequence,α = x∗ satisfies (7)-(9).

Proof. a) Let w(f) = 1{f ∈ E} for f ∈ E . Note thatA′w ≥ M(E)1, by definition
ofM(E). Hence, for allx ∈ RN satisfying (16),

1′x ≤M(E)−1w′Ax ≤M(E)−1w′ϑ(E)1 = 1, (17)

sincew′1 = |E|.
b) The dual of the program (see [2]) is

Minimize ϑ(E)y′1

subject toA′y ≥ 1,y ≥ 0.



The constraints of the dual program define the following polyhedron

P̂ =
{

y ∈ Rm
+ , s.t A′y ≥ 1

}

. (18)

By results of linear programming (strong duality [2]), the value of the dual program is
identical to that of the original program. Now we would like to show that the value of
the dual program is at least1, i.e.ϑ(E)y′1 ≥ 1 for all y ∈ P̂ .

An equivalent way of saying this is thatγ := ϑ(E)1 belongs to the set

b(P̂) =
{

z ∈ Rm
+ , s.t z · P̂ ≥ 1

}

, (19)

wherez · P̂ defines the inner product ofz with any vector inP̂ .
According to standard terminology (see Fulkerson [10, pg. 171] or Chopra [4]), this

set is called theblockerof the polyhedron̂P . SinceA is defined as (the transpose of)
the incidence matrix of the spanning trees,P̂ in (18) is also the blocker of the spanning
tree polyhedronP [4]. From the theory of blocking pairs of polyhedra (see appendix
A), we have: ifB is a polyhedron andb(B) its blocker, thenb (b(B)) = B. (B andb(B)
are said to form a blocking pair of polyhedra.)

Thus, sinceP̂ is the blocker ofP , b(P̂) = P . Now, y′
γ ≥ 1 for all y ∈ P̂ is

equivalent to saying thatγ ∈ b(P̂) = P . From (15), this means

γ (E(P )) ≥ |P | − 1 (20)

for all feasible partitionsP , E(P ) ⊆ E .
Now assume that this is not the case, i.eγ (E(P )) < |P | − 1 for someP . Then

∑

i∈E(P )

γi =
M(E)

|E|

∑

i∈E(P )

1 =
M(E)

|E|
|E(P )| < |P | − 1, (21)

which implies that
M(E)

|E|
<

P − 1

|E(P )|
. (22)

This means thatE(P ) is more vulnerable thanE. Indeed,|P | − 1 is the minimum
number of edges in common withE(P ) that a spanning tree ofG has.

Now, since the value of the dual program is at least1, and the value of the primal
program is at most1, we can conclude that the value of the primal problem is one.

c) Note that,1′x∗ = 1 and (17) imply

w′Ax∗ =M(E). (23)

By (16), we haveAx∗(e) ≤ ϑ(E) for all e ∈ E . Thusw′Ax∗ ≤ M(E), but then by
(23) we also haveAx∗(e) = ϑ(E) for all e ∈ E. Finally, we see that ifx∗(T ) > 0 for
anyT /∈ TE , we would havew′Ax∗ >M(E), contradicting (23).



4 An Algorithm to Compute a Critical Subset

In this section, we present an algorithm to compute the vulnerability of a graphϑ(G) =
maxE⊆E {ϑ(E)}, as well as a maximizing subset (i.e. a critical subset). Thealgorithm
was first presented by Cunningham in [8]. For the sake of completeness, we discuss it
here, and adapt it to the context of this paper. A summary of the steps of the algorithm
is presented in section 4.1, and its details are discussed insection 4.2.
The discussion of section 4.2 needs the notions ofmatroidandpolymatroid, which we
present in appendix B.1.
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Fig. 3. An illustration of the 2-dimensional search algorithm to find the vulnerability of a graph.
The dark (blue) region consists ofp andq verifying p/q > 1. Sinceϑ(G) ≤ 1, those values
do not need to be tested. The light (blue) consist of values ofp andq such thatp

q
> p0

q0
(here

p0

q0
= 4

7
). If ϑ(G) < p0

q0
, then, those values can be discarded from the test. The remaining

(uncolored) values are the only ones that need to be tested.

4.1 Summary of the Algorithm

Observing thatM(E)
|E| takes values in a finite set (0 ≤ M(E) ≤ |V − 1| and1 ≤

|E| ≤ |E|), we propose abinary searchalgorithm to findϑ(G) (BinarySearch2D). This
requires anoracleto perform the testϑ(G) ≤ p

q
for somep andq, 1 ≤ p ≤ |V − 1| and

1 ≤ q ≤ |E|.
We show that such an oracle is equivalent to one that solves a minimization problem

on the subsets ofE .
Solving this optimization problem will be further shown to be the same as finding aP -
basisof some properly defined polymatroidP (those notions are presented in appendix
B.1). A simple, greedy algorithm(CunninghamMin)will be used to find suchP -basis.

The greedy algorithm will successively visit the edges of the graph, and for each
edge, solve a minimization problem that is related to the first one. This last minimization
can be solved by running a network flow algorithm on an appropriately defined graph.



4.2 Details of the Algorithm

In the process of computing the quantityϑ(G) = maxE⊆E

(

M(E)
|E|

)

, we first notice

that, if there exists an oracle to test whetherϑ(G) ≤ p

q
, then one will be able to compute

ϑ(G) using an efficient search algorithm. Indeed, the values ofp andq for which one
needs to test are in a finite range. We illustrate this 2-dimensional search in Figure 3.
Details of the algorithm will be discussed later.

Related to the testϑ(G) ≤ p
q
, we define the following problem (that Cunningham

calls theoptimal attackproblem)

minimize

(

p

q
|E| −M(E)

)

, (24)

where the minimization is carried out over all subsets of edgesE ⊆ E , andp andq are
given numbers. The next lemma shows an equivalence between testingϑ(G) ≤ p

q
and

verifying whether the minimum in (24) is greater than or equal to zero.

Lemma 2. For fixed values ofp andq (defineρ := p

q
), we have

ϑ(G) ≤ ρ ⇔ 0 ≤ min
E⊆E

(ρ|E| −M(E)) . (25)

Proof. The proof of the lemma is as follows:

ϑ(G) ≤ ρ⇔ max
E⊆E

(

M(E)

|E|

)

≤ ρ⇔
M(E)

|E|
≤ ρ, ∀ E ⊆ E

⇔ 0 ≤ ρ|E| −M(E), ∀ E ⊆ E

⇔ 0 ≤ min
E⊆E

(ρ|E| −M(E)) .

Now, we show how, by Lemma 1, we can rewrite the minimization using a function
on subsets of the edges of the graphG. More precisely, we definef(·) such thatf(E) =
|V| − Q(GE), whereQ(GE) is the number connected components of the subgraph
GE = (V , E), that only contains the edges inE (in the terminology of Appendix B,
f(·) is the rank function of the graphic matroid associated withG).
By definition off(·), f(Ē) = |V| −Q(GĒ), whereĒ, denotes the complement of set
theE. Using Lemma 1, we can writeM(E) = |V| − 1− f(Ē).

The minimization in (24) can now be written as

minimizeE⊆E

((

ρ|E|+ f(Ē)
)

− (|V| − 1)
)

. (26)

Thus, we can conclude that testing whetherϑ(G) ≤ ρ is equivalent to testing

|V| − 1 ≤ min
E⊆E

(

ρ|E|+ f(Ē)
)

. (27)

Sincef(·) is the rank function of a matroid, it satisfies the hypothesisof Theorem 3
of appendix B. Using that theorem, the minimum in the RHS is achieved at anP (f)-
basis of the vectorρ1 ∈ R

|E|
+ , whereP (f) is thepolymatroidassociated withf(·) (see



appendix B.1). Thus, any oracle that computes aP (f)-basis for the polymatroid will
suffice to compute a minimizer of (27) (and the minimum). Using such an oracle, we
can now implement the following search algorithm that computesϑ(G), as well as a
critical set which is the minimizer provided by the algorithm when it terminates.

The search algorithm (summarized in Table 1) keeps a set of candidate valuesPr
for p, and for eachp ∈ Pr, a range{qmin(p), . . . , |E|} of values ofq for which the test
in (27) will be carried out.

At each iteration, for somep ∈ Pr and q ∈ {qmin(p), . . . , |E|}, a call is made to
the oracle; thenPr andqmin are updated.Pr is defined asPr = {1, . . . , |V| − 1} at
initial time, and maintained as follows.
Since the vulnerability of a graph is always less than or equal to 1, the values ofp andq
for whichp/q > 1 can be ignored from the test. These values correspond to the “dark”
(blue) region above the first diagonal of Figure 3 (if the graph does not contain a bridge,
one can eliminate the values in the first diagonal as well). This implies that for eachp,
there is a minimum value forq, call it qmin(p); i.e. whenp is considered in a given
iteration, only values ofq in the range{qmin(p), . . . , |E|} need to be used for testing.

Also, if ϑ ≤ p0

q0

for some fixed(p0, q0), thenϑ ≤ p

q
for all p

q
> p0

q0

. As such,
those values can be safely discarded from the set of values tobe tested. In Figure 3,
that set is represented by the “light” (blue) region forp0 = 4 andq0 = 7. It is the
set of numbers that are located in the 135 degrees range, fromthe first diagonal to
the horizontal axis (traveling counterclockwise). After removing this set, the values of
qmin(p) need to be updated for allp ≥ p0. If q0 is the first value ofq (starting from|E|
going down) for which the test succeeds (i.e.ϑ(G) ≤ p0

q0

), thenqmin(p0) = q0 + 1,
and forp ∈ {p0 + 1, . . . ,V − 1}, qmin(p) is obtained by adding 1 toqmin(p − 1). If
qmin(p) > |E|, thenp can be removed from the setPr of candidate values forp. If for
somep, the test fails for allq ∈ {qmin, . . . , |E|}, thenp can also be discarded fromPr.
The algorithm stops when the test succeeds and|Pr| = 1.

For each value ofp, the algorithm makes less than|E| calls to the oracle, and there
are at most|V| possible values forp (this is the worst case). Thus, computing a critical
subset will take a polynomial time provided that Cunningham’s algorithm is polyno-
mial. We will see that it is indeed the case.

5 Conclusion and future work

The paper studies a1-connectiongame where a network manager is choosing a span-
ning tree of a graph as communication infrastructure, and anattacker is trying to disrupt
the communication tree by attacking one link of the graph. Wediscovered that for every
critical subset of edges (a subset of edges of maximum vulnerability) there is a Nash
equilibrium such that the attacker attacks uniformly at random over this subset of edges.
The vulnerability of a subset of linksE is defined as the minimum fraction of links it
has in common with any spanning tree. More precisely, we showthat there always ex-
ists a NE under which an attacker targets uniformly and exclusively a critical subset
of links. The network manager chooses spanning trees that cross the critical set in the
minimum number of edges and such that the sum of the probabilities of all trees going



Table 1. Left: Pseudocode of theBinarySearch2Dalgorithm to compute the vulnerabilityϑ(G)
of a graph and a critical subset. The algorithmCunninghamMinis discussed in Appendix B. The
updatemethod is presented in the right Table.Right: Pseudocode of theUpdatemethod.

BinarySearch2D
Input: connected graphG = (V, E), V = n, E = m

Output:ϑ(G) of G, E ⊆ E critical

1 begin
2 Pr = {1,2,...,n-1}
3 qmin = {1,2,...,n-1}
4 while |Pr|>0
5 p <-- random(Pr)
6 for q=m downto qmin(p)
7 (E,minpq) = CunninghamMin((p/q)*1,G)
8 if n-1 <= minpq then
9 (Pr,qmin) = update(Pr,p,q)
10 goto 4
11 end //if
12 end //for
13 Pr = Pr-p
14 end //while
15 return E, minpq
16 end // begin

Update
Input:Pr, p ∈ Pr, q ∈ {qmin, |E|}

Output: newPr, qmin

1 begin
2 qmin(p) = q+1
3 for j=p+1 to |n|-1
4 qmin(j) = qmin(j-1)+1
5 if qmin(j)>m
6 Pr = Pr - j
7 end //if
8 end //for
9 return Pr, qmin
10 end //begin

through any link in the critical set is the same. Since there exist, in general, multiple
critical subsets, the NE of this game is typically not unique. We show, using a simple
example, the importance of the critical subsets in the design of a robust network.

A polynomial time algorithm is presented, to compute the vulnerability of a graph
as well as a critical set. The algorithm was previously presented in the literature. We
discuss it and adapt it to the context of this paper.

A certain number of future directions are being explored by the authors. In the
present paper, results have been obtained by assuming zero-attack cost for the attacker
and an equal cost for all spanning trees in the network. Further investigations have
shown that the notion of criticality of a set generalizes to the case where the attacker
pays a certain cost to attack an edge. In this case, the definition of vulnerability needs a
slight change to reflect the cost of attack.

Finally, in this paper, we only discuss the1-connectiongame in a graph. The case
where the network chooses ak-connectedcomponent (fork ≥ 2) and the attacker
simultaneously attacksk or more links will be the subject of subsequent publications.
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A Blocking Pairs of Polyhedra and the Spanning Tree Polyhedron

A.1 Blockers

Let N be a nonempty set that we will call theground set, and letJ = {J1, . . . , Jp} be
a family of nonempty subsets ofN . A subsetJ0 of N is said to be ablockingset forJ
if |J0 ∩ Jk| > 0 for all k ∈ {1, . . . , p}. Theblockerof J is the family of all inclusion-
wise minimal blocking sets ofJ . As an example consider the graphG = (V , E) and let
N = E the set of edges ofG. Then the setT of spanning trees ofG forms a family of
subsets ofE . Any edge-cutset of the graph is blockingT . The blocker ofT is the set of
all minimal cutsets ofG.

In [6], [17], [18], the concept of blocker is defined as a mapping on families of
subsets. More precisely:

Definition 2. Given a ground setN , theblocker mapb(·) is a function from the class
JN of all families of subsets onN to itself which associates to each familyJ , its blocker

b(J ) = min{J ′ : J ′ ⊆ N, J ′ ∩ J 6= ∅, ∀ J ∈ J } . (28)

It has been shown [9] that ifJ is a family such that each element is not contained in an-
other element (e.g. family of spanning trees), then the blocker map satisfiesb (b(J )) =
J . As a consequence (sinceb (b(J )) uniquely definesJ ); J andb(J ) are said to form
a blocking pair.

It is easy to see that ifJ = {J1, J2, . . . , Jk} is the blocker ofJ ′ = {J ′
1, J

′
2, . . . , J

′
p},

then|Ji ∩ J ′
j | > 0 ∀ J ′

j ∈ J
′ and for alli = 1, . . . , k. Thus, anyJi ∈ J is actually

blocking the familyJ ′.

A.2 Characterization of the spanning tree family

We have seen above that the blocker of the setT of spanning trees is the set of minimum
cuts of the graph. LetM be thetree-link incidence matrix ofT . It characterizes the
spanning tree polyhedronP which is defined as the vector sum of the convex hull of
the rows ofM and the nonnegative orthant:

P = conv{x | x is a row ofM}+ Rm
+ (29)

wherem = |E|.
Next we give another characterization ofP . Recall that for a connected graphG =

(V , E), a minimum cut partitions the node setV into two subsetsV1 andV2, and includes
all the edges having one end point inV1 and the other one inV2. Furthermore, the
subgraphs,Gi = (Vi, E(Vi)), i = 1, 2 are connected. This notion can be generalized.
Consider a partitionP = (V1, . . . ,VkP

) of the nodes ofG such that each subgraph
Gi = (Vi, E(Vi)), i = 1, . . . , kP is connected. Such partition is said to befeasible.

The spanning tree polyhedron of the graphG is characterized by the following
proposition [4].



Proposition 1. The spanning tree polyhedron of the graphG corresponds to the set

P =







x ∈ Rm
+ |

∑

e∈E(P )

xe ≥ kp − 1, ∀ P feasible partition







,

whereE(P ) denotes the subset of edges that go between vertices in distinct elements of
the partitionP .

The blocking polyhedronof P (corresponding to the minimal cuts) is given by (see
[10],[4], [7])

P̂ =
{

y ∈ Rm
+ | y · P ≥ 1

}

.

In other words,P̂ consists of all nonnegativem-vectorsy such thaty · x ≥ 1 for all
x ∈ P .

Let M̂ be theK ×m matrix whose rows correspond to the extreme points ofP .

Proposition 2. The polyhedron̂P is given by

P̂ =
{

y ∈ Rm
+ | M̂y ≥ 1

}

.

B Matroids, Polymatroids, and Network Flow

B.1 Matroids and Polymatroids

Let N be a finite set, and letr : 2N → N be a function from the family of subsets of
N to the set of non-negative integersN.

Definition 3. M = (N, r) is called a matroid if it satisfies the following properties:

r.0: For all J ⊆ N , r(J) ≤ |J |,
r.1: If J ′ ⊆ J ⊆ N , thenr(J ′) ≤ r(J),
r.2: If J, J ′ ⊆ N , thenr(J ∪ J ′) + r(J ∩ J ′) ≤ r(J) + r(J ′) (i.e.r(·) is submodular).

The subsetsI ⊆ N that verifyr(I) = |I| are called the independent sets of the matroid.
LetI be the family of all independent sets. Sometime, the matroidis referred to by using
the notationM = (N, I)

An example of a matroid is the collection of cycle-free subsets of edges of a graph
G = (V , E) on the ground setE . It is called thegraphic matroidof the graph. Its rank
function is given by lettingr(E) be defined as the maximum size of a subset of edges in
E that does not contain a loop. It is known to be equal tor(E) = |V| −Q(GE), where
Q(GE) is the number of connected components of the subgraphGE = (V , E). The
graphic matroid and its rank function will be very useful in the rest of this appendix.

More details about matroids can be found in [25].
In section 4, we have seen that, to compute the vulnerabilityof a graph, the search

algorithm needs an oracle that solves

min
E⊆E

(

y0(E) + f(Ē)
)

, (30)



wherey0 = p

q
1 for p andq given by the search algorithm. Notice thaty0(E) = p

q
|E|

for any subset of edgesE ⊆ E of the graph. In this section of the appendix, we discuss
how such an oracle can be built. We start by defining the notionof a polymatroid.

Definition 4. A real-valued functionf(·), defined on subsets ofN , is called apolyma-
troid function if it verifies

P.0: f(∅) = 0,
P.1: If J ⊆ J ′ ⊆ N , thenf(J) ≤ f(J ′) (i.e.f(·) is non-decreasing),
P.2: If J, J ′ ⊆ N , thenf(J ∪J ′)+f(J∩J ′) ≤ f(J)+f(J ′) (i.e.f(·) is submodular) .

Given a polymatroid functionf(·), the following polyhedron is called thepolymatroid
associated tof :

P (f) =
{

x ∈ R
|N |
+ , x(J) ≤ f(J), ∀J ⊆ N

}

. (31)

For any y ∈ R
|N |
+ , x ∈ P (f) is called aP (f)-basis of y if x is a componentwise

maximal vector of the set{x, x ∈ P andx ≤ y}.

The matroid rank function defined above is an example of polymatroid function.
The following (max-min) theorem relates the minimizing subsets of (30) to the

P (f)-basis ofy0. The proof of the theorem can be found in [8].

Theorem 3. Let f(·) be a polymatroid function on subsets ofN . Then, for anyy ∈

R
|N |
+ and anyP (f)-basisx of y, we have

x(N) = min
(

y(J) + f(J̄), J ⊆ N
)

. (32)

From this theorem, we see that an oracle that computes aP (f)-basis ofy0 suffices for
the minimization in (30). Let’s see how such an oracle can be built.

The definition ofP (f)-basis implies a very simple method for finding aP (f)-basis

of anyy ∈ R
|N |
+ . Namely,

start withx = 0 and successively increase each component ofx as much as possible
while still satisfyingx ≤ y, andx ∈ P (f).

Implementing this simple and greedy algorithm might, however, not be so simple.
In fact, it requires one to be able to compute, for a givenx ∈ P (f) and anyj ∈ N , the
quantity

ǫmax(j) = max(ǫ : x + ǫ1j ∈ P (f)) , (33)

where1j is the incidence vector of subset{j}. ǫmax(j) is the maximum amount by
which componentj of x can be increased while keepingx in P (f).

Verifying that a vectorx belongs to the polymatroid can be done using the following
idea: if x /∈ P (f), then one can find a subsetJ for which x(J) ≤ f(J) is violated. If
x ∈ P (f) andj ∈ N , then anyǫ such thatǫ > minJ⊆N (f(J)− x(J), j ∈ J) will
sendx + ǫ1j out ofP (f).

Also, if x is aP (f)-basis ofy, then for anyj ∈ N , eitherx(j) = y(j) or x(J) =
f(J) for some subsetJ containingj. In fact, for allj ∈ N

ǫmax(j) = min
{

y(j) − x(j), min
J

(f(J)− x(J), j ∈ J ⊆ N)
}

. (34)



If the minimum is achieved aty(j) − x(j), thenx ← x + ǫmax(j)1j will satisfy
x(j) = y(j). Otherwise, there exists someJj ∋ j, such thatx(Jj) = f(Jj) (Jj is
said to betight). LettingJ̄ =

⋃

j Jj , andx being theP (f)-basis obtained after running
the greedy algorithm, it can be shown (see [8]) thatf(J̄) = x(J̄) (union of tight set is
tight). For suchJ̄ , we have that

x(N) = x(J) + x(J̄) = y(J) + f(J̄) . (35)

This is becausex(J̄) = f(J̄) and if j /∈ J̄ , x(j) = y(j).
Based on these observations, Cunningham [8] proposed a modified version of the

greedy algorithm to compute aP (f)-basis, as well as a minimizing subset for the min-
imization in (32). The algorithm is presented in Table 2.

It starts withx = 0 and J̄ = ∅. For eachj ∈ N , the componentx(j) is in-
creased as much as possible:x ← x + ǫmax(j)1j . If the minimum in (34) is achieved
atminJ′ (f(J ′)− x(J ′), j ∈ J ′), then updatēJ ← J̄ ∪J ′ whereJ ′ is a minimizer. At
the end of the algorithm,̄J is a tight set andx is maximal. Also, it satisfiesx ∈ P (f)
andx ≤ y, with x(N) = y(J) + f(J̄).

To find aP (f)-basis, Cunningham’s algorithm performs|E| computations of the
the minimization below:

min
J

(f(J)− x(J), j ∈ J ⊆ N) . (36)

Now, all that remains is to find an algorithm that computes theminimization in polyno-
mial time. This is the subject of the next section.

Table 2.Pseudocode of the oracleCunninghamMinthat solves the minimization (36).

Cunningham
Input: Polymatroid functionf , y ∈ R

|N|
+

Output: minimum eps, minimizerT

1 begin
2 x = 0
3 J := {}
4 for j in N
5 eps := min(f(J’)- x(J’): j in J’)
6 J’(j) := a minimizer
7 if eps <= y(j)- x then J:=J U J’(j)
8 else eps:= y(j)- x(j)
9 end //if
10 x= x+eps*1(j)
11 end //for
12 end //begin



B.2 Network Flow

In the notation of the last two sections,E below will be a ground set (N above), and
subsets ofE will be referred to usingE (J andI above).

Let G = (V , E) be a connected graph and letf(·) the rank function of the graphic
matroid that is associated toG. We have seen above thatf(E) = |V| − Q(GE). Let
P (f) be the polymatroid associated withf(·). An equivalent description ofP (f) is
given as follows (see [8]):

P (f) =
{

x ∈ R
|E|
+ , x(γ(B)) ≤ |B| − 1 for all B, ∅ 6= B ⊆ V

}

, (37)

whereγ(B) denotes the set of edges with both ends inB.
Recall that our goal is, for a givenj, to find a subsetE, j ∈ E ⊆ E that minimizes

f(E)− x(E). This is equivalent to findingB that minimizes|B| − 1− x(γ(B)), with
j ∈ γ(B).

To find the minimizing subset of nodes,B, we define the following graphG′ for
a given polymatroid functionf(·), x ∈ P (f), and edgej ∈ E . The vertices ofG′

areV ∪ (r, s) for new verticesr and s. Eache ∈ E is an edge ofG′, having the
same ends and having capacity1

2xe. There is an edge joiningv to s for eachv ∈
V , it has capacity 1. There is an edge joiningr to v for eachv ∈ V . It has ca-
pacity∞ if v is an end ofj, and otherwise it has capacityx(δ(v)). (Hereδ(B) =
{e ∈ E , e has exactly one end inB ⊆ V}, δ(v) is shorthand forδ({v}). This construc-
tion is illustrated in Figure 4(a). Its motivation is to ensure thatj ∈ γ(B) as can be seen
next.

Now consider a cut inG′ induced by the setB∪{r}, wherej ∈ B ⊆ V . It is the set
of links that have one end inB ∪ {r} and the other end in the complement ofB ∪ {r}.
The capacity of such cut is (see an illustration in Figures 4(b))

|B|+
1

2
x (δ(B)) + x

(

γ(B̄)
)

+
1

2
x (δ(B)) = |B|+ x(E) − x(γ(B)) (38)

= |B| − 1− x(γ(B)) + (x(E) + 1).
(39)

The first term in the LHS of equation (38) corresponds to edgesgoing from nodes inB
to the sinks. There are|B| of them, each having capacity1. The next term corresponds
to edges going from a node inB to a node inB̄. The last two terms correspond to edges
going from the rootr to nodes inB̄. For each such edge(r, u), the capacity is defined
as1

2δ({u}). Lete = (u, v) ∈ δ({u}). Then, ifv ∈ B (i.e.e ∈ δ(B)), thenx(e) appears
only in the capacity of(r, u); implying the term1

2x (δ(B)). If, on the other hand,v /∈ B
(i.e. e ∈ γ(B̄)), thenx(e) appears both in the capacity of(r, u), and in that of(r, v),
thus the termx

(

γ(B̄)
)

.
Now, since a cut induced by a subset of edgesB will have infinite capacity ifj /∈

γ(B), a minimum cut inG′ will indeed have the formB ∪ {r} with j ∈ B, hence,
minimizing |B| − 1 − x(γ(B)). As a consequence, any network flow algorithm can
serve as an oracle for Cunningham’s algorithm. Many polynomial implementations of
network flow algorithms ([22], [14]) have been proposed since the proof of the Max-
Flow Min-Cut theorem by Ford and Fulkerson [16] in 1962.
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(a) Constructing the graphG′ from G for the network flow algorithm.
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(b) Illustrating the cut induced byB ∪ {r}

Fig. 4.Constructing the graphG′ for the network flow algorithm. Figure 4(a) shows the construc-
tion of G′ from G. The edge under consideration in this example isj = 5. Examples in Figures
4(b) show the cut induced byB ∪{r} for B ⊆ V. In the left figure,B = {a, b} does not contain
j = 5. The capacity of this cut is equal to infinity. In the right figure,B = {a, c} which contains
edgej = 5 (the only edge). As can be seen in the figure, the capacity of the cut induced by this
choice of B is2 + x(1) + x(2) + x(3) + x(4) which is finite.


