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V. CONCLUSION

This paper presents a sufficient condition for theDHCD prob-
lem for nonlinear systems. The resulting controller guarantees local
asymptotic stability and provides a predeterminedL2-gain bound on
the closed-loop system. Two design methods of the local observers
are given: one is based on the centralized observer gain and another
one is related to the solution of the matrix inequalities. The results
are extensions of those in [8] and [13] for the case of linear systems.

REFERENCES

[1] J. Ball, J. W. Helton, and M. L. Walker, “H1 control for nonlinear
systems via output feedback,”IEEE Trans. Automat. Contr., vol. 38,
pp. 546–559, 1993.

[2] J. C. Doyle, K. Glover, P. P. Khargonekar, and B. A. Francis, “State
space solutions to standardH2 andH1 control problems,”IEEE Trans.
Automat. Contr., vol. 34, pp. 831–847, 1989.

[3] A. Isidori and A. Astolfi, “Disturbance attenuation andH1 control
via measurement feedback in nonlinear systems,”IEEE Trans. Automat.
Contr., vol. 37, pp. 1283–1293, 1992.

[4] A. Isidori, “H1 control via measurement feedback for affine nonlinear
systems,”Int. J. Robust and Nonlinear Contr., vol. 4, pp. 553–574, 1994.

[5] , “A necessary condition for nonlinearH1 control via measure-
ment feedback,”Syst. Contr. Lett., vol. 23, pp. 169–177, 1994.

[6] W. M. Lu and J. C. Doyle, “H1 control of nonlinear systems via output
feedback: Controller parameterization,”IEEE Trans. Automat. Contr.,
vol. 39, pp. 2517–2521, 1994.
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A Methodology for the Design of Optimal Traffic
Shapers in Communication Networks

Venkat Anantharam and Takis Konstantopoulos

Abstract—The authors consider the problem of optimally regulating
the source traffic in a communication network to simultaneously satisfy
a finite number of affine burstiness constraints. They prove that an
optimal solution is a series connection of correspondingly dimensioned
“leaky buckets.” They propose a simple “fork-join” implementation of
the optimal solution and study extensions to the problem of optimally
shaping the traffic flow to meet a burstiness constraint specified by a
concave increasing function. A consequence of their optimality results is
that permutations of leaky buckets in a series connection are input–output
equivalent.

Index Terms—Communication networks, flow control, Skorokhod re-
flection mapping.

I. PRELIMINARIES

In this paper we consider the problem of designing flow control
schemes in a communication network. Flow control is necessary for
the regulation and shaping of a source traffic stream, which must
interact and share network resources with other traffic streams after
it is admitted. Therefore, one normally requires the admitted flow
to satisfy certain “burstiness” or “shaping” constraints. It is also
desirable that the controller be optimal, in that the offered traffic
is transmitted as quickly as possible.

A general model for a traffic process is a nonnegative sigma-finite
Borel measureA on the time axisIR+. This is represented by an
increasing right-continuous processfAt; t � 0g; the interpretation
is that for 0 � s � t, At � As gives the volume of traffic (in
cells) on the time interval(s; t]. WriteM for the collection of such
processes. We writeAS for the restriction ofA onS � IR+, defined
by AS

t :=
S\[0; t]

dAs. We also define a partial ordering onM by
A � B () At � Bt, for all t � 0. We say thatA 2 M is
(�i0; �i; �i)i=1; ���; n constrainediff, for all 0 � s � t

At � min
1�i�n

f�i0 + �itg; At �As � min
1�i�n

f�i + �i(t� s)g: (1)

Here,�i � �i0 � 0; �i � 0, for all i. For n = 1 we simply say
thatA is (�0; �; �) constrained. The above definitions are discussed
in Anantharam [1] and Cruz [4], [5], and they also closely match
the standard shaping descriptors that have been adopted in practice
for high-speed networks. More generally, forf0; f arbitrary concave
increasing functions fromIR+ into IR+; we say thatA is (f0; f)
constrainediff

At � f0(t); At �As � f(t� s): (2)

Of course, (1) is a convenient special case of (2). Atraffic regulator,
or flow controlleris simply a map':M!M. Some properties that
such a map may possess are as follows.
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F1) ' is causal iff for any A1; A2 2 M; t � 0; '(A
[0; t)
1 +

A
[t;1)
2 )[0; t) = '(A1)

[0; t). Intuitively, the decisions of a
causal' are based only on past arrival information.

F2) ' is realizable iff '(A) � A for all A 2 M. Intuitively, a
realizable' cannot borrow flow from the future.1

F3) ' is (�i0; �i; �i)i=1; ���; n constrainediff, for all A 2M, the
output process'(A) is (�i0; �i; �i)i=1; ���; n constrained.

F4) ' is (f0; f) constrainediff, for all A 2M, the output process
'(A) is (f0; f) constrained.

We say that' is optimal iff it satisfies (F1), (F2), (F3) [respectively,
(F4)], and'(A) �  (A), for all A 2 M and all flow controllers
 satisfying (F1), (F2), (F3) [respectively, (F4)]. The construction
(with proofs) of an optimal flow controller, is given in Section III
(respectively, Section V). Section IV contains a simple “fork-join ” or
“parallel” implementation of the optimal flow controller. A corollary
of our optimality theorem is that the effect of a tandem of leaky
buckets on an arbitrary offered traffic stream is the same, whatever the
order in which the leaky buckets are met. See also Cruz [5] for related
results. Our methodology allows for arbitrary arrival processes which,
in special cases, could represent continuous, piecewise constant,
or slotted time arrivals. We avoid induction-type proofs by using
the unifying concept of reflection mapping, explored in our earlier
papers [2], [7], [8]: it is summarized in Section II and explained for
the special case of a single constraint; the single-constraint optimal
flow controller coincides with the popular “leaky bucket” scheme.
Finally, the form of the optimal flow controller satisfying (F4) is
surprisingly simple: in Section V it is seen that the total amount of
backlogged traffic for the flow controller constructed in Sections III
and IV evolves in time in a fashion similar to a continuous version of
Lindley’s equation of queueing theory but with a “concave server.”

II. THE SINGLE CONSTRAINT CASE

Recall [8] that a functionx 2 D[0; 1) (viz., right continuous
with left limits), can be reflected at zero in the sense that there is a
unique increasing̀ 2 D[0; 1), with `0� = 0, qt := xt + `t � 0,
for all t � 0, and

[0;1)
1(qt > 0)d`t = 0. Write q = R(x) for the

reflected processand` = L(x) for the reflector; see [3], [6], [8], and
[10]. The pair(R; L) is the reflection mapping. It is seen that

`t =L(x)t = � inf
0�s�t

xs ^ 0

qt =R(x)t = xt + `t = sup
0�s�t

(xt � xs) _ xt: (3)

The operatorR is causal because, for0 < t1 < t2; qt � =
(qt �+xt ��xt �)_supt �s<t (xt ��xs), whileL is minimal,
i.e., if x 2 D[0;1); ` = L(x), and ~̀2 D[0; 1) is any increasing
nonnegative process such thatxt + ~̀

t � 0, for all t, then `t � ~̀
t,

for all t.
The key observation is the fact that {a processB 2 M is

(�0; �; �) constrained}() {the reflection ofxt := ���0+Bt��t

at zero stays below� for all t}.
A (�0; �; �) leaky bucketflow controller':M!M is defined

below by giving its actionB = '(A) on an arbitraryA 2 M

xt := � � �0 +At � �t; q := R(x); ` := L(x)

Bt :=At � (qt � �)
+ = �0 + �t� `t � (� � qt)

+
: (4)

1From a physical point of view,' uses an infinite buffer where past arrivals
are stored; the decision that a cell is to be transmitted or rejected can be taken
at any point after arrival. If we are only allowed to use a buffer of finite size
K, then we have to add the requirement that'(A)t�'(A)s � K+At�As,
for all t � s � 0 and allA 2 M; while this restriction is not considered
here, see [8] for results on optimal flow control with finite buffer constraints.

We call ct := (qt � �)
+, respectively,rt := (� � qt)

+, the amount
of cells, respectively,tokens, stored in the cell, respectively, token,
buffer at timet. The parameters� and �, are referred to astoken
buffer sizeand token arrival rate, respectively. The interpretation is
that traffic can be transmitted by consuming an equal amount of
tokens; if no tokens are available then arriving cells are stored in the
cell buffer. If no cells are present when tokens arrive, they are stored
in the token buffer. The cell buffer is infinite, the token buffer has size
�, the token arrival rate is�, and the initial amount of tokens is�0.
In [8] we proved that a(�0; �; �) leaky bucket is causal, realizable,
(�0; �; �) constrained [in the sense of (F1)–(F3)], and optimal.

III. M AIN OPTIMALITY RESULTS: MULTIPLE CONSTRAINTS

We now pass on to the solution of the optimal multiply constrained
flow control problem. We first fix a(�0; �; �) leaky bucket and
discuss some of its properties in the following lemmas.

Lemma 1—Monotonicity:Let ' be a(�0; �; �) leaky bucket. If
A � ~A; then '(A) � '( ~A).

Proof: Apply relations (4) defining the leaky bucket' to A

and ~A. Let B = '(A), ~B = '( ~A), and let all quantities in (4)
corresponding to~A be denoted by tildes. Observe thatxt + ~̀

t =
~qt +At � ~At � 0. By the minimality ofL we obtain~̀t � `t for all
t. Suppose now thatqt < �. Then, using (4),Bt = At � ~At � ~Bt.
Suppose next thatqt � �. Then, again from (4),Bt = �0+�t�`t �

�0+�t� ~̀
t � �0+�t� ~̀

t�(��~qt)
+ = ~Bt, completing the proof.

Lemma 2—Invariance:Let ' be a(�0; �; �) leaky bucket and let
A 2 M be (�0; �; �) constrained. Then'(A) = A.

Proof: If A is (�0; �; �) constrained, then from the key obser-
vation mentioned earlier,qt = � � �0 + At � �t � � for all t. But
then (4) gives'(A)t = At � (qt � �)+ = At.

Lemma 3—Preservation of Burstiness Constraints:Let ' be a
(�0; �; �) leaky bucket and letA 2 M be (~�0; ~�; ~�) constrained.
Then'(A) is also(~�0; ~�; ~�) constrained, for all values of�0, ~�0,
�, ~�, �, ~�.

Proof: Let B = '(A). Since Bt � At (realizability), we
immediately getBt � ~�0 + ~�t for all t � 0. It remains to show
thatBt � Bs � ~� + ~�(t� s). We make use of the inequalities

Bt �Bs �At �As + (qs � �)+ (5)

Bt �Bs � �(t� s) + (� � qs)
+ (6)

following directly from (4). We distinguish two cases. First, assume
that � � ~�. Using the fact thatA is (~�0; ~�; ~�) constrained, (5) and
(6) become

Bt �Bs � ~� + ~�(t� s) + (qs � �)+

Bt �Bs � ~� + ~�(t� s) + (� � qs)
+

and, since(qs � �)+ ^ (� � qs)
+ is identically zero, we obtain

Bt � Bs � ~� + ~�(t � s). Secondly, assume� > ~�. Recall (3) for
the reflection mapping and use inequality (5)

Bt �Bs �At � As + (qs � �)+

�At � As + sup
0�u�s

[(As � �s)� (Au � �u)]

_[� � �0 + As � �s]� � _ 0

� sup
0�u�s

[(At � Au)� �(s� u)]

_ [At � �s] _ [At �As]:
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At this point use the assumption thatA is (~�0; ~�; ~�) constrained, as
well as� > ~�, to continue the inequality in the obvious way

Bt �Bs � sup
0�u�s

[~� + ~�(t� u)� �(s� u)] _ [ ~�0 + ~�t� �s]

� [~� + ~�(t� s)] _ [ ~�0 + ~�(t� s)] = ~� + ~�(t� s):

Theorem 1: Let 'i:M ! M be a (�i0; �i; �i) leaky
bucket, for i = 1; � � � ; n. Let ' := 'n � � � � � '1 be the
composition of'1; � � � ; 'n. Then the map' is causal, realizable,
(�i0; �i; �i)i=1; ���; n constrained, and, for any other realizable
(but not necessarily causal)(�i0; �i; �i)i=1; ���; n constrained map
 :M !M, we have'(A) �  (A), for all A 2 M.

Proof: Causality follows from the fact that each'i is causal;
hence, so is the composition. Realizability is also immediate from
the realizability of each'i. Lemma 3, applied to each'i, shows
that the tandem configuration is(�i0; �i; �i)i=1;���;n constrained.
Finally, let :M!M be as in the statement of the theorem. By the
optimality result for a single leaky bucket, we have'1(A) �  (A).
By Lemma 1,'2('1(A)) � '2( (A)). But '2( (A)) =  (A), by
Lemma 2. Continuing this processn times gives the desired.

Corollary 1: Given n leaky buckets dimensioned by
(�i0; �i; �i); 1 � i � n, consider sending an arbitrary traffic
process through these regulators in series. The overall output process
is the same whatever the order in which these regulators are placed.

Proof: This is an immediate consequence of the theorem. In-
deed, whatever order in which the leaky buckets are met the overall
regulator is feasible and optimal. Thus the overall output process must
be the same irrespective of the order of the regulators.

IV. PARALLEL IMPLEMENTATION

An equivalent and more succinct description of the optimal flow
controller is one that places then leaky buckets in parallel and directs
their outputs into a join (a simple synchronization mechanism). We
show this below.

Let 'i be a (�i0; �i; �i) leaky bucket, i = 1; 2. Consider
the connections'2 � '1 and '1 � '2. For A 2 M, let B1 :=
'1(A); B2 := '2(A); B := '2 � '1(A) = '1 � '2(A), the latter
equality being a consequence of Theorem 1. Letci; ri denote the
amount of cells and tokens, respectively, in leaky bucket'i with input
processA, i = 1; 2. Let c12; r12 be the amount of cells and tokens,
respectively, in leaky bucket'2 with input processB1 = '1(A).
Similarly, c21; r21 refer to leaky bucket'1 fed by B2 = '2(A).
The following diagram should help as a reminder:

'1 '2

A �! c1; r1 B1�!
c12; r12 �! B

'2 '2

A �! c2; r2 B2�!
c21; r21 �! B

Lemma 4: For all t � 0, c12; t andc21; t cannot be both positive.
Proof: Assume first�1 6= �2. If c12; s > 0, c21; s > 0, for

some s > 0, then, by right continuity, there ist > s such that
c12; u > 0, c21; u > 0, for all s � u � t. Since cells and tokens
cannot be simultaneously positive, we have, by balancing tokens in
the downstream leaky buckets of each configuration

Bt �Bs = �1(t� s); Bt �Bs = �2(t� s)

implying �1 = �2, contradicting our assumption. Next assume
�1 = �2 = � and, without loss of generality,�1 � �2. If �10 �

�20; then B1, being (�10; �1; �) constrained is also(�20; �2; �)
constrained and thus remains invariant after passing through the
downstream leaky bucket. Hence there are never cells stored in that
leaky bucket, i.e.,c12; t = 0 for all t. The only remaining case is
�20 < �10 � �1 � �2, �1 = �2 = �. Initially the amount of
tokens in the upstream leaky bucket of the second configuration is
�20 < �1. Let

� = infft > 0: r2; t = �1g:

A token process does not have positive jumps, hence� > 0. Since
r2; t < �1 for all 0 � t < � , and since�20 < �10, the processB2 is
(�10; �1; �) constrained on the interval[0; �), implying that it passes
invariant through the downstream leaky bucket, on the same interval.
Thusc21; t = 0 for all 0 � t < � . If � = +1 there is nothing else
to add. Otherwise, if� < +1, we claim that the trajectories of the
tokens in the'2 leaky bucket of each configuration are identical on
[0; �). Indeed, they are initially the same and equal to�20; the amount
of tokens arriving on[0; �) is �� in both cases; the token departures
on [0; �) are also identical sinceBt = B2; t for all t 2 [0; �).2 We
now argue on the interval[�; 1), using� as the new origin of time.
Since the amount of tokens in the downstream leaky bucket of the
first configuration at time� equals that of the upstream leaky bucket
of the second configuration, which is equal to�1, we obtain that
the downstream leaky bucket of the first configuration is(�1; �2; �)
constrained on[�; 1). But B1 is (�10; �1; �) constrained. Since
�10 � �1 and �1 � �2, the flowB1 passes invariant through this
leaky bucket on[�; 1). Hencec12; t = 0 for all t � � .

For two flow controllers';  , the symbol' ^  stands for the
flow controller defined by(' ^  )(A) := minf'(A);  (A)g.

Theorem 2: Let 'i be a(�i0; �i; �i) leaky bucket,i = 1; � � � ; n.
Then, for each permutation(i1; � � � ; in) of (1; � � � ; n); 'i � � � � �
'i = '1 ^ � � � ^ 'n.

We prove the statement forn = 2 first. By Lemma 4, the
amount of cells'1(A)t � '2('1(A))t and'2(A)t � '1('2(A))t
cannot be simultaneously positive. Thus their minimum is equal
to zero. But'2('1(A))t = '1('2(A))t, and so'2('1(A))t =
'1(A)t ^ '2(A)t. The general case follows by induction.

Interpretation: The operation of taking the minimum of two traffic
processes can be interpreted as a “join,” an operation frequently
encountered in manufacturing networks. Let the tokens in leaky
bucketi be of “color” i. When a cell arrives into the flow controller
it is split into n copies which are simultaneously sent to each leaky
bucket. Thus theith copy picks up a token of colori if it is available
and departs instantaneously or waits in the cell buffer. Theith copy
eventually departs from theith leaky bucket by carrying a token of
type i. It is then directed toward another buffer where it waits until
the first moment of time that the other copies, carrying tokens of
different colors, depart from their respective leaky buckets. At that
moment, all copies depart simultaneously, and physically the flow
controller triggers the transmission of a cell into the network. The
final stage of the system is a “join,” performing the synchronization
operation just described. The join provides a buffer for storing copies
of cells carrying colored tokens. Note that at all points of time at least

2Another way of expressing this is by recalling thatf�2�r2; t; 0 � t < �g
is the reflection off�2 � �20 + B2; t � �t; 0 � t < �g, while f�2 �
r12; t; 0 � t < �g is the reflection off�2 � �20 + Bt � �t; 0 � t < �g.
SinceB2; t is identical toBt for 0 � t < � , bothf�2 � r2; t; 0 � t < �g
and f�2 � r12; t; 0 � t < �g are reflections of the same process; hence,
they are identical.
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one of the colors is missing from the buffer.

The algorithm just described can be implemented simply.

V. OPTIMAL TRAFFIC SHAPING VIA CONCAVE CONSTRAINTS

We deal with the design of the optimal flow controller satisfying
(F1), (F2), and (F4). The key observation is that (F4) is equivalent to

'(A)t � f
�

0 (�) + �t; '(A)t � '(A)s � f
�(�) + �(t� s)

for all t � s � 0, � � 0, A 2 M. Here, f� (respectively,f�0 )
denotes thedual of f (respectively,f0) defined by (c.f., Rockafellar
[9]) f�(�) := supt�0

[f(t) � �t]; � � 0. The functionf�: IR+ !
IR+ [ f+1g is convex, being the supremum of affine functions.
Furthermore,f(t) = inf��0[f

�(�) + �t]; t � 0. The guess that an
optimal flow controller is formed by “parallelizing” a collection of
leaky buckets, one for each�, turns out to be correct.

Theorem 3: Define the map': M ! M by the following
equations:

x
�
t := f

�(�)� f�0 (�) + At � �t; `
� := L(x�) (7)

'(A)t :=At ^ inf
��0

[f�0 (�) + �t� `�t ]: (8)

Then' is causal, realizable,(f0; f) constrained, and optimal.
Proof: Notice that the map'�(A)t := At ^ [f�0 (�) + �t� `

�
t ]

is a (f�0 (�); f
�(�); �) leaky bucket. Consider a(f0; f) constrained

map such that (A) � A for all A. By the discussion preceding
the theorem, such a map also satisfies a single(f�0 (�); f

�(�); �)
constraint and hence, by the optimality of the leaky bucket,'�(A) �
 (A), for all A. Since '(A) = inf��0 '�(A), we also have
'(A) �  (A), for all A. Causality follows from the fact that each
'� is causal, while realizability is due to the obvious inequality
'(A) � A. Finally, we show that' is (f0; f) constrained. Notice
that for any finite set J � IR+ the map'J := inf�2J '� is
(f�0 (�); f

�(�); �)�2J constrained, by Theorems 2 and 1. Fix now
t � s � 0, " > 0, and chooseJ = f�1; �2g to be such that
'� (A)s � '(A)s + ", and f�(�2) + �2(t � s) � f(t � s) + ".
Thus,'J (A)s � '� (A)s � '(A)s + ", while '(A)t � 'J (A)t.
Subtracting, we obtain'(A)t � '(A)s � 'J (A)t � 'J (A)s + " �
min�2J [f

�(�)+�(t�s)]+" � f(t�s)+2". Since" is arbitrary, we
conclude that'(A)t�'(A)s � f(t�s). Similarly,'(A)t � f0(t).
Thus' satisfies(f0; f) constraints and the theorem is proved.

It is interesting to find an expression for the amount of cells stored
in the optimal flow controller. By (7) and (3),`�t = inf0�s�t[f

�(�)�
f�0 (�) + As � �s] ^ 0. Inserting this in (8) we obtain

'(A)t = At ^ inf
��0

inf
0�s�t

[f�(�) +As + �(t� s)] ^ [f�0 (�) + �t]:

Interchanging the order of the infima, and using the representations
of f and f0 in terms of their duals, we obtain

'(A)t = At ^ inf
0�s�t

[As + f(t� s)] ^ f0(t): (9)

Finally, the formula forct, the amount of cells stored in the cell buffer
at timet, is obtained by a simple subtraction:ct = At�'(A)t, and so

ct = sup
0�s�t

[(At �As)� f(t� s)] _ [At � f0(t)] _ 0: (10)

The mapA 7! c can be thought of as having been obtained through
some kind of “reflection mapping.” The ordinary reflection mapping
reveals itself only upon choosingf(t) = f0(t) = �t. In other words,
(10) is a generalization of “Lindley’s equation” of classical queueing
theory.

It is easy to see that a tandem of optimal(f0i; fi)i=1; ���; n
constrained flow controllers is input/output equivalent to a single
(mini f0i; mini fi) constrained flow controller. The map' of (9),
although causal, is realizable by a finite-dimensional algorithm if and
only if both f and f0 are piecewise linear functions with finitely
many pieces.

One can start from (9) and show its optimality by using various
inequalities, but the approach presented here seems more systematic
and insightful. It should also be pointed out that the existence of an
explicit formula such as (9) is quite unexpected. For instance, if we
add the requirement that the flow controller cannot store more than
K cells (see footnote 1), then, just as in the single-constraint case
[8], we do not expect closed-form expressions for an optimal flow
controller. However, we do expect that an optimal flow controller is
expressible in terms of reflection mappings.

An (f0; f) constrained flow controller can be used to implement
fairly sophisticated traffic shaping. As mentioned earlier, the need
for traffic shaping is imposed by the fact that the network is a shared
resource. The problem of how to select the shaping functions will
be influenced by what are considered appropriate quality of service
(QoS) metrics, and by the kinds of guaranteed QoS services the
network will choose to offer, which in turn will be influenced by
economic factors. This is a problem for future research.

Finally, we should mention that it is desirable to devise methods
for joint flow control of interacting inputs, as for instance when
one is simultaneously controlling different substreams generated by
a multimedia application. This leads to multidimensional reflection
mapping problems of a related nature to the one considered here and
appears to be quite challenging.
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[4] R. L. Cruz, “A calculus for network delay—Part I: Network elements
in isolation,” IEEE Trans. Info. Th.,vol. 37, pp. 114–131, 1991.

[5] , “A calculus for network delay—Part II: Network analysis,”IEEE
Trans. Info. Th.,vol. 37, pp. 132–141, 1991.

[6] J. M. Harrison,Brownian Motion and Stochastic Flow Systems.New
York: Wiley, 1985.

[7] T. Konstantopoulos and V. Anantharam, “An optimal flow control
scheme that regulates the burstiness of traffic subject to delay con-
straints,” inProc. 32nd IEEE Conf. Decision and Control, 1993.

[8] , “Optimal flow control schemes that regulate the burstiness of
traffic,” IEEE/ACM Trans. Networking,vol. 3, pp. 423–432, 1995.

[9] R. T. Rockafellar,Convex Analysis. Princeton, NJ: Princeton Univ.
Press, 1970.

[10] A. V. Skorokhod, “Stochastic equations for diffusion processes with
boundaries,”Th. Prob. Appl.,vol. 6, pp. 287–298, 1961.


