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Abstract

We derive an upper bound for the largest Lyapunov exponent of a Markovian product of nonnegative
matrices using Markovian type counting arguments. The bound is expressed as the maximum of a
nonlinear concave function over a finite-dimensional convex polytope of probability distributions.
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1. Introduction

In this paper we derive an upper bound for the largest Lyapunov exponent of a Marko-
vian product of nonnegative matrices. The bound, given in Sediiggmexpressed as the
maximum of a nonlinear concave function over a finite-dimensional convex set of proba-
bility distributions. The bound is derived using Markovian type counting argunf&?}sa
technique familiar in information theoft1].

In this section, we define the problem, and then give a brief review of some of the related
literature. In Sectio® we develop the basic notions underlying the Markovian type counting
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technique that we will use to derive our upper bound. The bound itself is derived in Section
3, and in Sectiod it is expressed as a concave optimization problem over a convex polytope

of probability distributions. In Sectiof we discuss the quality of the bound.

LetRy def, [0, o0) denote the set of nonnegative real numbers.(Xgt » > 0) be an

irreducible Markov chain ot 2& {A1,..., Ax}, whered; € RY™”, 1<i <K are fixed
(deterministic) matrices with nonnegative entries. Padenote the transition probability
matrix andz the (unique) stationary distribution of the Markov chdix,, n >0). We
assume that the chain is initialized with its stationary distribution. Notesttiat> O for
all 1<i < K. For the basic results on finite state Markov chains that we mention without
proof, see e.qd31].

Let A denote the largest Lyapunov exponent &f,, n > 0).

A % Jim n*lEIoglan71~-~Xo||- (1)
n— 0o

Here we take||A|| = Zij'Aijl' The existence of the limit in Eq.) is well known
[14,24,28,30]further, it is easy to see that the limit does not depend on the choice of matrix
norm. The exact determination of is well known to be a difficult problem
[1,2,6-8,10,13,21,25,27,29The purpose of this paper is to derive an upper bound
for /.

In this paper we assume that- —oo. It is easy to see that this is equivalent to requiring
that there be no sequenge, . . ., i,) with

n(io) P (io, i1) ... P(in-1,1n) > 0 @)

such that the matrix produdf;, , - - - A;, isthe zero matrix. Since the entriesdf, ..., Ag
are nonnegative and finite, it is easily seen by path countingltkat-oco implies that there
are finite constants-co < a,, a* < oo such that we have the pointwise bound

ax<n tlog || X,_1--- Xol <a* 3)

almost surely.

We will therefore assume the existence of bounds of this type.

To close this section, we briefly discuss the related literature. Excellent surveys of the
basic theory of Lyapunov exponents, including historical remarks, are availal3eand
[33]; the latter pays particular attention to products of random matrices. The existence
of the limit in Eq. (), for a general stationary ergodic sequence of matri&gsn > 0),
which defines the largest Lyapunov exponent, is best seen as a small part of Oseledec’s
multiplicative ergodic theoreni28], proofs of which are also available [80] and[9].
It can also be seen as a simple consequence of Kingman'’s subadditive ergodic theorem
[23,24,32] when one has submultiplicativity of the matrix norm, i gAB| < || A| || B].
Little is known in general about how to compute the largest Lyapunov exponent, even for
the case of i.i.d. matrices. Several papers consider matrices with nonnegative entries in the
i.i.d. case, and sometimes also in the Markov case. A notable paper ¢2Kjgyrovides a
technique for proving lower bounds to the largest Lyapunov exponent of an i.i.d. product of
nonnegative matrices, under some additional hypotheses. Hddfiamd Peref29] both
study the largest Lyapunov exponent of a product of i.i.d. nonnegative matrices as a function
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of certain parameters; the latter paper also considers the Markov case. The convergence in
distribution of the product of i.i.d. nonnegative matrices with spectral radius 1 is studied by
Kesten and Spitzd20] and in several papers of Mukherjea, §2€] for a survey.

To the best of our knowledge, the approach used in this paper to upper bound the largest
Lyapunov exponent of a Markovian product of nonnegative matrices has not appeared earlier
in the literature. We were led to study the problem considered here by a desire to understand
the convergence behavior of asynchronous computfdiowith a probabilistic model for
the delays between the processdrs]. Another reason for the interest in this problem is
its relevance to the computation of the entropy of hidden Markov md8glsvhich has
recently begun to be discussed in some depth in the information theory litefE8,18]

2. Preliminaries

In this section we will first define thislarkov typeof a sequence k™. We will then
give upper and lower bounds for the cardinality and probability of sequences having the
same typé in terms of the entropy and the information discrimination function. Most of
the definitions and results of this section are frfir®]. From now on, with some abuse
of notation, we identify the set’ with {1, ..., K}, and write elements ok” asx =

(gl ...ip—1).

Definition. Let M denote the space of probability measurestor X'. We think ofM as the
unit simplexinRX X Definev’: X"t — M byv"(x) = vwherev(i, j) = n IN(, j|x),
1<i, j<K.HereN(, j|x) denotes the number of transitions froto j in x. We callv” (x)
the Markov typeof x.

Definition. Forv € M and 1<i <K, let v(i, *) denotezjv(i,j) and v(x, i) denote
Zjv(j, i). DefineM™ del, imaggv"). M" is called the set ofi-types

Remark. Clearly, for allv e M" we have
: 1 .
|V(la*)_v(*7l)|<7s 1<1<K' (4)
n

Definition. Forv € M", define

") B (x e Ly () = v).

C"(v) are the sequences of length- 1 of Markov typev.

1 Since we only consider Markov types in this paper, we will abbreviate this to “type".
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Upper and lower bounds for the cardinality and the stationary probability/ 6f) in
terms of the entropy and the information discrimination function are provid§ti To
state these results, we first recall the following standard definitions.

Definition. Forv € M, theentropyof v is defined as

v(i, J)
v(i, %)’

H() & -3 (i, j)log
LJ

and theinformation discriminatiorof v with respect tdP is defined as

def — . . v(i, J)
D(v, P) = %v(z, J)log DRI

with the convention that® = 1 and 0log 0= 0. All logarithms are to base 2.

Remark. Ignoring the all-zero rowsH (v) is just the entropy of the normalized rows of
v averaged over the distributiofv(i, x), 1<i <K} and D(v, P) is just the information
discrimination between the normalized rows ahd rows oP averaged over the distribution
{v(i, %), 1<i < K}. With a slight abuse of notation, we write< P ifand only if P (i, j) = 0
impliesv(i, j) = 0. It is well known that & H(-) < log K, H(-) is a continuous concave
function onM, andD (-, P) is a nonnegative continuous convex function\dithat is finite
on{v e M:v<P}; see e.g[11].

Now letx = (ig---i,) € X"t andv = v*(x). Then, writing exp for exp we have

Pr(x) = n(io)[1P G, )™
i,j

= 7(ip) €XP [nZv(i, J)1og PG, j)}
L]
= n(ip) exp—n (D(v, P) + H())]. (5)
Therefore, ifv € M", then for allx € C"(v) we have
T eXpl—n (D (v, P) + H(v))]<Pr(x) < expg—n (D(v, P) + H(v))], (6)
wheren, = min; (i) > 0.
The following bounds on the cardinality 6f (v), v € M", can be derived in a straight-
forward way from the results ifL2]: There is a polynomial(n) such that
[r(m)] ™  expln H(m)1<|C" (0| < K expin H()]. (7

In conjunction with 6), this yields the bounds on & (v)), v € M":

e lr ()] L expi—nD(v, P)1<PIC"(v)) < K exd—nD(v, P)]. (8)



R. Gharavi, V. Anantharam / Theoretical Computer Science 332 (2005) 543 -557 547
3. An upper bound for 4

In this section we find an upper bound farby focusing on the-typical sequences in
X"+1 In the next section, this bound will be expressed as a concave optimization problem
over a convex polytope of probability distributions.

Definition. Givene > 0, define the set af-typical n-typesdy

D" Lty e M DO, PY<el,

and define the set aftypical sequences of lengih+ 1 by

Dr L en(pry = (x € AL D (x), P) <e).

We now estimate RD?) by estimating P(X" 1 — D7) = Pr(C"(M" — D). We write

Prx"™ —Dh = 3 PrC"(v)
veM"—Dr

<+ DX max PrC"(v)
veMn—Dr
<K@+ DX max exp—nD(v, P)]
veM"—D}

< K(n + DK exp—nel,
where|M"| < (n + 1)’<2 was used in the first inequality anfl)(was used in the second.
Note that, for allt > 0,
lim Pt — D=0 and lim Pr(D") = 1. (9)
n—oo n—0o0

Therefore, for alk > 0, we can write
A= lim [n"*ELUD}l0g || Xs—1- - - Xoll
n—00

+nEYA"H — DI} log | X1 - Xoll]
= lim n ELD"}log||X,_1 - Xol
n—oo

= lim n ' Pr(D})]'ELD}}log | X1 - Xol. (10)
n—oo

where @) and Q) were used in the second equality aBjlWas used in the third. Observing
that[Pr(Dg‘)]—lEl{Dg’}(.) is an expectation operator, we use Jensen’s inequality to write
A< lim n~tog[PH(DY)]  EYD I Xp-1 - - - Xol

n— o0
= lim n~*log EYD;}| X1 - Xoll,
n— o0
where 0) was again used in that last equality. Since the last quantity is nonincreasing as
¢ | 0, we can upper boundby

5 im lim ntlog EYD X1 - Xol.

el0 n>o00
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4. Calculation of 4

In this section, we will reformulaté in terms of the solution to a concave optimization
problem Starting from its definition, we write

i=lim lim n~tlog EYD!}[|X,_1- - Xol|

el0 50
=lim lim n~tlogE Y 1{C"(M}IX,_1--- Xoll
el0 50 veD!

=lim lim »"‘log maxEl{C”(v)}||Xn 1+ Xoll

e}0 nSo0

=lim lim n'log max > Pr(x)|lAi, ;- Agll
el0 n>o00 VeDy yeon(y)

=lim lim n~tlogmax Z Pl’(x)]_[A”(ul ui1), (11)
el0 S0 veD! x€Cn (V)Uo. -

where|D?| < |M"| < (n + 1)k? was used in the third equality.

We now compute this double sum combinatorially. We do this by introducing an extended
alphabet) and replacing the double sum ih1j by a single sum over sequences of this
extended alphabet.

Definition. Let Y def, {1,....,K} x {1,..., p}. Let M denote the space of probabil-

ity measures o) x ). A sequencgz e Y"1 will be written (ig, uo; . .. ; in, uy). De-
fine y: Y"1 — M by *(y) = n wheren(,u; j,v) = n~IN"(@i,u; j, v|y). Here
N"(i, u; j, v|ly) denotes the number of transitions fr@gmu) to (7, v) in y. We cally” (y)
the extended Markov typef y. Let M" denote the image of*. M" is called the set of
extended n-type§ory € M", we writeC” (i) for {y € Y"1y (y) = }.

Remark. For all € M™ we have
[ G, us*, %) —nCe, x5 i, u) | <1, (GLu) €, (12)
wheren (i, u; *, *) denoteszjﬁvn(i, u; j,v) andn(x, x; i, u) denoteszj,vn(j, vii,u).
Remark. We have a map:: M — M given bym(y) = v where
v(i, ) = 2onG, us j,v).
0
Note thatm mapsM ontoM. Forv € M", we write M"(v) = {n € M":m(n) = v}.

Definition. The set of-typical extended n-typés defined as

T ={ne M":m(n) € D}}.

Notation. Forx € X"*1 we write)"*+1(x) for the set ofy = (ig, uo: ... in, un) such
thatx = (i, .. ., in).
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We may now continue from Eql{) to write
n—1 T
n(io) [T P, ir+1) A, (u, up41).

J=lim lim ntlogmax > 3
1=0

&40 n—o00 VEDE xeCn (vyeyrti(x)

Noting that O< 7, <7n(ig) <1, this can be rewritten as

N 1 " s T nn(i,u;j,v)
J=lim lim n~tlogmax Y (C"(l ] (P(l,])Al- (u,v)) .
e}0 n—o0 veDy neMm(v) iu;j,v
Let
def n(lvu;j’ U)
H@) = — > n@,u; j,v)log —————.
iu;j,v n(i, us *, *)

Then, as in7), there is a polynomial(n) such that

[r(m)] L expln H (1< |C" (7)| < K explnH ()]

Also we have M (i7)| < |M"| < (n + 1)EP? Hence we get
7 =lim lim max;f1 logexdn(H () + Fo(n) + F ()1,

el0 n— oo NET]

J=lim lim max[H(n) + Fo(n) + F(n)]1,

el0 y oo NET]

where
Fo(n) > n(i,u; j,v)logP@, j),
iu;j,v
Fop EX S 06, us j,v)log AT (u, v).
iu;j,v

Now H (-) is a concave continuous function @l and Fo(-) and F(-) are upper semi-
continuous functions that are finite on the closed convex subsets given by the intersection

of M with the linear subspaces defined by
forall (i, u; j, v) such thatP (i, j) = 0, and

nGi,u; j,v)=0
nG,u; j,v)=0  forall (i, u; j,v) such thatA] (u, v) =
respectively.

From these observations we see that theidimctually a limit and we have

J =i H F F
4= lim n:D(ana)l,);)és[ () + Fo() + F ()]
= max_[H(n)+ Folp) + Fn)]. (13)

nm()=mn
wherenP € M is defined byrP (i, j) = (i) P(i, j).
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We next note that the term correspondingAg(-) is superfluous in the optimization
problem to determing. This is because, for anye M with m(n) = =P, we have

Fom= 3 nG,u; j,v)log PG, j)

iu;j,v
=Zn(i)P(i, D og Pa, j)
ij
=—H(nP).
So we may write
i =max[H() + F(n)] — H(®P), (14)
nemM
subject to the constraints
m(n) =nP, (15)
nG,u; j,v)=0  forall (i, u; j, v) such thatA (u, v) = 0, (16)
NG, us; x, %) = n(*, *; i, u), 1<i<K,1<u<p. a7

This is our upper bound for the largest Lyapunov exponeiitere the constraintlb)
already appeared i1 8), the constraintX6) is imposed becauge(n) = —oo forally € M
that do not satisfy this constraint, arf) is a consequence of 2), which every extended
n-type must satisfy.

5. Discussion

We first verify that the domain of the constrained optimization problem defined by Egs.
(14-17) is nonempty whenevet > —oo. This is already clear from the result that the

solution of the optimization problem, namé"tlyis an upper bound tg, but can also easily be

directly verified. The condition fot > —oc is that for every sequence of statés . . . , in)
satisfying @) there is a sequence of coordinates, . . ., u,) with
Al (o, un) Al (w1, up) ... Al (un_1,u) > 0. (18)

Pick one such sequence of coordinates for each such sequence of states, in an arbitrary way,
and associate to such a sequence of std@ges. ., i,) the extended Markov type of the
chosen sequenaé, uo; - - -, in, uy). Lety be a limit of a sequence of such extended types
for which the type of the underlying sequence of states convergeB.tdhe compactness
of M and the ergodic theorem for the underlying irreducible Markov chain ensure the
existence of at least one sughlt is straightforward to verify that any suahlies in the
domain of the optimization problem defined by Eq4417). We thus have, > —oo
wheneverl > —oo.

Next suppose one of the matricés, 1<i < K is the zero matrix. Theih = —oo. Also,
the domain of the constrained optimization problem defined by Bgs1{) is empty,
because it is impossible to finde M satisfying both conditionsl@) and (L5). Thus we
also havel. = —co.
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On the other hand, it is possible to have —oco even when. = —oo, as shown by the
following simple example.

Example 1.Let K = 3 andp = 2. The transition probability matrix of the underlying
Markov chain is given by

This Markov chain is irreducible with stationary distribution

7111
=12 2 a|

Let the nonnegative matrices corresponding to the individual states of the Markov chain be
given by

T _|10 T _|01 T |00
A_[Ol,A_ 0ol andA; = 10|

Consider the sequence of statés i1, i2, i3) = (2,1,2,1). This has strictly positive
probability, equal tc%, in the underlying Markov chain. However

00
AvATAl = [0 0].

o oNik

1
2
0
0

=

This verifies that. = —oo.
In this example we have

11
03713
1
1
100

Itis straightforward to verify that the probability distributigon{(i, u) : 1<i <3, 1< p<2},
with the rows and columns indexed in lexicographic order, given by

: (19)

=

I
MO OO OO
O o orMrO O
O 0o O ol
o000 oo
Ooo0© oo
OoooblHo
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lies in the domain of the optimization problem defined by Eq4—(7). It follows that
2

j» > —0OQ.
The basic feature of Example 1 is the existence of an infinite path through the states of
the underlying Markov chain the types of whose finite initial segments converg® to
and for which the product of the matrices corresponding to any finite initial segment of
the path is not identically zero. It is of course possible to construct many examples of this
kind, including ones where a transition is possible in the underlying Markov chain between
every pair of states. One sees immediately from this that one can construct examples with
J > —oco where/ is a rather poor upper bound farindeed, one can start with an example
where/ = —oo and having the feature identified in Example 1 as gi\fin:g —oo and then
modify the underlying matrices so as to make 0 > —oo without significantly affecting

7. For instance, the following example is constructed from Example 1 by following this
approach.

Example 2.Let K = 3, p = 2, and let the underlying Markov chain have transition proba-
bility matrix P as in Example 1, so thatt and =P are as defined there. Let

the nonnegative matrices corresponding to the individual states of the Markov chain be
given by

r_[10] 1 [61 r_[oo
a=[29) a=[32]. wmaaz=[20]

where 1> 6 > 0.

In this example one can check that= %Iog 5. However,. must be at least as big as
the one in Example 1, since the choiceqdh Eq. (19) continues to satisfy the constraints
(15-17) for this problem and the objective of the optimization proble) evaluates to
the same number at thisin both examples.

Let us return to the situation whefe= —oo. Thus, there exists a sequence of states
(io, - .., in) satisfying @) for which AT AT ... AT is the zero matrix. This tells us that
if, for the underlying Markov chain, instead of the originally given one we take the one
whose states are comprised of blocks of states of the original chain, then, if the block size
is sufficiently large, one cannot have a phenomenon like that in Example 1: indeed for
the upper bound defined as the solution to the optimization probléns(bject to the
constraints 15-17) with the new underlying chain, the domain of the problem becomes
empty, so the upper bound once again becomss We call the process of working with
blocks of the underlying Markov chaamortization since time has to be normalized to be
on the same scale for all blocks. We now formally define, for daghl, theL-amortized
upper bound

20ne can check thatgiven in Eq. (19) is the unique point in the domain of the optimization problem, so that
herei = —4.
2
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Definition. Write i (&) for (io, ..., ir—1) € X%, and similarly writej (). Let ¥ ) be given
by
X0 LG ¢ XL Pig,it)... Pip—2,ir1) > O}.

Let ML) denote the space of probability measurest$f) x x5, Let (zP)) e MD)
be defined by
def

(nP) P D, j Dy = n(ig) P(io, i1) ... Plir—2,i11)
P(ir-1, jo)P(jo, j1) - .- P(JL—2, jL—1)-

Let YD) denoteX ™ x {1, ..., p}, and letM D) denote the space of probability measures
onYB x Yy Letm® : MDD 1 MDD pe given bym D (L) = v where

V(L)(i(L), j(L)) — ZU(L)(i(L)s u; j(L), V).
u,v

Forn®™ e M@ the entropyH (1'1) is defined, in the usual way, as

G, u; j O, v)

Ho®) Ze— 5 g6, s j®, vy log
iy j Ly B D), u; , %)
where
HOGD w0 B DGz j O v,
F

Define the functiorF ) on M©) by

def . .
FO@E) =y g™, u; j 9, v)log Al (u, v),

i@ ;L) Ly

where
T def T T T
Aly, =ALAl Al .
Then thel.-amortized upper bound is defined as
AL 1
oz ( max [Ho®)+ F(L)(n(L))D — H(P), (20)
L \ ywemw
subject to the constraints
mB ) = @p)®, (21)
PGP, u; j P, 0 =0 forall i, u; j B, vy with AT, (w,v) =0, (22)
NG, s s, %) = nix, % i u), forall (®,u). (23)

~(L) . ) ) .
That }v( ) is an upper bound for the largest Lyapunov exponent is an immediate con-
sequence of the earlier development, once one recognize&titaP)")) = LH(nP),
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where the entropyi ((nP))) of (nP)X) is defined in the usual way.We now have the
following result:

Theorem.

¢S N
im A=A

L—o00

Proof. While we are only interested in the case> —oo, observe that we have already

~(L
argued that ifi = —oo then limy_, o /1( ) = —00, S0 the theorem holds in this case. Now

(L
suppose that > —oo. Then we havd( ) > —oo forall L >1, so that there is at least one
7L in the domain of the optimization probler@) with constraints 21-23).

It is straightforward to check that for any sugtt’ we have

HuP)y<H(nP)D) +log(p?).

This is a direct consequence of standard entropy inequalitigdsusing 1) once one
recognizes that the conditional distributionidf) (i (1), u; j, v) given i D), j D)) lives
on a set of cardinality at mogt.

We also observe that for everlf) € X and every(u, v) € {1, ..., p} x {1,..., p},
we haveAl,Tm (u, v) <||A;w || Hence

def . .
FOG) =y qBG8 u; j P v)log Al . v)

HORREIOR

< Y nPaPu; j P v)log|Aw
RPN

= ) m(io)P(io,i1) ... P(ir—2,ir—1) 10g[|A;w |l
(L)

= Elog||Xr-1...Xol.

where the notation in the last equation is as in Bj. (
Putting these observations together, we get

A 1 1 2
A <ZEIog||XL_1...X0||+Zlogp,

where we have used the fact thdi(nP)")) = LH(nP). Since we already know that

Q(L) is an upper bound fof, taking the limit as. — oo and appealing tol) proves the
theorem. [

We now describe the results of some numerical experiments we carried out, which suggest
that the upper bound can sometimes be quite good, even without the need for amortization.

3 Strictly speaking, if the underlying Markov chain is periodic with perihdhen unles4 is coprime withd
the new underlying Markov chain at the level of blocks is no longer irreducible, as was assumed in the earlier

A (L
development. It is not hard to show thh(t ) is still an upper bound for the largest Lyapunov exponent of the
original problem even in this case.
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To explain how we arrived at the numbers reported here, we first say a few words about the
simulation methodology. Since an analytic expressionifizrnot known, we estimated
using () as follows. Define

, def _q
Ap =1 ElOQHXn—l"'XO”-

Two issues need to be addressed. First, how fast glpesnverge tot; and second, how

should/, for a givenn be estimated. To address the second issue, we assu;;n(géf:
n~1log||X,—1--- Xol to have a normal distribution. To estimate the mea# gfi.e., 1,,
the mean and variance of samples obtained (using a random number generator) were used
to construct confidence intervals. All of the confidence intervals used have a confidence
coefficient of at least.@99.

To address the first issue, we estimated; ;v and compared its value to an estimate for
/5x106- In all cases below, the estimate &y, 106 was within the confidence interval of
/51 (@nd its confidence interval was the same as that;0{7). So, in the following
example, we assumeidto lie within the confidence interval of5, 1.

Example 4.Consider the asynchronous computation of the equatjen = Ax,, where
Ais a 2x 2 matrix, each component is handled by a separate processor. We assume that the
computation proceeds as

i _ -
X, = Zaljxn—di_/(n)'
J

Here the matrixd(n) = [d;;(n)] is a matrix of delays, which is assumed to evolve in a
Markovian way: it can be one of two valuésor d», with transition matrix?. Consider the
numerical values

|12 121 |12 . _ p l—p
a=[12] =[P w=[22]. wnr=[,7, 0]

It is straightforward to see that the evolution of the computation can be described through
a Markovian product of fixed nonnegative matrices. The underlying Markov chain is a two
state chain with transition probability matfx The matrices are % 4 matrices: the matrix
applied to determingxl, x2] can be thought of as determinipgt, x2, x! |, x2  Jinterms
of[x} ;,x2 ;,x1 5 x2 ,];the matrix thatis applied depends on the state of the underlying
Markov chain.

The following results were obtained using our technique to bound the largest Lyapunov

exponent of the computation, without any amortization

5,107 7 Error (%)
p=01 1.0950+ 104 1.0969 ~ 0.2
p=03 1.2086+ 104 1.2164 ~ 0.7
p=05 1.2926+ 104 1.3012 ~ 0.7
p=07 13566+ 2 x 1074 1.3618 ~ 04

p=09 14053+ 3 x 1074 1.4064 ~ 0.08
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Observe that is an increasing function gf. It appears that our estimate performed very
well for a wide range op.
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