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SUMMARY 

Cellular automata are simple computational models 
which are capable of exhibiting a wide range of complex 
dynamical behavior, see [4]. The computation is consid- 
ered as proceeding synchronously via identical processors 
at each site on a regular lattice, usually ZP, and the com- 
putational rule is assumed to be spatially homogeneous. 
The interest in studying such automata comes from several 
points of view. For example,, there is a belief that the com- 
plex dynamical behavior exhibited by these automata is a 
good model for the natural statistical behavior of physical 
systems such as gases, consisting of large numbers of in- 
teracting elements. Another powerful source of reawakened 
interest in cellular automata has been the development of 
parallel computational systems employing different types of 
regular architectures, e.g. [l]. 

A remarkable property of certain cellular automaton 
updating rule is that they can admit more than one in- 
variant configuration, representing the ability to maintain 
long term memory. Further, it is known that there are au- 
tomata whose long term memory persists under noise. This 
ability is particularly important from the point of view of 
the automaton as a computational device, where the initial 
configuration is the input on which the processors perform 
their calculations. For the operation to be reliable in a noisy 
or unreliable environment, we would require the system to 
remember enough relevant information about its initial con- 
figuration over arbitrarily long periods of time, [2]. 

In this paper we deal with a class of cellular automata 
called monotonic binary tessellations (MBT’s). Let V er 
{ ( s , t )  E ZP+l: t 2 -tw}, where t w  > 0. Given v E V ,  let 
V(v) = {v + (ul,tl), . . . ,v + (u,.,t,.)), where U; E ZP and 
ti  < 0, 1 5 i 5 r.  An MBT evolves according to the rule 

xv = 4(XV+(Ul,t1)>. ‘ ’ ,XV+(U.,t?))? 

where xv E { O , l } ,  with initial conditions prescribed on 
W d&i { ( s , t )  E V :  -tw 5 t < 0). Here 4 is a mono- 
tonic function, i.e.,  X XI,. . . , x,) 2 Q(xi,. . . , x:) if x, > xi 
for i = 1,. . . , r .  Note that the all-zero configuration and 
the all-one configuration are both invariant for an MBT. 

We study X4BT’s with asynchronous communication 
delays in computation, 111. Let V’ % {(s,t) E Zp+’:t 2 
-d - t w } ,  with initial conditions on W’ { ( s , t )  E V’: 
-d - tw  5 t < 0). An asynchronous scenario is given by 
delays q (v ) ,  . . . ,r,.(v) for each v E V’ - W’, where 0 5 
~ ~ ( v )  5 d,  1 5 i 5 r. Given a scenario, the automaton 
evolves according to the rule 
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xv = 4(xv+(u1,t1-r1(v)), ’ .  ’ r~v+(u,,t,-r,(v)))r 

written xv = ~ ( X ( I . ( ~ ) ) .  Note that for all T ,  the all-zero and 
all-one configurations are both invariant. 

For a fixed r and e E ( O , l ) ,  M:(z) denotes a set of 
probability measures on the a-algebra generated by the 
cylinder subsets of (0, l}v’. A measure p E M:(z)  if and 
only if for any finite A, p(xv # C$(X(I.(~))VV E A) 5 clAI 
and p(xy = OVv E W’) = 1. We say the all-zero trajectory 
is a stable r-trajectory if 

lim sup p(xv = 1) = O .  
P € M : ( z )  

VEV’ 
€+O 

Roughly speaking, the memory of the all-zero trajectory 
persists even when there is noise, if it is small enough. A 
parallel definition can be made for the all-one trajectory. 

Our main theorem states that, for a fixed d, the all- 
zero state is a stable r-trajectory for all 7 if and only if 

Q 
- n U {av:v E conv(C(z,))) = (01 . 

(r=1 {oER:cr~O) 

Here 21,. . . , ZQ are the minimal zero sets in U(O),  namely 
: (a) (xv = OVv E 2,) * $(XU(,,)) = 0, and (b) 2, does 
not contain a proper subset with property (a). Further 
C(2,) denotes { ( s , t  - 2 )  E V‘:z =O,...,d;(s,t) E 2,) and 
conv(2,) is the convex hull of 2,. This result is a simple 
generalization of a deep result of Toom to the asynchronous 
context, [3]. 

Through the use of examples and the above theorem, 
we examine the effect of asynchronism on computation by 
MBT’s, in particular the mechanisms by which asynchro- 
nism can force an originally nonergodic MBT to become 
ergodic (loss of memory). 
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