
A Synchronization Technique for Array-based
LDPC Codes in Channels With Varying Sampling

Rate
Lara Dolecek

EECS Department
University of California

Berkeley, CA 94720, USA
Email: dolecek@eecs.berkeley.edu

Venkat Anantharam
EECS Department

University of California
Berkeley, CA 94720, USA

Email: ananth@eecs.berkeley.edu

Abstract— We describe a method for enhancing the syn-
chronization error correction properties of an array-based low
density parity check (LDPC) code. The proposed method uses
code expurgation: a linear subcode is retained for message
encoding and additional input bits are used for protection against
synchronization errors. The method is easy to implement and
incurs minimal loss in rate.

I. INTRODUCTION

Many communication systems use a substitution-error cor-
recting code to encode a binary input message x into a
coded sequence c = C(x). The modulated version of this
sequence, corrupted by additive noise, arrives at the receiver
as a waveform r(t),

r(t) =
∑

i

cih(t − iT) + n(t), (1)

where ci is the ith bit of c, h(t) is the modulating pulse, and
n(t) is the noise introduced in the channel.

Upon receiving r(t), the receiver samples it at the times
{kTs + τk}. The samples are fed into the decoder which pro-
duces the most likely input message. In traditional correlation
based receivers, for adequate noise rejection, it is essential that
the decoder be provided with samples taken at approximately
optimal time instances. As the operating requirements under
which timing recovery must be performed become more
stringent, such as lower signal to noise ratio (SNR) and higher
data rates, accurate synchronization becomes critical for the
full utilization of the available coding gains.

Several authors have studied the problem of accurate timing
recovery in such challenging environments. Proposed solutions
include building a more sophisticated timing recovery block
[11], a turbo-like approach to iteratively determine both sam-
pling points and encoded data [13], and multiple hypothesis
analysis of the sampling instances [9].

As an alternative to more complex and more expensive
timing recovery schemes, we propose to instead modify the
decoding procedure and the code itself to compensate for
imperfect synchronization. The rationale of this approach is
that, after a systematic analysis of the robustness of the

code to synchronization errors, one could use a subcode of
it that would be immune to both substitution as well as
synchronization errors. The incurred rate loss in the proposed
approach would need to be traded off against the increased
complexity and latency associated with the earlier mentioned
approaches. The challenge of the proposed approach lies in
understanding the synchronization error correction capabilities
of given codes of interest by determining high rate subcodes
with adequate immunity to synchronization errors.

To emphasize the issues that arise when adequate timing
recovery is missing, assume that the modulation scheme in (1)
is pulse-amplitude modulation (PAM), and more importantly,
that we are operating in the infinite SNR regime where the
effect of n(t) is negligible. As a consequence of the initial
frequency error, say when Ts < T , or of the accumulated
phase error in τk, some symbol may be sampled more than
once (effectively repeated in the infinite SNR regime)1.

A codeword c can thus give rise to a whole set of received
sampled versions of r(t). We will assume that the number
of samples is known, so that codewords can be analyzed
in isolation. Thus, for instance, if there is one repetition,
c can give rise to the set R1(c) of all strings obtained
by applying a repetition to c. When two distinct sequences
c1 and c2 result in the same sampled sequence, it is no
longer possible to uniquely determine the codeword or its
pre-image x from the received sequence, even in the noise-
free environment. We then say that the code C(n, k) suffers
from an identification problem. We also say that the pair of
distinct codewords c1 and c2 suffers from an identification
problem. For the one repetition case, for instance, this occurs
when R1(c1)

⋂
R1(c2) is nonempty.

Several authors have studied codes immune to a deletion or
an insertion of a bit. For example, the so-called Varshamov-
Tenengolts code proposed in [16] and popularized by Leven-
shtein in [10] has been further studied in [14]. A related con-
struction has been proposed in [8]. While providing immunity

1The case Ts > T that may also be of interest is not considered here. See
[5] for related work.

ISIT 2006, Seattle, USA, July 9 ­ 14, 2006

20571­4244­0504­1/06/$20.00 ©2006 IEEE

to the deletion or insertion of a bit, such constructions do not
generally guarantee other desirable properties over a channel
that introduces substitution errors, such as linearity, good
minimum Hamming distance, and efficient encoding/decoding
algorithms. Concatenated codes that correct synchronization
and substitution errors have been proposed in [2] and [3], but
suffer from a significant loss in rate.

In this paper we first present a brief overview of the array-
based LDPC codes and discuss their identification properties.
In Section III we propose a general technique for constructing
collections of binary strings immune to multiple repetitions.
Having established several useful ancillary results in Section
IV, we then describe in Section V how the array-based LDPC
code can be modified to eliminate the identification problem
for the single repetition model. A decoding algorithm appro-
priate for channels with a single repetition and substitution
errors is developed in Section VI.

II. ARRAY-BASED LDPC CODES

Array based LDPC codes are regular LDPC codes parame-
terized by integers j and p, where 1 ≤ j ≤ p, and p is an odd
prime, having the parity check matrix Hp,j given by ([12])

Hp,j =

�
������

I I I . . . I
I σ σ2 . . . σp−1

I σ2 σ4 . . . σ2(p−1)

...
...

... . . .
...

I σj−1 σ(j−1)2 . . . σ(j−1)(p−1)

�
������

(2)

where σ denotes a p× p permutation matrix circularly shifted
by 1 position, i.e.

σ =

�
�����

0 0 . . . 0 1
1 0 . . . 0 0
0 1 . . . 0 0
...

... . . .
...

...
0 0 . . . 1 0

�
�����

. (3)

We let Cp,j denote the linear code with the parity check matrix
given in (2). Note that Hp,j is of rank pj − j + 1.

Array-based LDPC codes have good performance [7] and
low encoding complexity [12]. They have been proposed for
a variety of applications, including digital subscriber lines [6]
and magnetic recording applications [15]. These codes permit
efficient parallel decoding. However, as explained below, they
suffer from an identification problem.

Lemma 1: Under the single repetition model, there are at
least 2p−2 − 1 identification problem causing codeword pairs
in Cp,j for 1 < j < p.

Proof : Let c1 denote [a2a3...ap−2ap−1apa1] and c2 denote
[a3a4...ap−1apa1a2], where ai (ai) denotes a string of length
p bits with a single 1 (0) in the ith position and 0’s (1’s)
everywhere else.

We see that c1 and c2 can both give rise to the same string
after one repetition, namely [a3a4...ap−1apa1a20] (same as
[0a2a3...ap−2ap−1apa1]).

We now prove that c1, c2 are in fact codewords of Cp,p−1.
Let c1

〈kp〉 denote the string obtained by cyclically shifting
c1 to the right by kp positions. Since Cp,j is quasi-cyclic

[12], it suffices to verify that c1
〈2p〉=[apa1a2a3...ap−2ap−1]

and c2
〈2p〉=[a1a2a3a4...ap−1ap] satisfy c1

〈2p〉HT
p,p−1 = 0 and

c2
〈2p〉HT

p,p−1 = 0.
It is easily seen that c1

〈2p〉[II...I]T = 0. Now consider a
row-wise submatrix [Iσlσ2l . . . σl(p−1)] of Hp,p−1, for some
l, 1 ≤ l ≤ p − 2. Write c1

〈2p〉[Iσlσ2l . . . σl(p−1)]T as ap +∑p−1
i=1 ai[σil]T = ap +

∑p−1
i=1 a[i+il]p , where [x]p indicates x

mod p. Since 1 ≤ i ≤ p − 1 and 1 ≤ l ≤ p − 2, (i + il)
mod p �= 0, and no term in the summation is ap. In addition,
all terms in the summation are distinct, as otherwise there
would exist i, i′, i′ < i such that (i − i′)(l + 1) ≡ 0 mod p,
which is impossible for p prime, i, i′ ≤ p − 1 and l + 1 ≤
p − 1. Therefore, c1

〈2p〉[Iσlσ2l . . . σ(p−1)l]T = 0. The proof
for c2

〈2p〉HT
p,p−1 = 0 is analogous.

Provided that both c1
〈kp〉 and c2

〈kp〉 have the same starting
and ending bits, they too suffer from the identification problem
in the single repetition model. This occurs as long as k is
not congruent to 1 or to 2 mod p. Let B1 (B2) be the set
of codewords obtained by cyclically shifting c1 (c2) by kp
positions for k ranging from 3 to p. One can directly check
that the pair comprised of any nontrivial linear combination
of elements in B1 and the same linear combination of their
counterparts in B2 also suffers from the identification problem.

Since, by construction, Cp,j ⊇ Cp,j+1, in each Cp,j there
are therefore at least 2p−2 − 1 pairs of codewords suffering
from the identification problem.

III. CONSTRUCTION OF A MULTIPLE REPETITIONS

CORRECTING SET

For a binary string s, let Rt(s) denote the set of all strings
obtained by applying t repetitions to s. We call a collection
S of strings t-repetitions correcting if the sets Rt(s1) and
Rt(s2) are disjoint for all distinct elements s1, s2 of S. In this
section we describe a method for constructing a t-repetitions
correcting collection of strings, building on the t = 1 case
[10], [14]. Given a code, this can in principle be used to
develop a subcode that does not suffer from the identification
problem for t repetitions, along the lines developed for t = 1
in Sections V and VI.

Let us first introduce a useful transformation in which we
express the number of runs of a string in terms of the weight
of a string in the transformed domain. For a string c of length
n, let the string c̃ of length n − 1 be defined as cTn, where
Tn is a n × (n − 1) matrix satisfying

Tn(i, j) =
{

1, if i = j, j + 1
0, else.

(4)

If c has r runs, then c̃ has weight r− 1, and vice versa. Both
c and its complement c result in the same c̃.

If C is a linear code of length n with a generator matrix G,
its image under Tn is a linear code generated by G̃ = GTn.
If the all-ones is not a codeword in C, then G̃ is full rank.

A repetition in c corresponds to an insertion of a zero in its
counterpart c̃. Therefore, to construct a collection of strings
that is t = 1 repetition correcting, it suffices to construct a

ISIT 2006, Seattle, USA, July 9 ­ 14, 2006

2058

collection of strings that is single insertion of a zero correcting
in the transformed domain.

For w ≥ 1, consider the set S(m,w, a, r) defined as:

S(m,w, a, r) = { s = (s1, s2, ...sm) ∈ {0, 1}m :∑m
i=1 si = w,

∑m
i=1 isi ≡ a mod r}.

(5)
The set S(m, 0, 0, r) contains just the all zeros
string by convention. Let a0 = 0, and let
S (m, (a1, r1), (a2, r2), ..., (am, rm)) be defined as

S (m, (a1, r1), (a2, r2), ..., (am, rm)) =
m⋃

l=0

S(m, l, al, rl).

(6)
Lemma 2: Provided that rl > l ∀l ∈ [0,m], the set

S (m, (a1, r1) , (a2, r2), ..., (am, rm)) is single insertion of a
zero correcting.

Proof : If each set in the disjoint union in (6) is single
insertion of a zero correcting, so is their (disjoint) union.
Consider x ∈ S(m, l, al, rl) for rl > l. Following the analysis
in [10], [14], suppose the insertion of a zero occurs in the
Lth position (which is unknown). Let x′ denote the resulting
string. Compute a′ ≡ ∑m

i=1 ix′
i mod rl;

a′ ≡ ∑m
i=1 ix′

i mod rl

≡
(∑L−1

i=1 ixi +
∑m

i=L(i + 1)xi

)
mod rl

≡ (al + R) mod rl,

(7)

where R denotes the number of ones to the right of the
inserted 0. Since R ≤ l < rl, the offset R mod rl can be
uniquely determined from al and a′ mod rl, and the string x
is recovered by deleting a zero immediately preceding the Rth

1 in x′ counting from the right. �
The construction given in (5) and (6) can be generalized for

the correction of multiple repetitions as follows:
Let w denote the weight of s, let bi+1 = bi+1(s), 1 ≤ i ≤ w

be the size of the run of zeros immediately following the ith

1 in s, and let b1 = b1(s) be the size of the run of zeros
preceding the leftmost 1. If the ith 1 is immediately followed
by another 1, bi+1 = 0, and if the leftmost bit in s is 1, b1 = 0.
Moreover, if s consists only of zeros, b1 = length of s. We
call bi the size of the ith bin of zeros of s.

Let a = (a1, a2, ..., at) for t ≥ 1, and consider the set
Ŝ(m,w,a, p) for w ≥ 1 defined as

Ŝ(m,w,a, p) = { s = (s1, s2, ...sm) ∈ {0, 1}m :∑m
i=1 si = w,∑w+1
i=1 ibi ≡ a1 mod p,∑w+1
i=1 i2bi ≡ a2 mod p,

...∑w+1
i=1 itbi ≡ at mod p}.

(8)

The set Ŝ(m, 0,0, p) contains just the all-zeros
string by convention. Let a0 = 0 and let
Ŝ (m, (a1, p1), (a2, p2), ..., (am, pm)) be defined as

Ŝ (m, (a1, p1), (a2, p2), ..., (am, pm)) =
m⋃

l=0

Ŝ(m, l,al, pl).

(9)

Lemma 3: If each pl is prime and pl > max(t, l), the set
Ŝ (m, (a1, p1), (a2, p2), ..., (am, pm)) is t-insertions of zeros
correcting.

Proof : It suffices to show that each set Ŝ(m, l,al, pl) is
t-insertions of zeros correcting. Consider x ∈ Ŝ(m, l,al, pl).
After experiencing t insertions of zeros, it becomes string x′.
We now show that x is always uniquely determined from x′.

Let i1 ≤ i2 ≤ ... ≤ it be the (unknown) indices of the
bins of zeros that have experienced insertions. For each j,
1 ≤ j ≤ t, compute a′

j ≡ ∑w+1
i=1 ijb′i mod pl, where b′i is the

size of the ith bin of zeros of x′,

a′
j ≡ ∑w+1

i=1 ijb′i mod pl

≡ aj + (ij1 + ij2 + ... + ijt) mod pl,
(10)

where aj is the jth entry in the residue vector al (to lighten
the notation the subscript l in aj is omitted).

By collecting the resulting expressions over all j, and setting
Rj ≡ a′

j − aj mod pl, we arrive at

Et =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

R1 ≡ i1 + i2 + ... + it mod pl

R2 ≡ i21 + i22 + ... + i2t mod pl

...
Rk ≡ it1 + it2 + ... + itt mod pl.

(11)

The terms on the right hand side of the congruency constraints
are known as power sums in t variables. Let Λk denote the
kth elementary symmetric function of {i1, i2, ..., it} mod pl,

Λk ≡
∑

v1<v2<...<vk

iv1iv2 · · · ivk
mod pl. (12)

Using Newton’s identities over GF (pl) which relate power
sums to symmetric functions of the same variable set, and are
of the type

Rk−Λ1Rk−1+Λ2Rk−2−...+(−1)k−1Λk−1R1+(−1)kkΛk = 0,
(13)

for k ≤ t, we can obtain an equivalent system of t equations:

Ẽt =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

d1 ≡ ∑t
j=1 ij mod pl

d2 ≡ ∑
j<k ijik mod pl

...
dt ≡

∏t
j=1 ij mod pl,

(14)

where each residue dk is computed recursively from
{d1, ..., dk−1} and {R1, R2, ..., Rk}. This may be done be-
cause, in each kth equation of the t equations of type (13) we
use, the coefficient of Λk is nonzero.

Consider the expression:
t∏

j=1

(x − ij) ≡ 0 mod pl, (15)

and expand it into the form
xt + ct−1x

t−1 + ... + c1x + c0 ≡ 0 mod pl. (16)

Since (15) equals (16), by comparison with (14) we see that
dk ≡ (−1)kct−k mod pl. We may then solve for the roots of
(16) to get the desired set of indices {i1, i2, ..., it}. Thus x is
always uniquely recovered from x′. �

ISIT 2006, Seattle, USA, July 9 ­ 14, 2006

2059

One can check that for t = 1, pl > l > 0 and pl prime,
S(m, l, al, pl) = Ŝ(m, l, d − al, pl), where d = (l + 1)(2m −
l)/2.

IV. AUXILIARY RESULTS

Due to space constraints we state the results without proof.
For the omitted proofs please refer to [4].

Let P be the set of binary strings of length n = p2 defined
as P = {s : s = 0(p−t)p1tp or s = 1tp0(p−t)p} where p is
an odd prime, t is an even integer, 1 ≤ t ≤ p − 1, and the
notation 0k1l denotes a binary string comprised of a run of k
zeros followed by a run of l ones.

Lemma 4: The set P is a p− 1-dimensional set of linearly
independent binary strings.

Lemma 5: For all s ∈ P , sHT
p,j = 0, for Hp,j given in (2)

and j ≤ p.
For j < p, as a consequence of the previous two Lemmas,

we can form a generator matrix Gp,j of the array-based LDPC
code Cp,j , such that

Gp,j =
[

Gs
p

Gm
p,j

]
(17)

where Gs
p is a p − 1 × p2 matrix whose rows are all distinct

elements of the set P . By applying only row manipulations to
a generator matrix, the matrix Gm

p,j (which is (K−p+1)×p2,
where K is p(p − j) + j − 1 ([12]), and thus nonempty for
j < p) has each qpth column, for 1 ≤ q ≤ p, equal to the
(qp + 1)th column.

Let G̃p,j = Gp,jTp2 where Tp2 is given by (4), and observe
that the top p − 1 rows of G̃p,j are all distinct and are of the
form 0tp−110p2−tp−1, for 1 ≤ t ≤ p − 1.

Let C̃p,j be the code generated by G̃p,j . Since the all-ones
string is not a codeword in Cp,j , the matrix G̃p,j has full rank.

Lemma 6: No codeword in C̃p,j has weight p2−1 or p2−2.
We complete the section with the following result.
Lemma 7: For p an odd prime, and for each j, 0 ≤ j ≤

p− 1, there exists a subset of S = {1, p + 1, 2p + 1, . . . , (p−
1)p + 1, p2 + 1} the sum of whose elements equals j mod p.

V. MODIFIED ENCODING

Consider the code Cp,j . Let mu be a binary string of length
(K − p + 1) bits provided by the user. Denote by ms an
auxiliary binary string of length p− 1. Let c = [msmu]Gp,j ,
and let s1 and s2 be additional single bits.

The values of ms, s1 and s2 are chosen such that

f(v) =
p2+1∑
i=1

ivi ≡ a mod p2, (18)

is satisfied for some arbitrary but fixed constant a, where v
is defined as [s1cs2]Tp2+2 for Tp2+2 given in (4). By Lemma
6, the string v in (18) has weight at most p2 − 1. By Lemma
2 with ai = a and ri = p2 for all 1 ≤ i ≤ p2 − 1, the set of
v satisfying (18) is single insertion of a zero correcting. We
transmit [s1cs2]. The set of such strings is single repetition
correcting.

To show that for every mu it is possible to find appropriate
values of s1, s2 and ms such that (18) holds, let ũ be
[0p−1mu]G̃p,j and let a′ ≡ ∑p2−1

i=1 (i + 1)ũi mod p2. Also

local domain local function ϕ(·)
{G} 1

{G, Li} 1 [Li = 1 · 1(G ≤ i − 1)+
0 · 1(G = i) + (−1) · 1(G ≥ i + 1)]

{Li, xi} P (yi|xi)1(Li = −1) + P (yi+1|xi)1(Li = 1)
+P (yi|xi)P (yi+1|xi)1(Li = 0)

{xi} 1
{ck, (xj , j ∈ Nk)} 1(ck = ⊕j∈Nkxj)

Fig. 1. Local domains and functions.

let s̃ be [ms0K−p+1]G̃p,j , where c̃ = ũ+ s̃, for c̃ = cTp2 . By
construction every entry in ũ in a position whose index is a
multiple of p is precisely zero, and the only non-zero entries in
s̃ are in positions with indices that are multiples of p. Expand
f(v) as

f(v) = ŝ1 +
∑p2−1

i=1 (i + 1)c̃i + (p2 + 1)ŝ2

= ŝ1 +
∑p2−1

i=1 (i + 1)ũi +
∑p2−1

i=1 (i + 1)s̃i+
(p2 + 1)ŝ2

(19)
Then, f(v) ≡ a′ +

∑p
i=0(ip + 1)zi mod p2, where z =

[ŝ1msŝ2], and ŝ1 = s1 + c1, ŝ2 = s2 + cp2 .
It follows by Lemma 7 that irrespective of the value a′

(determined by the user’s input message) it is always possible
to choose z such that f(v) ≡ a mod p2. �

Therefore, by reducing the dimension of the input space by
p − 1 and introducing two guard bits, we are able to ensure
that the transmitted codeword (plus the guard bits) does not
suffer from the identification problem for the single repetition
model. The overall rate loss is then K

p2 − K−(p−1)
p2+2 , which is

asymptotically zero as the blocklength tends to infinity.

VI. MODIFIED DECODING ALGORITHM

We conclude the paper with an outline of a message passing
decoding algorithm appropriate for our scheme.

Suppose the sequence y of length n + 1 bits is received as
a result of transmitting a codeword of length n bits through
a noisy channel that also causes a repetition error. For each
coded bit xi we wish to compute P (xi|yn+1

1). We introduce
auxiliary variables G, which takes values in {1, ..., n}, and
Li, for ∀ i ∈ [1, n], such that Li ∈ {−1, 0, 1}. The variable
G denotes the position of the repetition, and Li denotes the
relative location of the ith bit with respect to the repetition.
Write

P (xi|yn+1
1) ∝

∑
G

∑
Ln

1

∑
xn
1 \xi

P (xn
1 , Ln

1 , G, yn+1
1). (20)

Group the variables as shown in Fig. 1., for 1 ≤ i ≤ n and
1 ≤ k ≤ M , where M is the total number of checks.

The junction graph corresponding to these local domains
has the bidirectional edges between:

• {G} and {G,Li} for each 1 ≤ i ≤ n,
• {G,Li} and {Li, xi} for each 1 ≤ i ≤ n,
• {Li, xi} and {ck, (xi, i ∈ Nk)}, for each pair (i, k) such

that i ∈ Nk, and
• {xi} and {Li, xi} for each 1 ≤ i ≤ n.

Then,

ISIT 2006, Seattle, USA, July 9 ­ 14, 2006

2060

∑
G

∑
Ln

1

∑
xn
1 \xi

P (xn
1 , Ln

1 , G, yn+1
1) ≈∑

Li
ϕ(Li, xi)

∑
G ϕ(G,Li)

∏n
j=1,j �=i

∑
Lj

ϕ(G,Lj)
×∑

xj
ϕ(Lj , xj)

∏
k∈Ni

1(ck = ⊕j∈Nk
xj)

(21)
where ϕ(·) denotes the local function of the appropriate
variables listed in Fig. 1 and the approximation comes from
ignoring the cycles in the graph. We may thus use a message
passing algorithm as in [1] to try to find P (xi|yn+1

1).
Let all messages be initialized to 1, and let αj(Lj) be the

message sent from {Lj , xj} to {G,Lj} at some stage.
The message βj(G) from {G,Lj} to {G} is then βj(G) =∑
Lj

ϕ(G,Lj)αj(Lj), and the message γi(G) sent from {G}
to {G, Li} is

∏
j∈{1,n}\i βj(G). Finally, the message from

{G,Li} to {Li, xi} is δi(Li) =
∑

G ϕ(G,Li)γi(G).
The message τj,k(xj) sent from {Lj , xj} to

{ck(xj , j ∈ Nk)} is
∑

Lj
ϕ(Lj , xj)δj(Lj)

∏
l∈Nj\k ηl,j(xj),

where ηl,j(xj) is the message from {cl, (xj , j ∈ Nl)} to
{Lj , xj} and is

∑
xi,i∈Nl\j ϕ(cl, (xi, i ∈ Nl))

∏
τi,l(xi).

The message αj(Lj) is updated to∑
xj

ϕ(Lj , xj)
∏

k∈Nj
ηk,j(xj), and message exchange

continues as above. Thus, (20) is

P (xi|yn+1
1) ≈

∑
Li

ϕ(Li, xi)δi(Li)
∏

k∈Ni

ηk,i(xi). (22)

The number of steps needed in each global iteration of the
updates is reduced from O(N2) to O(N) by proper organi-
zation of the updates between the messages between {G, Li}
and {Li, xi}. For details, see [4].

We tested our ideas on C23,3, thinned along the lines in
Section V for the choice a = 0 in (18) with appropriate choices
for the auxiliary p + 1 bits (s1, s2, and ms for a given mu).
This was decoded after one repetition over an AWGN channel.
The simulations so far are very limited in scope 2, but we
nevertheless present the results in Fig. 2. The x-axis gives the
SNR per message bit. If similar results hold up under more
extensive simulations, this will illustrate the benefits of our
approach for thinning the code to handle the identification
problem in the absence of adequate synchronization.

It is important to ensure good Hamming distance between
post repetition codewords of the thinned code. The minimum
distance of the array codes Cp,j is as yet largely unknown
[12], [17]. As an example, we looked at the code C7,5. This
has minimum distance 12. The post repetition distance of this
code is zero. With a judicious assignment of s1, s2 and ms in
(19) for a = 0, the post repetition Hamming distance of the
thinned code is at least 5, except for one pair of codewords
which has a minimum distance of 3.

VII. CONCLUDING REMARKS

We proposed a technique for modifying array-based LDPC
codes when varying sampling rate may cause repetition of
symbols. Allowing a small loss in rate, we systematically

2At each SNR point on each curve, 25 codewords were selected at random.
For every one of the possible repetition locations, the codeword after repetition
was passed once through an AWGN channel and decoded using the proposed
message passing algorithm for 100 iterations.

7.2 7.4 7.6 7.8 8 8.2 8.4 8.6
10

−4

10
−3

10
−2

SNR

BE
R

modified decoding of original code
modified decoding of thinned code

Simulation parameters:
no. iterations 100
increments 0.25 dB

Fig. 2. Performance of LDPC (529,462) over AWGN with one repetition

expurgate the code to get a thinned code with significantly
improved synchronization error correction properties. We also
gave a scheme for constructing t-repetitions correcting families
of sequences. Incorporating multiple synchronization error
correction capabilities in array-based LDPC codes and other
codes of interest is a topic for future research.

ACKNOWLEDGMENT

The authors would like to thank Marvell Semiconductor Inc.
and U.C. MICRO program for supporting their research.

REFERENCES

[1] S. Aji and R. McEliece, “The generalized distributive law”, IEEE Trans.
Inform. Theory vol. 46(2), pp. 325–43, March 2000.

[2] G. Chen, M. Mitzenmacher, C. Ng and N. Varnica, “Concatenated codes
for deletion channels,” Int. Symp. Inform. Theory, 2003, p. 218.

[3] M.C. Davey and D.J.C. MacKay, “Reliable communication over chan-
nels with insertions, deletions and substitutions,” IEEE Trans. Inf.
Theory, vol. 47(2), pp. 687–98, Feb. 2001.

[4] L. Dolecek and V. Anantharam, “On array-based LDPC
codes in channels with varying sampling rate,” available at
www.eecs.berkeley.edu/˜dolecek/papers

[5] L. Dolecek and V. Anantharam, “Using Reed-Muller codes in
channels with synchronization and substitution errors,” available at
www.eecs.berkeley.edu/˜dolecek/papers

[6] E. Eleftheriou and S. Ölçer, “Low density parity check codes for digital
subscriber lines,” Int. Conf. on Comm., 2002, pp. 1752–57.

[7] J. L. Fan, “Array-codes as low-density parity-check codes,” Second Int.
Symp. on Turbo Codes and Related Topics, 2000, pp. 543–46.

[8] T. Kløve, “Codes correcting a single insertion/deletion of a zero or a
single peak-shift,” IEEE Trans. Inf. Theory, vol. 41(1), pp. 279–83, Jan.
1995.

[9] P. Kovintavewat, J. R. Barry, M. F. Erden and E. Kurtas, “Per-survivor
timing recovery for uncoded partial response channels,”Int. Conf. on
Comm., 2004, pp. 2715–19.

[10] V. I. Levenshtein, “Binary codes capable of correcting deletions, in-
sertions and reversals,” Sov. Phys.-Dokl., vol. 10(8), pp. 707–10, Feb.
1966.

[11] J. Liu, H. Song and B.V.K.V. Kumar, “Symbol timing recovery for low-
SNR partial response recording channels,” Globecom 2002, pp. 1129–36.

[12] T. Mittelholzer, “Efficient encoding and minimum distance bounds of
Reed-Solomon-type array codes,” Int. Symp. Inform. Theory, 2002, p.
282.

[13] A. R. Nayak, J. Barry and S. W. McLaughlin, “Joint timing recovery
and turbo equalization for coded partial response channels,” IEEE Trans.
On Magnetics, vol. 38(5), pp. 2295–97, Sept. 2002.

[14] N.J.A. Sloane, “On single deletion correcting codes,” 2000. Available at
http://www.research.att.com/˜njas/doc/dijen.pdf

[15] H. Song and B.V.K.V. Kumar, “Low density parity check codes for
partial response channels,” IEEE Signal Proc. Magazine, vol. 21(1),
pp. 56–66, Jan 2004.

[16] R. R. Varshamov and G.M. Tenengolts, “Codes which correct single
asymmetric errors,” Avtomatika i Telemehkanika, vol. 26(2), pp. 288–
92,1965.

[17] K. Yang and T. Helleseth, “On the minimum distance of array codes as
LDPC codes,” IEEE Trans. Inf. Theory, vol. 49(12), pp. 3268–71, Dec.
2003.

ISIT 2006, Seattle, USA, July 9 ­ 14, 2006

2061

