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Abstract

Wederive an upper bound for the largest Lyapunov exponent of aMarkovian product of nonnegative
matrices using Markovian type counting arguments. The bound is expressed as the maximum of a
nonlinear concave function over a finite-dimensional convex polytope of probability distributions.
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1. Introduction

In this paper we derive an upper bound for the largest Lyapunov exponent of a Marko-
vian product of nonnegative matrices. The bound, given in Section4, is expressed as the
maximum of a nonlinear concave function over a finite-dimensional convex set of proba-
bility distributions. The bound is derived using Markovian type counting arguments[12], a
technique familiar in information theory[11].
In this section, we define the problem, and then give a brief review of some of the related

literature. InSection2wedevelop the basic notions underlying theMarkovian type counting

� Research supported by ONR MURI N00014-1-0637, DARPA grant No. N66001-00-C-8062, and by NSF
contract ECS 0123512.

∗ Corresponding author.
E-mail address:ananth@EECS.Berkeley.EDU(V. Anantharam).

0304-3975/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2004.12.025

http://www.elsevier.com/locate/tcs
mailto:ananth@EECS.Berkeley.EDU


544 R. Gharavi, V. Anantharam / Theoretical Computer Science 332 (2005) 543–557

technique that we will use to derive our upper bound. The bound itself is derived in Section
3, and in Section4 it is expressed as a concave optimization problem over a convex polytope
of probability distributions. In Section5 we discuss the quality of the bound.

Let R+
def== [0,∞) denote the set of nonnegative real numbers. Let(Xn, n�0) be an

irreducible Markov chain onX def== {A1, . . . , AK}, whereAi ∈ Rp×p
+ , 1� i�K are fixed

(deterministic) matrices with nonnegative entries. LetP denote the transition probability
matrix and� the (unique) stationary distribution of the Markov chain(Xn, n�0). We
assume that the chain is initialized with its stationary distribution. Note that�(i) > 0 for
all 1� i�K. For the basic results on finite state Markov chains that we mention without
proof, see e.g.[31].
Let � denote the largest Lyapunov exponent of(Xn, n�0).

� def== lim
n→∞ n

−1E log‖Xn−1 · · ·X0‖. (1)

Here we take‖A‖ = ∑
ij |Aij |. The existence of the limit in Eq. (1) is well known

[14,24,28,30]; further, it is easy to see that the limit does not depend on the choice of matrix
norm. The exact determination of� is well known to be a difficult problem
[1,2,6–8,10,13,21,25,27,29]. The purpose of this paper is to derive an upper bound
for �.
In this paper we assume that� > −∞. It is easy to see that this is equivalent to requiring

that there be no sequence(i0, . . . , in) with

�(i0)P (i0, i1) . . . P (in−1, in) > 0 (2)

such that thematrix productAin−1 · · ·Ai0 is the zeromatrix. Since the entries ofA1, . . . , AK
are nonnegative and finite, it is easily seen by path counting that� > −∞ implies that there
are finite constants−∞ < a∗, a∗ < ∞ such that we have the pointwise bound

a∗ �n−1 log‖Xn−1 · · ·X0‖�a∗ (3)

almost surely.
We will therefore assume the existence of bounds of this type.
To close this section, we briefly discuss the related literature. Excellent surveys of the

basic theory of Lyapunov exponents, including historical remarks, are available in[3] and
[33]; the latter pays particular attention to products of random matrices. The existence
of the limit in Eq. (1), for a general stationary ergodic sequence of matrices(Xn, n�0),
which defines the largest Lyapunov exponent, is best seen as a small part of Oseledec’s
multiplicative ergodic theorem,[28], proofs of which are also available in[30] and [9].
It can also be seen as a simple consequence of Kingman’s subadditive ergodic theorem
[23,24,32], when one has submultiplicativity of the matrix norm, i.e.,‖AB‖�‖A‖‖B‖.
Little is known in general about how to compute the largest Lyapunov exponent, even for
the case of i.i.d. matrices. Several papers consider matrices with nonnegative entries in the
i.i.d. case, and sometimes also in the Markov case. A notable paper of Key[22] provides a
technique for proving lower bounds to the largest Lyapunov exponent of an i.i.d. product of
nonnegative matrices, under some additional hypotheses. Hennion[17] and Peres[29] both
study the largest Lyapunov exponent of a product of i.i.d. nonnegativematrices as a function
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of certain parameters; the latter paper also considers the Markov case. The convergence in
distribution of the product of i.i.d. nonnegative matrices with spectral radius 1 is studied by
Kesten and Spitzer[20] and in several papers of Mukherjea, see[26] for a survey.
To the best of our knowledge, the approach used in this paper to upper bound the largest

Lyapunovexponent of aMarkovianproduct of nonnegativematriceshasnot appearedearlier
in the literature.Wewere led to study the problem considered here by a desire to understand
the convergence behavior of asynchronous computation[4] with a probabilistic model for
the delays between the processors[15]. Another reason for the interest in this problem is
its relevance to the computation of the entropy of hidden Markov models[5], which has
recently begun to be discussed in some depth in the information theory literature[18,19].

2. Preliminaries

In this section we will first define theMarkov typeof a sequence inX n. We will then
give upper and lower bounds for the cardinality and probability of sequences having the
same type1 in terms of the entropy and the information discrimination function. Most of
the definitions and results of this section are from[12]. From now on, with some abuse
of notation, we identify the setX with {1, . . . , K}, and write elements ofX n as x =
(i0i1 . . . in−1).

Definition. LetM denote the space of probability measures onX ×X .We think ofM as the
unit simplex inRK×K . Define�n:X n+1 → M by�n(x) = �where�(i, j) = n−1N(i, j |x),
1� i, j�K. HereN(i, j |x) denotes the number of transitions fromi to j in x.We call�n(x)
theMarkov typeof x.

Definition. For � ∈ M and 1� i�K, let �(i, ∗) denote∑j�(i, j) and �(∗, i) denote∑
j�(j, i). DefineM

n def== image(�n).Mn is called the set ofn-types.

Remark. Clearly, for all� ∈ Mn we have

|�(i, ∗)− �(∗, i)|� 1

n
, 1� i�K. (4)

Definition. For � ∈ Mn, define

Cn(�) def== {x ∈ X n+1: �n(x) = �}.

Cn(�) are the sequences of lengthn+ 1 of Markov type�.

1 Since we only consider Markov types in this paper, we will abbreviate this to “type".
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Upper and lower bounds for the cardinality and the stationary probability ofCn(�) in
terms of the entropy and the information discrimination function are provided in[12]. To
state these results, we first recall the following standard definitions.

Definition. For � ∈ M, theentropyof � is defined as

H(�) def== −∑
i,j

�(i, j) log
�(i, j)
�(i, ∗) ,

and theinformation discriminationof � with respect toP is defined as

D(�, P ) def== ∑
i,j

�(i, j) log
�(i, j)

�(i, ∗)P (i, j) ,

with the convention that 0/0 = 1 and 0 log 0= 0. All logarithms are to base 2.

Remark. Ignoring the all-zero rows,H(�) is just the entropy of the normalized rows of
� averaged over the distribution{�(i, ∗),1� i�K} andD(�, P ) is just the information
discriminationbetween thenormalized rowsof�and rowsofPaveragedover thedistribution
{�(i, ∗),1� i�K}.With a slight abuse of notation, wewrite�>P if and only ifP(i, j) = 0
implies�(i, j) = 0. It is well known that 0�H(·)� logK, H(·) is a continuous concave
function onM, andD(·, P ) is a nonnegative continuous convex function onM that is finite
on {� ∈ M: �>P }; see e.g.[11].

Now letx = (i0 · · · in) ∈ X n+1 and� = �n(x). Then, writing exp for exp2, we have

Pr(x)= �(i0)
∏
i,j

P (i, j)n�(i,j)

= �(i0)exp

[
n
∑
i,j

�(i, j) logP(i, j)

]

= �(i0)exp[−n (D(�, P )+H(�))]. (5)

Therefore, if� ∈ Mn, then for allx ∈ Cn(�) we have

�∗ exp[−n (D(�, P )+H(�))]�Pr(x)� exp[−n (D(�, P )+H(�))], (6)

where�∗ = mini �(i) > 0.
The following bounds on the cardinality ofCn(�), � ∈ Mn, can be derived in a straight-

forward way from the results in[12]: There is a polynomialr(n) such that

[r(n)]−1 exp[nH(�)]� |Cn(�)|�K exp[nH(�)]. (7)

In conjunction with (6), this yields the bounds on Pr(Cn(�)), � ∈ Mn:

�∗[r(n)]−1 exp[−nD(�, P )]�Pr(Cn(�))�K exp[−nD(�, P )]. (8)
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3. An upper bound for �

In this section we find an upper bound for�, by focusing on the�-typical sequences in
X n+1. In the next section, this bound will be expressed as a concave optimization problem
over a convex polytope of probability distributions.

Definition. Given� > 0, define the set of�-typical n-typesby

Dn�
def== {� ∈ Mn:D(�, P )��},

and define the set of�-typical sequences of lengthn+ 1 by

Dn
�

def== Cn(Dn� ) = {x ∈ X n+1:D(�n(x), P )��}.

Wenow estimate Pr(Dn
� ) by estimating Pr

(X n+1 − Dn
� ) = Pr(Cn(Mn −Dn� )

)
.Wewrite

Pr(X n+1 − Dn
� ) = ∑

�∈Mn−Dn�
Pr(Cn(�))

� (n+ 1)K
2

max
�∈Mn−Dn�

Pr(Cn(�))

� K(n+ 1)K
2

max
�∈Mn−Dn�

exp[−nD(�, P )]

� K(n+ 1)K
2
exp[−n�],

where|Mn|�(n + 1)K
2
was used in the first inequality and (8) was used in the second.

Note that, for all� > 0,

lim
n→∞Pr(X n+1 − Dn

� ) = 0 and lim
n→∞Pr(Dn

� ) = 1. (9)

Therefore, for all� > 0, we can write

� = lim
n→∞

[
n−1E1{Dn

� } log‖Xn−1 · · ·X0‖
+n−1E1{X n+1 − Dn

� } log‖Xn−1 · · ·X0‖
]

= lim
n→∞ n

−1E1{Dn
� } log‖Xn−1 · · ·X0‖

= lim
n→∞ n

−1[Pr(Dn
� )]−1E1{Dn

� } log‖Xn−1 · · ·X0‖, (10)

where (3) and (9) were used in the second equality and (9) was used in the third. Observing
that[Pr(Dn

� )]−1E1{Dn
� }(·) is an expectation operator, we use Jensen’s inequality to write

� � lim
n→∞

n−1 log[Pr(Dn
� )]−1E1{Dn

� }‖Xn−1 · · ·X0‖
= lim
n→∞

n−1 logE1{Dn
� }‖Xn−1 · · ·X0‖,

where (9) was again used in that last equality. Since the last quantity is nonincreasing as
� ↓ 0, we can upper bound� by

�̂ def== lim
�↓0 lim

n→∞
n−1 logE1{Dn

� }‖Xn−1 · · ·X0‖.
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4. Calculation of �̂

In this section, we will reformulatê� in terms of the solution to a concave optimization
problem. Starting from its definition, we write

�̂ = lim
�↓0 lim

n→∞
n−1 logE1{Dn

� }‖Xn−1 · · ·X0‖
= lim

�↓0 lim
n→∞

n−1 logE
∑

�∈Dn�
1{Cn(�)}‖Xn−1 · · ·X0‖

= lim
�↓0 lim

n→∞
n−1 log max

�∈Dn�
E1{Cn(�)}‖Xn−1 · · ·X0‖

= lim
�↓0 lim

n→∞
n−1 log max

�∈Dn�
∑

x∈Cn(�)
Pr(x)‖Ain−1 · · ·Ai0‖

= lim
�↓0 lim

n→∞
n−1 log max

�∈Dn�
∑

x∈Cn(�)
∑

u0,...,un

Pr(x)
n−1∏
l=0
AT
il
(ul, ul+1), (11)

where|Dn� |� |Mn|�(n+ 1)K
2
was used in the third equality.

We now compute this double sum combinatorially.We do this by introducing an extended
alphabetY and replacing the double sum in (11) by a single sum over sequences of this
extended alphabet.

Definition. Let Y def== {1, . . . , K} × {1, . . . , p}. Let M denote the space of probabil-
ity measures onY × Y. A sequencey ∈ Yn+1 will be written (i0, u0; . . . ; in, un). De-
fine �n:Yn+1 → M by �n(y) = � where�(i, u; j, v) = n−1Nn(i, u; j, v|y). Here
Nn(i, u; j, v|y) denotes the number of transitions from(i, u) to (j, v) in y. We call�n(y)
theextended Markov typeof y. Let Mn denote the image of�n. Mn is called the set of
extended n-types. For� ∈ Mn, we writeCn(�) for {y ∈ Yn+1: �n(y) = �}.

Remark. For all� ∈ Mn we have

| �(i, u; ∗, ∗)− �(∗, ∗; i, u) | �1, (i, u) ∈ Y, (12)

where�(i, u; ∗, ∗) denotes∑j,v�(i, u; j, v) and�(∗, ∗; i, u) denotes∑j,v�(j, v; i, u).

Remark.We have a mapm:M → M given bym(�) = � where

�(i, j) = ∑
u,v

�(i, u; j, v).

Note thatmmapsM ontoM. For� ∈ Mn, we writeMn(�) = {� ∈ Mn:m(�) = �}.

Definition. The set of�-typical extended n-typesis defined as

T n� = {� ∈ Mn:m(�) ∈ Dn� }.

Notation. For x ∈ X n+1, we writeYn+1(x) for the set ofy = (i0, u0; . . . ; in, un) such
thatx = (i0, . . . , in).
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We may now continue from Eq. (11) to write

�̂ = lim
�↓0 lim

n→∞
n−1 log max

�∈Dn�
∑

x∈Cn(�)
∑

y∈Yn+1(x)

�(i0)
n−1∏
l=0
P(il, il+1)A

T
il
(ul, ul+1).

Noting that 0< �∗ ��(i0)�1, this can be rewritten as

�̂ = lim
�↓0 lim

n→∞
n−1 log max

�∈Dn�
∑

�∈Mn(�)
|Cn(�)| ∏

i,u;j,v

(
P(i, j)AT

i (u, v)
)n�(i,u;j,v)

.

Let

H(�) def== − ∑
i,u;j,v

�(i, u; j, v) log �(i, u; j, v)
�(i, u; ∗, ∗) .

Then, as in (7), there is a polynomialr(n) such that

[r(n)]−1 exp[nH(�)]� |Cn(�)|�K exp[nH(�)].

Also we have|Mn(�)|� |Mn|�(n+ 1)(Kp)
2
. Hence we get

�̂ = lim
�↓0 lim

n→∞
max
�∈T n�

n−1 log exp[n(H(�)+ F0(�)+ F(�))],

�̂ = lim
�↓0 lim

n→∞
max
�∈T n�

[H(�)+ F0(�)+ F(�)],

where

F0(�)
def== ∑

i,u;j,v
�(i, u; j, v) logP(i, j),

F (�) def== ∑
i,u;j,v

�(i, u; j, v) logAT
i (u, v).

Now H(·) is a concave continuous function onM andF0(·) andF(·) are upper semi-
continuous functions that are finite on the closed convex subsets given by the intersection
of M with the linear subspaces defined by

�(i, u; j, v)= 0 for all (i, u; j, v) such thatP(i, j) = 0, and

�(i, u; j, v)= 0 for all (i, u; j, v) such thatAT
i (u, v) = 0,

respectively.
From these observations we see that the limis actually a limit and we have

�̂ = lim
�↓0 max

�:D(m(�),P )� �

[
H(�)+ F0(�)+ F(�)

]
= max

�:m(�)=�P

[
H(�)+ F0(�)+ F(�)

]
, (13)

where�P ∈ M is defined by�P(i, j) = �(i)P (i, j).
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We next note that the term corresponding toF0(·) is superfluous in the optimization
problem to determinê�. This is because, for any� ∈ M with m(�) = �P , we have

F0(�)= ∑
i,u;j,v

�(i, u; j, v) logP(i, j)
=∑
i,j

�(i)P (i, j) logP(i, j)

= −H(�P).
So we may write

�̂ = max
�∈M

[
H(�)+ F(�)

]−H(�P), (14)

subject to the constraints

m(�)= �P, (15)

�(i, u; j, v)= 0 for all (i, u; j, v) such thatAT
i (u, v) = 0, (16)

�(i, u; ∗, ∗)= �(∗, ∗; i, u), 1� i�K,1�u�p. (17)

This is our upper bound for the largest Lyapunov exponent�. Here the constraint (15)
already appeared in (13), the constraint (16) is imposed becauseF(�) = −∞ for all � ∈ M
that do not satisfy this constraint, and (17) is a consequence of (12), which every extended
n-type must satisfy.

5. Discussion

We first verify that the domain of the constrained optimization problem defined by Eqs.
(14–17) is nonempty whenever� > −∞. This is already clear from the result that the
solution of the optimization problem, namely�̂, is an upper bound to�, but can also easily be
directly verified. The condition for� > −∞ is that for every sequence of states(i0, . . . , in)
satisfying (2) there is a sequence of coordinates(u0, . . . , un) with

AT
i0
(u0, u1)A

T
i1
(u1, u2) . . . A

T
in−1
(un−1, un) > 0. (18)

Pick one such sequence of coordinates for each such sequence of states, in an arbitrary way,
and associate to such a sequence of states(i0, . . . , in) the extended Markov type of the
chosen sequence(i0, u0; . . . , in, un). Let� be a limit of a sequence of such extended types
for which the type of the underlying sequence of states converges to�P . The compactness
of M and the ergodic theorem for the underlying irreducible Markov chain ensure the
existence of at least one such�. It is straightforward to verify that any such� lies in the
domain of the optimization problem defined by Eqs. (14–17). We thus havê� > −∞
whenever� > −∞.
Next suppose one of the matricesAi,1� i�K is the zero matrix. Then� = −∞. Also,

the domain of the constrained optimization problem defined by Eqs. (14–17) is empty,
because it is impossible to find� ∈ M satisfying both conditions (16) and (15). Thus we
also havê� = −∞.
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On the other hand, it is possible to have�̂ > −∞ even when� = −∞, as shown by the
following simple example.

Example 1.Let K = 3 andp = 2. The transition probability matrix of the underlying
Markov chain is given by

P =

 0 1

2
1
2

1 0 0
1 0 0


 .

This Markov chain is irreducible with stationary distribution

� =
[
1

2
,
1

4
,
1

4

]
.

Let the nonnegative matrices corresponding to the individual states of the Markov chain be
given by

AT
1 =

[
1 0
0 1

]
, AT

2 =
[
0 1
0 0

]
, andAT

3 =
[
0 0
1 0

]
.

Consider the sequence of states(i0, i1, i2, i3) = (2,1,2,1). This has strictly positive
probability, equal to18, in the underlying Markov chain. However

AT
2A

T
1A

T
2 =

[
0 0
0 0

]
.

This verifies that� = −∞.
In this example we have

�P =



0 1

4
1
4

1
4 0 0

1
4 0 0


 .

It is straightforward toverify that theprobabilitydistribution�on{(i, u) : 1� i�3, 1�p�2},
with the rows and columns indexed in lexicographic order, given by

� =




0 0 1
4 0 0 0

0 0 0 0 0 1
4

0 1
4 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
1
4 0 0 0 0 0



, (19)
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lies in the domain of the optimization problem defined by Eqs. (14–17). It follows that
�̂ > −∞. 2

The basic feature of Example 1 is the existence of an infinite path through the states of
the underlying Markov chain the types of whose finite initial segments converge to�P ,
and for which the product of the matrices corresponding to any finite initial segment of
the path is not identically zero. It is of course possible to construct many examples of this
kind, including ones where a transition is possible in the underlying Markov chain between
every pair of states. One sees immediately from this that one can construct examples with
� > −∞ where�̂ is a rather poor upper bound for�. Indeed, one can start with an example
where� = −∞ and having the feature identified in Example 1 as giving�̂ > −∞ and then
modify the underlying matrices so as to make 0?� > −∞ without significantly affecting

�̂. For instance, the following example is constructed from Example 1 by following this
approach.

Example 2.LetK = 3,p = 2, and let the underlying Markov chain have transition proba-
bility matrix P as in Example 1, so that� and �P are as defined there. Let
the nonnegative matrices corresponding to the individual states of the Markov chain be
given by

AT
1 =

[
1 0
0 1

]
, AT

2 =
[

� 1
0 0

]
, andAT

3 =
[
0 0
1 �

]
,

where 1?� > 0.

In this example one can check that� = 1
4 log�. However�̂ must be at least as big as

the one in Example 1, since the choice of� in Eq. (19) continues to satisfy the constraints
(15–17) for this problem and the objective of the optimization problem (14) evaluates to
the same number at this� in both examples.

Let us return to the situation where� = −∞. Thus, there exists a sequence of states
(i0, . . . , in) satisfying (2) for whichAT

i0
AT
i1
. . . AT

in−1
is the zero matrix. This tells us that

if, for the underlying Markov chain, instead of the originally given one we take the one
whose states are comprised of blocks of states of the original chain, then, if the block size
is sufficiently large, one cannot have a phenomenon like that in Example 1: indeed for
the upper bound defined as the solution to the optimization problem (14) subject to the
constraints (15–17) with the new underlying chain, the domain of the problem becomes
empty, so the upper bound once again becomes−∞. We call the process of working with
blocks of the underlying Markov chainamortization, since time has to be normalized to be
on the same scale for all blocks. We now formally define, for eachL�1, theL-amortized
upper bound.

2 One can check that� given in Eq. (19) is the unique point in the domain of the optimization problem, so that
here�̂ = − 1

2.
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Definition. Write i(L) for (i0, . . . , iL−1) ∈ XL, and similarly writej (L). LetX (L) be given
by

X (L) def== {i(L) ∈ XL : P(i0, i1) . . . P (iL−2, iL−1) > 0}.
LetM(L) denote the space of probability measures onX (L) × X (L). Let (�P)(L) ∈ M(L)

be defined by

(�P)(L)(i(L), j (L)) def== �(i0)P (i0, i1) . . . P (iL−2, iL−1)

P (iL−1, j0)P (j0, j1) . . . P (jL−2, jL−1).

LetY(L) denoteX (L)× {1, . . . , p}, and letM(L) denote the space of probability measures
onY(L) × Y(L). Letm(L) : M(L) �→ M(L) be given bym(L)(�(L)) = �(L), where

�(L)(i(L), j (L)) = ∑
u,v

�(L)(i(L), u; j (L), v).

For�(L) ∈ M(L), the entropyH(�(L)) is defined, in the usual way, as

H(�(L)) def== − ∑
i(L),u;j (L),v

�(L)(i(L), u; j (L), v) log �(L)(i(L), u; j (L), v)
�(L)(i(L), u; ∗, ∗) ,

where

�(L)(i(L), u; ∗, ∗) def== ∑
j (L),v

�(L)(i(L), u; j (L), v).

Define the functionF (L) onM(L) by

F (L)(�(L)) def== ∑
i(L),u;j (L),v

�(L)(i(L), u; j (L), v) logAT
i(L)
(u, v),

where

AT
i(L)

def== AT
i0
AT
i1
. . . AT

iL−1
.

Then theL-amortized upper bound is defined as

�̂
(L) = 1

L

(
max

�(L)∈M(L)

[
H(�(L))+ F (L)(�(L))

])
−H(�P), (20)

subject to the constraints

m(L)(�(L))= (�P)(L), (21)

�(L)(i(L), u; j (L), v)= 0 for all (i(L), u; j (L), v) with AT
i(L)
(u, v) = 0, (22)

�(i(L), u; ∗, ∗)= �(∗, ∗; i(L), u), for all (i(L), u). (23)

That �̂
(L)

is an upper bound for the largest Lyapunov exponent is an immediate con-
sequence of the earlier development, once one recognizes thatH((�P)(L)) = LH(�P),
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where the entropy,H((�P)(L)) of (�P)(L) is defined in the usual way.3 We now have the
following result:

Theorem.

lim
L→∞ �̂

(L) = �.

Proof.While we are only interested in the case� > −∞, observe that we have already

argued that if� = −∞ then limL→∞ �̂
(L) = −∞, so the theorem holds in this case. Now

suppose that� > −∞. Then we havê�
(L)
> −∞ for all L�1, so that there is at least one

�(L) in the domain of the optimization problem (20) with constraints (21–23).
It is straightforward to check that for any such�(L) we have

H(�(L))�H((�P)(L))+ log(p2).

This is a direct consequence of standard entropy inequalities[11] using (21) once one
recognizes that the conditional distribution of�(L)(i(L), u; j (L), v) given(i(L), j (L)) lives
on a set of cardinality at mostp2.
We also observe that for everyi(L) ∈ X (L) and every(u, v) ∈ {1, . . . , p} × {1, . . . , p},

we haveAT
i(L)
(u, v)�‖Ai(L)‖. Hence

F (L)(�(L)) def== ∑
i(L),u;j (L),v

�(L)(i(L), u; j (L), v) logAT
i(L)
(u, v)

� ∑
i(L),u;j (L),v

�(L)(i(L), u; j (L), v) log‖Ai(L)‖

= ∑
i(L)

�(i0)P (i0, i1) . . . P (iL−2, iL−1) log‖Ai(L)‖
= E log‖XL−1 . . . X0‖,

where the notation in the last equation is as in Eq. (1).
Putting these observations together, we get

�̂
(L)� 1

L
E log‖XL−1 . . . X0‖ + 1

L
logp2,

where we have used the fact thatH((�P)(L)) = LH(�P). Since we already know that

�̂
(L)

is an upper bound for�, taking the limit asL → ∞ and appealing to (1) proves the
theorem. �

Wenowdescribe the results of somenumerical experimentswe carried out, which suggest
that the upper bound can sometimes be quite good, even without the need for amortization.

3 Strictly speaking, if the underlying Markov chain is periodic with periodd, then unlessL is coprime withd
the new underlying Markov chain at the level of blocks is no longer irreducible, as was assumed in the earlier

development. It is not hard to show that�̂
(L)

is still an upper bound for the largest Lyapunov exponent of the
original problem even in this case.
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To explain how we arrived at the numbers reported here, we first say a few words about the
simulation methodology. Since an analytic expression for� is not known, we estimated�
using (1) as follows. Define

�n
def== n−1E log‖Xn−1 · · ·X0‖.

Two issues need to be addressed. First, how fast does�n converge to�; and second, how

should�n for a givenn be estimated. To address the second issue, we assumedLn
def==

n−1 log‖Xn−1 · · ·X0‖ to have a normal distribution. To estimate the mean ofLn, i.e.,�n,
the mean and variance of samples obtained (using a random number generator) were used
to construct confidence intervals. All of the confidence intervals used have a confidence
coefficient of at least 0.999.
To address the first issue, we estimated�5×107 and compared its value to an estimate for

�5×106. In all cases below, the estimate for�5×106 was within the confidence interval of
�5×107 (and its confidence interval was the same as that of�5×107). So, in the following
example, we assumed� to lie within the confidence interval of�5×107.

Example 4.Consider the asynchronous computation of the equationxn+1 = Axn, where
A is a 2×2 matrix, each component is handled by a separate processor.We assume that the
computation proceeds as

xin = ∑
j

aij x
j

n−dij (n).

Here the matrixd(n) = [dij (n)] is a matrix of delays, which is assumed to evolve in a
Markovian way: it can be one of two valuesd1 or d2, with transition matrixP. Consider the
numerical values

A =
[
1 2
1 3

]
, d1 =

[
2 1
1 1

]
, d2 =

[
1 2
2 2

]
, with P =

[
p 1− p

1− p p

]
.

It is straightforward to see that the evolution of the computation can be described through
a Markovian product of fixed nonnegative matrices. The underlying Markov chain is a two
state chain with transition probability matrixP. The matrices are 4×4 matrices: the matrix
applied to determine[x1n, x2n] can be thought of as determining[x1n, x2n, x1n−1, x

2
n−1] in terms

of [x1n−1, x
2
n−1, x

1
n−2, x

2
n−2]; thematrix that is applied depends on the state of the underlying

Markov chain.
The following results were obtained using our technique to bound the largest Lyapunov

exponent of the computation, without any amortization

�5×107 �̂ Error (%)

p = 0.1 1.0950± 10−4 1.0969 ≈ 0.2
p = 0.3 1.2086± 10−4 1.2164 ≈ 0.7
p = 0.5 1.2926± 10−4 1.3012 ≈ 0.7
p = 0.7 1.3566± 2× 10−4 1.3618 ≈ 0.4
p = 0.9 1.4053± 3× 10−4 1.4064 ≈ 0.08
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Observe that� is an increasing function ofp. It appears that our estimate performed very
well for a wide range ofp.
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