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Burst Reduction Properties of the Leaky Bucket
Flow Control Scheme in ATM Networks

Venkat Anantharam and Takis Konstantopoulos

Abstract— The leaky bucket is a simple flow control scheme
for ATM networks. An arriving cell can be transmitted only if it
finds a token in the token buffer, in which case it is transmitted
instantaneously by consuming a token. If the token buffer is
empty, the cell has to wait until the generation of a new token. For
purposes of analysis we assume an infinite cell buffer. The control
parameter is the token buffer size C. We examine the burstiness
of the output flow as a function of C and show that the burstiness
increases with C. In particular the output flow is always less
bursty than the input flow. This monotonicity simplifies optimal
choice of the token buffer size. Our result is true for fairly
arbitrary input flows and deterministic token generation times.

I. INTRODUCTION

TM (asynchronous transfer mode) is a standard for

broadband ISDN networks, which are proposed to handle
different traffic such as video, audio, file transfers, etc., using
a unified protocol suite. Handling bursty traffic that needs real
time reception introduces problems that are not encountered
in conventional packet switching networks. It is desirable to
smooth the traffic by a flow control scheme that should be fast
and easy to implement and should ideally operate essentially
open loop since feedback may be unacceptably delayed in
a high-speed network. One of the proposed standards is the
so-called leaky bucket control scheme.

We consider a version of the leaky bucket which operates as
follows (see Fig. 1). The arrival process consists of packets of
fixed size (53 bytes, having a 48 byte information field), known
as cells. It is controlled by fokens that are stored in a buffer
of fixed size C. An arriving cell can be transmitted only if it
finds a token in the token buffer, in which case it is transmitted
instantaneously by consuming a token. If the token buffer is
empty the cell has to wait for the generation of a new token.
We model the cell buffer as having infinite storage capacity,
so that packets are not lost. Tokens are generated at a fixed
rate, typically with constant interarrival times. A stored cell is
transmitted immediately upon the generation of a new token.
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Fig. 1. The leaky bucket scheme.

Versions of the leaky bucket scheme have been investigated
by several authors, see for example, Berger [3], Budka and
Yao [4], Butté et al. [5], Dittman et al. [6], Eckberg et al.
[7], Kuang [8], Low and Varaiya [9], and Rathgeb [11] and
their references. Our model is akin to that of [3] except that
we assume an infinite cell buffer. In Section II we set up
a stochastic model for the leaky bucket protocol. In Section
Il we describe a simultaneous pathwise construction of the
cell departure process for all values of C from a single
appropriately chosen state process. We define a burstiness
ordering between the departure processes for various values
of C in terms of the queueing caused by feeding it to
another deterministic server queue. In Section IV we prove
that the burstiness of the cell departure process decreases as
C decreases. In particular, the leaky bucket scheme is burst
reducing for any C. This monotonicity indicates that in design
one should choose the smallest token buffer size subject to
acceptable overall delay. What is important is that this design
suggestion is valid for fairly arbitrary traffic processes. We
investigate this design problem by simulation in Section V,
using data for a video codec taken from [11].

Results of a similar nature have appeared in the recent
literature, for instance [1], [4], [8], [9]. Our focus in this paper
is more specific. The main tradeoff in implementing any flow
control strategy is between the cell loss probability which is
related to the probability of high cell buffer occupancy in the
infinite buffer model, and the delay incurred by the accepted
traffic in the network, which is related to queueing in the
nodes of the network through Little’s law. A natural parameter
to effect such a tradeoff is the token buffer size, C; another
parameter is the token generation rate. The focus of our paper
is on analyzing the role of the token buffer size in effecting
this tradeoff.

II. STATE PROCESS AND STATIONARY REGIME

Let z(t)(y(t)), denote the number of cells (tokens), in the
cell (token) buffer at time ¢. Thus, 0 < z(t) < oo and
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0 < y(t) < C. We may clearly assume that z(t)y(t) = 0 for
all ¢. Thus, the system can be described by 2(t) = z(t) — y(t),
an observation that is also made in [3]. If z(¢) > 0 there are
2(t) cells and no tokens, if —C' < z(t) < 0 there are —2(t)
tokens and no cells, and if 2(¢) = O there are neither cells
nor tokens.

From now on all functions of time are assumed to be left-
continuous. Let ¢;, i =1, 2,...(s;, j =1, 2,...) be the cell
(token) arrival times. We assume the cell and token arrival
processes are stationary and ergodic. Normalize the token
arrival rate to 1 and let A denote the cell arrival rate. We
make the convention that if a cell arrives at the time a token
is generated, it is as if the cell arrived immediately after the
token. Let z, = 2(s,—) denote the value of the process z
immediately before time s, (generation of nth token). If a,
denotes the number of cells arriving into the leaky bucket on
the interval [s,_1, s,,), then z, is given by the recursion

Zntl = 2Zpn t ang1 — 1{z, — 1 > -C}. (1)

Defining the quantity w(t) = 2(t) + C = 2(t) — y(t) + C and
letting w,, = w(s,~) be the value of w just before s, we get
the following recursion for w,,:

Wntl = Wn + @nt1 — 1w, > 0) = (wn — 1)+ +any1 (2)

where 2t = max {z, 0}. Note that w takes values in the set
Z of nonnegative integers. This is a familiar recursion from
basic queueing theory [13]. The following result is due to
Loynes [10]; see also Baccelli and Brémaud [2] and Walrand
[13].

Theorem 1: If A < 1 there exists a random process that
satisfies the recursion (2) that is stationary and ergodic. Fur-
thermore, this process is unique. If A > 1 then, with probability
1, w, converges to oo as n — oo.

While the condition A < 1 is not necessary in practice
for flow control with a finite cell buffer, the infinite buffer
model loses its relevance when it does not hold. Thus we
assume this condition. Note that the distribution of w does not
depend on the choice of the token buffer size C. Nevertheless,
the distributions of z = w — C, z = max{w — C, 0},
and y = max {C — w, 0} do depend on C, as they should.
In practice, the token generation times are deterministic and
equally spaced in time. We will make this assumption in the
subsequent sections.

II. THE LEAKY BUCKET DEPARTURE PROCESS

The departure process D€ from the leaky bucket with token
buffer capacity C' is the point process of (random) times
at which cells are transmitted. We start by introducing an
ordering between the departure processes corresponding to
different values of C.

Definition 1: We say that D1 is less bursty than DC: if
and only if the steady-state queue length in a deterministic
single server queue with service time ¢ < 1 and arrival
process DC1 s stochastically smaller! than the steady state
queue length in the same queue but with arrival process DC2.

'A random variable X is stochastically smaller than the random variable
Y if P(X < a) > P(Y < a), for all a; see, e.g., Ross, [12].
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Fig. 2. Construction of the departure process. (The “o” denote departure
times that coincide with arrival times; the “o” denote departure times of
delayed cells).

Ideally, burstiness of the output of the flow control scheme
should be measured through the delay encountered by the
admitted flow in the network. Definition 1 attempts to capture
this by the delay of the admitted flow in a deterministic server
queue, which is somewhat simplistic, but at least amenable to
exact analysis. The deterministic service times model the fact
that cells are of fixed size. The condition ¢ < 1 corresponds
to requiring that the network be able to handle all output flows
from the flow control mechanism.

The departure process from the leaky bucket can be con-
structed from a sample path of the w-process as in Fig. 2. A
cell departs either when w makes a transition from a level
i < C to i+ 1 (in which case the cell is transmitted without
delay) or when w makes a transition from a level s > C
to ¢ — 1 (in which case the cell has a nonzero delay). Any
other transition of w does not yield a cell departure. Note
that the departure processes for a whole range of systems,
corresponding to different values of C, can be read off directly
from the sample path of w.

IV. BURST REDUCTION PROPERTIES OF THE LEAKY BUCKET

Suppose that tokens arrive at times 0, 1, 2,.... Our main
result is the following.

Theorem 2: The leaky bucket departure process D! is less
bursty than l)G2 if Cl < Cz.

Proof: Assume that the departure process is fed into a
deterministic queue with service time o < 1. Consider the
systems with parameters C; = C > 0 and Cy = C + 1.
Consider a stationary left-continuous version of the w process,
as in Section II. Let N7, No,... be the times at which tokens
are generated and lost, ie., Ny = inf{i € Z,: w(i) = 0}
and Njy =inf{i € Z,:i> N;, w(i) =0}, j=1,2,....
Note that the /NV; are integer-valued. Due to the construction
of Section II these points can be taken to be the same in both
systems. We refer to the piece of the process w between NV, i
and Nj; as the jth cycle. Let ¢©(t) denote the queue length
at the deterministic server queue at time ¢ when the token
buffer size is C.

Lemma 1: The stationary versions of the processes {¢€ ()}
and {w(t)} are such that ¢(N;) =0, i =1, 2,. ... Thus, the
stationary queue length is zero at the beginnings of the cycles
of w.

Proof of Lemma 1: Suppose that N = 0, Ny = n. We
will prove that if ¢°(0) = 0 then ¢©(n) = 0. K n = 1



[EEE TRANSACTIONS ON COMMUNICATIONS, VOL. 42, NO. 12, DECEMBER 1994

I [

7 T
B ; ; ; ; L
Nl (2 lb NZ
C-depaures
Co1 - Gepariures -

t

Fig. 3. Comparing the C- and C 4 1-departures. (The “o0™ denote departure
times that coincide with arrival times; the “e” denote departure times of
delayed cells.)

there is no arrival between 0O and 1, and thus the previous
statement is trivially true. Thus, assume that n > 1. Let ag
denote the number of cells arriving during [k — 1, k). We
clearly have wy = Zle a;—(k—fork=1,...,n-1
and w, = 0. Thus, Zleai > kfork =1,....,n—-1
and Y1, a; = n — 1. Now, if we force the server of the
deterministic queue to idle on certain intervals while keeping
its arrival process (i.e., the departure process from the leaky
bucket) fixed, then we can only increase the queue length
pathwise. Suppose that ¢€(0) = 0. Suppose the deterministic
server is allowed to start working on exactly one customer at
time k (k = 1, 2,...,n — 1) and is forced to idle between
k4 o and k + 1. Let g°(t) be the length of the queue under
this modified policy with inserted idle times. Since there are
exactly n — 1 customers arriving on the interval [0, n—1), we
have g€ (n) = 0. Since ¢©(t) < g°(¢) for all ¢, we also have
¢©(n) = 0. This concludes the proof of Lemma 1. O

Let {v€()} be the workload process in the deterministic
queue. Note that ¢©(t) = [vC(t)/o] where [z] denotes the
smallest integer k such that k& > z. Thus, it suffices to show
that the steady-state workload, call it vC, is stochastically
increasing in C. Let o be the expectation of Ny — Ny
(conditional that N, is 0). For any level | > 0, let TC() =
N2 1{o€(t) < 1} dt. Then one has P(v° < 1) = ET()) e
We must prove that P(v€ < 1) > P(v“t! < 1), for all
l. Since o does not depend on C, it suffices to show that
TC(1) > TCTY(Y), for all L.

Consider again the cycle of the process w between Ny and
N. In Fig. 3 below we have drawn the levels C and C'+1 as
well as the points corresponding to C-departures (departures
when token buffer is of size C) and C' + 1-departures. If w
does not exceed C throughout the cycle duration then the C-
and C + 1-departures coincide and the desired conclusion is
immediate. So suppose that this is not the case.

Suppose that N; = 0 and N, = n. Recursively define

0+ = inf (£ <t <n:w(t-)=C, w(t+) =C +1}

tl()i+1) =inf £tV <t <n:w(t-)=C, w(t+)=C-1},
fori=0,1,2,...,
with the convention that t,(,o) = 0. Thus, w(t) > C for

tesS = Ui>1[t,(,i), t,(f)), while w(t) < C, otherwise. We
claim that Lemma 2 below holds.
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Lemma 2: vC(t) = vCF1(t), forall ¢t € [0, n) — 5.

Proof of Lemma 2: For convenience, we write £4(tp) for
t,(ll)(t,(,l)). We first observe that the workload is the same in
poth systems just before ¢o: vC(ta—) = v+ (ta—). It thus
suffices to prove that vC(t,—) = vCT!(t,—). Note that 1)
There is at least one C-departure between ¢, and tp; if there
are more than one departures then they are equally spaced
with all interdeparture times equal to 1 (these times correspond
to downward transitions of the process w from levels higher
than C). 2) The C + 1-departures between t, and £, occur
at earlier times than the C-departures and are not necessarily
equally spaced; in fact, the discrepancies between the C- and
C + 1-departures correspond to transitions of w either from C
to C' +1 or from C + 1 to C. 3) The number of C-departures
between £, and t; is exactly equal to |t — t,], for the latter
quantity is the number of transitions of w from a level ¢ > C
to i — 1 (note that |z denotes the largest integer k such that
z > k); the number of C + 1-departures is also |ty — ta]
(indeed, for every C — C + 1 transition between t, and t;
there must be a corresponding C' + 1 — C transition). Now
observe that the work brought by these i, — to| departures
on the interval between t, and tp is |ty — ta]o < t6 — ta-
From the observations above we see that, if the deterministic
server gives priority to this work that was generated between
t, and tp, then this work will finish before t,. Hence, we
have vC (ty—) = v (¢,—). Thus, vC(t) = vCFI(¢) for t €
[V, 2. Hence, WO (D) = pC+L(t$? ). The argument
can then be repeated. This finishes the proof of Lemma 2. O

We now proceed to show that TC(I) > Tt (1) for
all(_)l. In view of Lemm(a) 2, It is enough to show that
f:§> 1{oC () <1} dt > f:g*;) 1{vC+L(t) < 1} dt, forall i > 1.
We do that for 5 = 1. The number of C-departures and the
number of C + 1-departures between i, and ¢, both equal
k = |ty — ta]. Define to = inf{ty < t < ty:v°(t) = 0}
with the convention that to = ¢, if the set is empty. It
is clear that vC(t) < vCti(t) for all t € [ta, to). Thus,
Jo e @) < tydt > J2 (O () < 1}dt. Soif to =t
the statement has been proved. Next, suppose that tg < .
Let ky = DC[t,, to) be the number of C-customers arriving
into the deterministic queue on the interval [ta, to). Since
vO(t) > 0 fort, <t < to we have to = v (t)+k1o+1,. Let
ko = Dc[to, tb), ki = DC-H[ta, to), klz = Dc+l[t0, tb).
Then we have ki + ko = k) + kb = k and v“*!(to) =
WCH (L) ko —totta = vC (ta) +K o —to+ta = (K1 —k1)o.
We may interpret the remaining workload v+ (ty) as being
due to k} — k1 customers entering the queue at time ¢¢. So, on
the interval [to, t), the number of C + 1-customers entering
the queue is (kf — k1) +ky =k — k1 = kp which is the same
as the number of C-customers.

Since vC(tg) = O these kz customers will result in a work-
load process v that consists of k2 nonoverlapping busy cycles
of 1 customer each. We claim that any other arrangement
of ko customers will yield a workload process that spends
more time above any level . To see this, given a workload
process {v(t), t € [to, ty)} we define {T(¢), t € [to, ty)} by
“squeezing out” the idle time intervals. Formally, we consider
the time change ¢(t) = t(ﬁ-ftt0 1{v(r) > 0} dr and its inverse
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¢ 1(s) = sup gt > tg: ¢(t) < s}, and let T(s) = v(¢71(s)).
Observe that [,* 1{v(t) > I} dt = [;* 1{5(t) > I} dt for all L
With 7 and 7¢ 1! defined in terms of v©, vC+1! respectively,
we claim that 7°*! > 7€, Indeed T°(s) = mo + tp — s if
s € (to+(m—1)o, to+mo), m=1,..., ks, and we can also
write, in a unique way, 7¢t1(s) = g(s)+to—s where g(s) isa
piecewise constant nondecreasing process. Since 7°+1(s) > 0,
we have g(s) > s—to. Say that s € (to+(m—1)o, to+mo).
Since g(s) takes values lo, [ = 1,2,..., the inequality
g(s) > s — to actually implies g(s) > mo. This concludes
the proof of Theorem 2. O

V. SIMULATION RESULTS AND EXPERIMENTAL OBSERVATIONS

In choosing the token buffer size C of the leaky bucket
flow control scheme, a small value of C is on one hand
desirable, because it reduces the delay inside the network, but,
on the other hand, it may increase the delay at the access
point of the network, roughly translating into high cell-loss
probability with a finite cell buffer. Here we report on some
experimental observations for this design problem that were
obtained via a discrete-event simulation for the leaky bucket
followed by a deterministic queue. We modeled the source
by a two-state Markov-modulated Poisson process (MMPP).
The data for the source, which is a video codec, were taken
from [11]. Recall that to define a Markov-modulated Poisson
process with two states, say 0 and 1, we need a Markov chain
X with values 0 or 1, with transition rates go = ¢(0, 1)
and ¢; = ¢(1, 0), and two Poisson processes, N and N}
with rates Ag and A;, respectively, with A; representing the
output peak cell rate of the codec. The number of points
N of the two state MMPP up to time ¢ is then given by
Ny = [y 1{X, = 0}dN? + [{1{X, = 1}dN}, while the
mean intensity is given by A = (goA1 + q1A0)/(g0 + ¢1)-
State 0 is supposed to be the low bit rate state and state
1 the high bit rate (bursty) state. Specifically, the following
numbers are used: Ag = 0, A; = 10.5 Mbps, qo = 47.52 571,
g1 = 81.36s~ 1. This gives a mean intensity A = 3.9 Mbps.
Each ATM cell has length 53 bytes or 53 x 8 = 424 b. So we
have A; = 24,941 c/s (cells per second) and A = 9198 c/s.
We assume that the service rate (available bandwidth for our
source) is p = 16 Mbps. Typically, the available bandwidth
may be higher if the network is used only by a single user.
The 16 Mbps value is chosen to study a situation where there
are 5 to 6 other users using the network at full rate. Translated
in cells per second, we have p = 37,736 c/s.

The code for the simulations was written in the C language.?
In the graphs below C denotes the size of the token buffer,
D, is the mean cell delay at the leaky bucket, D, is the
mean cell delay in the deterministic server queue, and r is
the rate at which tokens are generated. We vary r between the
mean arrival rate (3.6 Mbps) and the service rate (16 Mbps).
Specifically, we present plots for the following values of r:
r1 = 8 Mbps = 18868 c/s, ro = 10 Mbps = 23585 c/s, and
r3 = 12 Mbps = 28302 c/s. About 10° events were simulated

2We would like to thank Dr. J. Roychowdhury for his assistance with the
code for the simulations.
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in order to produce each point of the graphs (corresponding
to specific values of C and r).

When C = oo (leaky bucket is absent) the mean delays
are D; = 0, Dy = 38.8 us. In all cases, we see that D; is
strictly decreasing and D is strictly increasing as C' increases,
thus verifying (partially) the results obtained theoretically.
However, when r increases, the delay D; decreases and the
delay D, increases. Thus, the biggest savings for the network
delay are obtained by setting 7 to the lowest of the three values
used (18868 c/s) (see Fig. 4). This, however, leads to a delay
at the leaky bucket access point of the order of 5 ms, which
is probably unacceptable (see Fig. 5). In Fig. 6, we see plots
of Dy and D, for r = 28302 c/s (the largest of the three
values). We see that with a token buffer of size below 3 we
achieve a 50% reduction in the network delay. From 38.8 us,
the delay drops to about 20 us. At the same time we manage to
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Fig. 6. For suitable token rate we can achieve a reduction in the network
delay without introducing excessive delay at the network access point.

maintain the delay at the leaky bucket within the same order
of magnitude.

VI. CONCLUSIONS

We proved that the output from the leaky bucket flow
control scheme is less bursty than the input in that it incurs
stochastically less delay in a deterministic queue. This is true
for arbitrary stationary point process models for the source
traffic. In fact the output process becomes less bursty as the
size of the token buffer decreases. We verified our resuits
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by simulating a video codec source, modelled as a Markov-
modulated Poisson process. Our simulations indicated that the
increase of the cell delay at the leaky bucket can be tolerable
provided that the token buffer size and token generation rate
are chosen suitably.
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