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V. CONCLUSION A Methodology for the Design of Optimal Traffic
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the closed-loop system. Two design methods of the local observers
are given: one is based on the centralized observer gain and anothg{)stract_The authors consider the problem of optimally regulating
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F1) ¢ is causaliff for any A;, A2 € M, t > 0, p(A[lo’” + Wecalle; := (¢: — o)™, respectivelyy; := (¢ — ¢;)", the amount
A[;’“))[D’L) = (A" Intuitively, the decisions of a of cells respectivelytokens stored in the cell, respectively, token,

causaly are based only on past arrival information. buffer at timet. The parameters and p, are referred to atoken
F2) ¢ is realizableiff »(A) < A for all A € M. Intuitively, a buffer sizeandtoken arrival rate respectively. The interpretation is
realizabley cannot borrow flow from the futurk. that traffic can be transmitted by consuming an equal amount of
F3) wis (oo, 0i, pi)i=1,...,» cOnstrainedff, for all A € M, the tokens; if no tokens are available then arriving cells are stored in the
output process(A) is (ci0, 0i, pi)i=1,...,»n CONStrained. cell buffer. If no cells are present when tokens arrive, they are stored
F4) ¢is(fo, f) constrainedff, forall A € M, the output process in the token buffer. The cell buffer is infinite, the token buffer has size
@(A) is (fo, f) constrained. o, the token arrival rate ig, and the initial amount of tokens is.

We say thaty is optimaliff it satisfies (F1), (F2), (F3) [respectively, N [8] we proved that &40, o, p) leaky bucket is causal, realizable,
(F4)], andp(A) > ¥ (A), for all A € M and all flow controllers (o0, o, p) constrained [in the sense of (F1)—(F3)], and optimal.

¢ satisfying (F1), (F2), (F3) [respectively, (F4)]. The construction
(with proofs) of an optimal flow controller, is given in Section Ill M
(respectively, Section V). Section IV contains a simple “fork-join " or . ) ) .
“parallel” implementation of the optimal flow controller. A corollary V& NOW pass on to the solution of the optimal multiply constrained
of our optimality theorem is that the effect of a tandem of leakljoW control problem. We first fix &av. . p) leaky bucket and
buckets on an arbitrary offered traffic stream is the same, whatever §{gCUss some of its properties in the following lemmas.

order in which the leaky buckets are met. See also Cruz [5] for related-€Mma 1—MonotonicityLet ¢ be a(vo, 0. p) leaky bucket. If
results. Our methodology allows for arbitrary arrival processes whicﬁ, > A, thenp(4) > ?’(A)' .

in special cases, could represent continuous, piecewise constant, FT00f: Apply relations (4) defining the leaky bucket to A
or slotted time arrivals. We avoid induction-type proofs by usin@”d A Let B = ¢(4), B = ¢(4), and let all quantities n (4)
the unifying concept of reflection mapping, explored in our earligrresponding tod be denoted by tildes. Observe that + (¢ =
papers [2], [7], [8]: it is summarized in Section Il and explained foft + 4t — A« > 0. By the minimality of £ we obtain(, > (. for all
the special case of a single constraint; the single-constraint optifiaPuPPOse now tha, < o. Then, using (4)B; = A, > A: > B..
flow controller coincides with the popular “leaky bucket’ scheme>UPPOSe nextthat > o. Then, agan from (4)B: = oo +pt—Le >
Finally, the form of the optimal flow controller satisfying (F4) is?° T/t —{t > oo+pt—Li—(0—d.)" = B:, completing the proof]
surprisingly simple: in Section V it is seen that the total amount of Lémma 2—Invariance'Let v be a(oo, o, p) leaky bucket and let
backlogged traffic for the flow controller constructed in Sections It € M be(do. 7, p) constrained. Thep(4) = A.

and IV evolves in time in a fashion similar to a continuous version of _ F1o0f: If AiS (0. 0. p) constrained, then from the key obser-

Lindley’s equation of queueing theory but with a “concave server,¥ation mentioned earlieg, = o — oo + A, — pt < o for all ¢. But
then (4) givesp(A): = A — (qx — o) = A;. O

Lemma 3—Preservation of Burstiness Constraintgt o be a
Il. THE SINGLE CONSTRAINT CASE (0o, o, p) leaky bucket and let € M be (60, 7, p) constrained.
Recall [8] that a functionr € D[0, oc) (viz., right continuous Theng(A) is also(do, &, p) constrained, for all values afo, ¢o,

with left limits), can be reflected at zero in the sense that there isra g, p, p.
unique increasind € D[0, co), with {o— = 0, ¢+ := z+ + £+ > 0, Proof: Let B = ¢(A). Since B, < A, (realizability), we
forall ¢t > 0, andf[o‘m) 1(g: > 0)df, = 0. Write ¢ = R(«) for the immediately getB; < 7o + gt for all + > 0. It remains to show
reflected procesand¢ = £(x) for thereflector, see [3], [6], [8], and that B, — B, < & + j(t — s). We make use of the inequalities
[10]. The pair(R, L) is thereflection mappinglt is seen that

. MAIN OPTIMALITY RESULTS MULTIPLE CONSTRAINTS

Bi—B. <A —A.+ (g — o) (5)
élzﬁ(;r),:—<oinf<tws/\0> B, =B, <p(t—s)+ (0 —q)" (6)
@ =R(x)e =20+l = 0212[(:“ — ) Ve () following directly from (4). We distinguish two cases. First, assume
that p < p. Using the fact thatd is (6, &, p) constrained, (5) and
The operatorR is causal because, for0 < ¢ < t2, q1,— = (6) become
(qt,— Fxeg— —ae, ) VsuleSK,Z(;L’tZ, — x5), while £ is minimal
i.e., if x € D[0,c0), £ = L(z), and{ € D[0, o) is any increasing B, —B, <5+ p(t—s)+ (g — )"
nonnegative process such that+ ¢, > 0, for all ¢, then(, < ¢, Bi—B.<é+j(t—s)+(0—q )+
t — 5 - - (s

for all ¢.

The key observation is the fact that {a proceBs € M is
(00, 0, p) constrainedk= {the reflection ofx, := ¢ —oo+B,—pt
at zero stays below for all ¢}.

A (o0, g, p) leaky buckeflow controller o: M — M is defined
below by giving its actionB = ¢(A) on an arbitraryd € M

and, since(¢s — o)t A (0 — ¢5)" is identically zero, we obtain
By — B, < 6+ p(t — s). Secondly, assume > ;. Recall (3) for
the reflection mapping and use inequality (5)

B —B.<A —A.+(qgo —0)F
xyi=0—o0o+ A —pt, q:=R(x), (:=L(x)

<A — A, s As —ps) — (A, — pu
Bi=Ai—(a—0) =ootpt—te—(c—a)*. () = '+{““p (A= ps) = (=)

0<u<s
1From a physical point of viewy uses an infinite buffer where past arrivals Vo — 00 + As — ps] — 0} Vo
are stored; the decision that a cell is to be transmitted or rejected can be taken
at any point after arrival. If we are only allowed to use a buffer of finite size < sup [(Ar — Ay) — pls — )]
I, then we have to add the requirement thatl); —p(A)s < K+ A — A, T 0<u<s

forall¢ > s > 0 and allA € M; while this restriction is not considered

here, see [8] for results on optimal flow control with finite buffer constraints. V[Ae = ps] VA — Al
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At this point use the assumption thatis (50, 6. ) constrained, as a20, then By, being (a0, 01,p) constrained is alsdozq, 02, p)

well asp > g, to continue the inequality in the obvious way constrained and thus remains invariant after passing through the
L L s downstream leaky bucket. Hence there are never cells stored in that
B — B, < t—u)— - t — . - :
+ s < 0225[0 + p(t —u) — p(s —u)] V[do + pt — ps] leaky bucket, i.e.¢12,+ = 0 for all t. The only remaining case is

020 < 010 < 01 < 02, p1 = p2 = p. Initially the amount of

tokens in the upstream leaky bucket of the second configuration is
Theorem 1:Let ¢i: M — M be a (oi, 0i, pi) leaky o020 < 01. Let

bucket, fori = 1,---,n. Let ¢ := ¢, o --- 0 ¢ be the

composition ofey, -+, .. Then the mapy is causal, realizable,

(0i0, 04y pi)i=1,...,.n coONstrained, and, for any other realizable

(but not necessarily causaly o, o:, pi)i=1,....,» COnstrained map

yiM — “_M’ we hﬁve%“"(*“) 2 v(4), for all 4 € M. . . A token process does not have positive jumps, hence 0. Since

Proof: Causality follows from the fact that each; is causal; . .
hence, so is the composition. Realizability is also immediate frofd:* < 7* forall 0 < <7, and sincer, < 10, the procesd; is

the realizability of eachs,. Lemma 3, applied to each,, shows d10, 01, p) constrained on the intervil), ), implying that it passes
e T ' S invariant through the downstream leaky bucket, on the same interval.
that the tandem configuration .0, i, p;)i=1,....» CONstrained.

Finally, lety: M — M be as in the statement of the theorem. By thaNuScz1,e = 0 forall 0 < ¢ < 7. If 7 = 400 there is nothing else

. . . ) to add. Otherwise, it < +oco, we claim that the trajectories of the
optimality result for a single leaky bucket, we haye(4) > /(). tokens in th leaky bucket of each configuration are identical on
By Lemma Loz (21(A)) > 2(4(A)). But@a((A)) = v(A), by G2 e g

Lemma 2. Continuing this processtimes gives the desired. O [0: 7). Indeeq,_they are |n|t!ally the same and gquai;t@; the amount
. ) . of tokens arriving orf0, 7) is p7 in both cases; the token departures
Corollary 1: Given n leaky buckets dimensioned by

— H i H _ —\ 2
(050, 04, pi), 1 < i < m, consider sending an arbitrary trafficOn [0, 7) are also identical sinc8; = B, for all t € [0, 7). We

: : now argue on the intervt, oo), usingr as the new origin of time.
process through these regulators in series. The overall output process .
; - ; ince the amount of tokens in the downstream leaky bucket of the
is the same whatever the order in which these regulators are placfed ) . .
) . - ) irst configuration at time equals that of the upstream leaky bucket
Proof: This is an immediate consequence of the theorem. In ) . S )
of the second configuration, which is equal 49, we obtain that

deed, whatever order in which the leaky buckets are met the overtﬁll downstream leaky bucket of the first configuratiofyis, o, p)

regulator is feasible and optimal. Thus the overall output process mus . . . ;
9 P putp constrained or{r, o). But By is (o190, o1, p) constrained. Since

<[5+ it = )]V [Go + (t = )] = & + jp(t — 5).

T=1inf{t > 0:ryy = 01}.

be the same irrespective of the order of the regulators. O 10 < 01 ando1 < os, the flow B, passes invariant through this
leaky bucket or[r, o0). Henceci2,, =0 for all t > 7. O
IV. PARALLEL IMPLEMENTATION For two flow controllers,, v, the symboly A ¢ stands for the
An equivalent and more succinct description of the optimal floftlow controller defined by A 4)(A4) := min{p(A), ¥(A4)}.
controller is one that places theleaky buckets in parallel and directs Theorem 2: Let ; be a(si0, o:, p:) leaky bucket; =1, ---, n.
their outputs into a join (a simple synchronization mechanism). VWéhen, for each permutatiofi:, - --, i,,) of (1, ---, n), p;; 0--- 0
show this below. @i, = @1 N A on.
Let ¢; be a (o0, 0, p;) leaky bucket,i = 1, 2. Consider We prove the statement for = 2 first. By Lemma 4, the
the connectionsys o 1 and ¢1 o 2. For A € M, let By := amount of cellspi(A): — w2(p1(A4)): and p2(A4); — @1 (p2(A))q

©1(A), Bz := ¢2(A), B := @2 0p1(A) = 1 0 p2(A), the latter cannot be simultaneously positive. Thus their minimum is equal
equality being a consequence of Theorem 1. tetr; denote the to zero. Butea(wi(A)): = ¢1(p2(A)):, and sop2(pi(A4)): =
amount of cells and tokens, respectively, in leaky bugketith input o (A); A v2(A).. The general case follows by induction. O
processd, i = 1, 2. Let ¢i2, 12 be the amount of cells and tokens, Interpretation: The operation of taking the minimum of two traffic
respectively, in leaky buckep, with input processB; = ¢1(A). processes can be interpreted as a “join,” an operation frequently
Similarly, ¢21, r21 refer to leaky bucketp: fed by B; = ¢2(A). encountered in manufacturing networks. Let the tokens in leaky

The following diagram should help as a reminder: bucketi be of “color” ;. When a cell arrives into the flow controller
it is split into n copies which are simultaneously sent to each leaky
Y1 P2 bucket. Thus théth copy picks up a token of colarif it is available
and departs instantaneously or waits in the cell buffer. itheopy
A B _.B eventually departs from thih leaky bucket by carrying a token of

typei. It is then directed toward another buffer where it waits until
the first moment of time that the other copies, carrying tokens of
different colors, depart from their respective leaky buckets. At that
A 2,79 Bo cor,ro1 | moment, all copies depart simultaneously, and physically the flow

4 - - - b controller triggers the transmission of a cell into the network. The

final stage of the system is a “join,” performing the synchronization
Lemma 4: For all# > 0, c12,+ andez:,+ cannot be both positive. gperation just described. The join provides a buffer for storing copies

Proof: Assume firstpy # p2. If c12.s > 0, ca1,s > 0, for - of cells carrying colored tokens. Note that at all points of time at least
somes > 0, then, by right continuity, there i > s such that

12,4 > 0, co1,u > 0, for all s < « < ¢t. Since cells and tokens
cannot be simultaneously positive, we have, by balancing tokens in

) w2

the downstream leaky buckets of each configuration 2 Another way of expressing this is by recalling tHat, —r ¢, 0 <t < 7}

is the reflection of{oy — 020 + Ba,¢ — pt, 0 < t < 7}, while {02 —

B — Bs =pi(t—s), Bi—B.=pa(t—s) ri2.4, 0 <t < 7} is the reflection of{ oo — g0 + By — pt, 0 < t < 7}.

. . o . Since Bz, is identical toB; for 0 <t < 7, both{oz —ro ¢, 0 <t < 7}
implying p1 = p2, contradicting our assumption. Next assUm@nd{s, — r15.,, 0 < ¢ < 7} are reflections of the same process; hence,

p1 = p2 = p and, without loss of generalitys; < 2. If 010 <  they are identical.
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one of the colors is missing from the buffer.

©1
B=gp A <P2(A)

fork join

The algorithm just described can be implemented simply.

V. OPTIMAL TRAFFIC SHAPING VIA CONCAVE CONSTRAINTS
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The mapA — ¢ can be thought of as having been obtained through
some kind of “reflection mapping.” The ordinary reflection mapping
reveals itself only upon choosinfft) = fo(t) = pt. In other words,
(10) is a generalization of “Lindley’s equation” of classical queueing
theory.

It is easy to see that a tandem of optimgl.:, fi)i=1,...,»
constrained flow controllers is input/output equivalent to a single
(min; fos, min; f;) constrained flow controller. The map of (9),
although causal, is realizable by a finite-dimensional algorithm if and
only if both f and f, are piecewise linear functions with finitely
many pieces.

One can start from (9) and show its optimality by using various
inequalities, but the approach presented here seems more systematic

We deal with the design of the optimal flow controller satisfying'md 'in'sightful. It should also_ be pointed out that the gxistence pf an
(F1), (F2), and (F4). The key observation is that (F4) is equivalent gxplicit formula such as (9) is quite unexpected. For instance, if we

e(A)e < folp) +pt,  w(A)e—p(A)s < f(p) +p(t = s)

forallt > s >0,p >0, A€ M. Here, f* (respectively,f;)
denotes thelual of f (respectively,fo) defined by (c.f., Rockafellar
[9D) £*(p) := sup,s,[f(t) — pt], p > 0. The functionf*: Ry —

Ry U {4} is convex, being the supremum of affine functions

Furthermore f(t) = inf,>o[f"(p) + pt], t > 0. The guess that an
optimal flow controller is formed by “parallelizing” a collection of
leaky buckets, one for eagh turns out to be correct.

Theorem 3: Define the mapy: M — M by the following
equations:

wf = f"(p) = fo (p) + A — pt,
(A) = A A ;I;fo[fJ(p) + pt = (7]

0= L(2") (7

®)

Then is causal, realizabld,fo, f) constrained, and optimal.
Proof: Notice that the mag,(A4): := A¢ A [f5(p) + pt — £]]

is a(f5(p), f*(p), p) leaky bucket. Consider &fy, f) constrained

map+ such thaty(A) < A for all A. By the discussion preceding

the theorem, such a map also satisfies a sitglgp), " (p), p)

constraint and hence, by the optimality of the leaky buckegt,4) >

(A), for all A. Since ¢(A) = inf,>0¢,(A4), we also have

©(A4) > ¥(A), for all A. Causality follows from the fact that each [1)
¢, Is causal, while realizability is due to the obvious inequality

¢(A) < A. Finally, we show thaty is (fo, f) constrained. Notice
that for anyfinite setJ C IRy the mapes = inf,c7p, is

(f5(p), £ (p), p)pes constrained, by Theorems 2 and 1. Fix now

t > s > 0,¢ >0, and choose] = {p1, p2} to be such that
o (A)s < p(A)s + 2, and f*(p2) + p2(t —5) < f(t —5) +e.
Thus, o (A)s < @p, (A)s < ©(A)s + =, while (A) < @s(A):.
Subtracting, we obtaip(A); — ¢(A)s < ps(A) — pu(A)s +e <
min,es[f*(p)+p(t—s)]4+e < f(t—s)+2¢. Sincee is arbitrary, we
conclude thato(A); —¢(A)s < f(t—s). Similarly, o(A); < fo(t).
Thus ¢ satisfies( fo, f) constraints and the theorem is provedd

It is interesting to find an expression for the amount of cells stored!

in the optimal flow controller. By (7) and (3j; = info<.<:[f"(p)—
f5(p) + As — ps] A 0. Inserting this in (8) we obtain

p(d)e=Acninf inf [£7(p) + A+ p(t = )] A Lo (p) + o]

Interchanging the order of the infima, and using the representatior$]

of f and f, in terms of their duals, we obtain

(A)r = A A ngﬁ[f’ls + f(t = $)]A fol(t). ©)

add the requirement that the flow controller cannot store more than
K cells (see footnote 1), then, just as in the single-constraint case
[8], we do not expect closed-form expressions for an optimal flow
controller. However, we do expect that an optimal flow controller is
expressible in terms of reflection mappings.

An (fo, f) constrained flow controller can be used to implement
fairly sophisticated traffic shaping. As mentioned earlier, the need
for traffic shaping is imposed by the fact that the network is a shared
resource. The problem of how to select the shaping functions will
be influenced by what are considered appropriate quality of service
(QoS) metrics, and by the kinds of guaranteed QoS services the
network will choose to offer, which in turn will be influenced by
economic factors. This is a problem for future research.

Finally, we should mention that it is desirable to devise methods
for joint flow control of interacting inputs, as for instance when
one is simultaneously controlling different substreams generated by
a multimedia application. This leads to multidimensional reflection
mapping problems of a related nature to the one considered here and
appears to be quite challenging.
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Finally, the formula for;, the amount of cells stored in the cell buffer

at timet, is obtained by a simple subtractian:= 4;—¢(A)¢, and so
co = sup [(Ar —Ay) — f(t—9)] V][4 - fo(H] V0.  (10)

0<s<t



