Hierarchical Scheduling for Diverse Datacenter Workloads

Arka A. Bhattacharyal, David Culler!, Eric Friedman?, Ali Ghodsi!, Scott Shenker!, and Ton

Stoica

1

lUniversity of California, Berkeley
’International Computer Science Institute, Berkeley

Abstract

There has been a recent industrial effort to develop
multi-resource hierarchical schedulers. However, the
existing implementations have some shortcomings in
that they might leave resources unallocated or starve
certain jobs. This is because the multi-resource setting
introduces new challenges for hierarchical scheduling
policies. We provide an algorithm, which we imple-
ment in Hadoop, that generalizes the most commonly
used multi-resource scheduler, DRF [1], to support hi-
erarchies. Our evaluation shows that our proposed algo-
rithm, H-DREF, avoids the starvation and resource ineffi-
ciencies of the existing open-source schedulers and out-
performs slot scheduling.

Categories and Subject Descriptors
D.4.1 [Process Management]: Scheduling;

Keywords

Multi-resource, Data Center, Fairness

1 Introduction

Cloud computing frameworks tailored for managing and
analyzing big datasets are powering ever larger clusters
of computers. Efficient use of cluster resources is an im-
portant cost factor for many organizations, and the effi-
ciency of these clusters is largely determined by schedul-

Copyright © 2013 by the Association for Computing Machinery, Inc.
(ACM). Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than the au-
thor(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions @acm.org.

SoCC’13, 1-3 Oct. 2013, Santa Clara, California, USA.
ACM 978-1-4503-2428-1. http://dx.doi.org/10.1145/2523616.2523637

company

ads (60%) dev (40%)

prod (70%) test (30%) prod (50%) test (50%)

Figure 1: Simple Organizational Hierarchy.

ing decisions taken by these frameworks. For this rea-
son, much research has gone into improving datacen-
ter schedulers [2, 3, 4, 5, 6, 7, 8]. A key feature of
all production cloud schedulers is hierarchical schedul-
ing, which enables scheduling resources to reflect orga-
nizational priorities. Most production schedulers today
support hierarchical scheduling (e.g., Hadoop Capacity
Scheduler [6] and Hadoop Fair Scheduler [9]). As an
example of hierarchical scheduling, an organization (see
Figure 1) might dedicate 60% of its resources to the ad
department, and 40% to the dev department. Within each
department, the resources are further split, for example
70% for production jobs, and 30% for test jobs. The key
feature of hierarchical scheduling—which is absent in
flat or non-hierarchical scheduling—is that if some node
in the hierarchy is not using its resources they are re-
distributed among that node’s sibling nodes, as opposed
to all leaf nodes. For example, if there are no test jobs in
the ads department, those resources are allocated to prod
jobs in that department. Most organizations that we have
spoken to—including Facebook, Yahoo, and Cloudera—
use hierarchical scheduling to allocate resources accord-
ing to organizational structures and priority concerns.

Recently, there has been a surge of research on
multi-resource scheduling [10, 11, 12, 13]. It has been
shown that workloads in data centers tend to be di-
verse [14], containing a mix of jobs that are CPU-
intensive, memory-intensive, or I/O intensive [15, 16].
Therefore, efficient scheduling in datacenters requires
taking multiple resource types into account. Otherwise,

the scheduler might make allocations based on irrelevant
resources (e.g., CPU), ignoring the actual resource needs
of jobs (e.g., memory), ultimately leading to poor per-
formance isolation and low throughput for jobs. To han-
dle multi-resource workloads, a new scheduler, called
Dominant Resource Fairness (DRF), was recently pro-
posed [1] and shipped with the open source resource
manager Mesos [17]. Since DRF’s introduction, a string
of follow-up papers have analyzed, improved, and ex-
tended DRF [10, 11, 12, 13]. Unfortunately, DRF does
not have support for hierarchical scheduling.

The need for multi-resource scheduling with the addi-
tional requirement of supporting hierarchical scheduling
is crucial and has, therefore, led to an industrial effort
to provide multi-resource hierarchical scheduling. The
Capacity scheduler [18] was rewritten for Hadoop Next-
Generation (YARN) [19] to provide multi-resource DRF
allocations. Furthermore, work is underway to extend
the Fair Scheduler to support DRF [20]. These efforts
have been initiated and led by the companies Horton-
Works and Cloudera independently of this work.

Howeyver, the combination of hierarchical and multi-
resource scheduling brings new challenges that do not
exist in the traditional single-resource hierarchical set-
ting, and are not fully addressed by these production
efforts. Naive implementations of multi-resource hierar-
chical schedulers can lead to the starvation of some jobs,
certain sub-trees in the hierarchy not receiving their fair
resource share, or some resources being left unallocated
(§3). Identifying the shortcomings is a start, but coming
up with an algorithm that avoids these pitfalls is a larger
challenge.

In this paper we introduce an online multi-resource
scheduler, called H-DRF, that supports hierarchical
scheduling. H-DRF guarantees that each node in the hi-
erarchy at least gets its prescribed fair share of resources,
regardless of how others behave. We refer to this as the
hierarchical share guarantee, which is an important iso-
lation property. It implies that no job will starve, but
also that each group in the organization gets its allotted
share, two desirable outcomes not provided by other ap-
proaches. Finally, H-DREF is group-strategyproof, which
means that no group of users can increase their useful
allocation as a whole by artificially inflating or changing
their resource consumption. This property is trivially sat-
isfied when there is a single resource, but becomes non-
trivial to satisfy in multi-resource settings.

We have implemented our H-DRF algorithm for
Hadoop 2.0.2-alpha (YARN) [21]. Evaluations show
that H-DRF outperforms the existing implementation of
the Capacity Scheduler [6] in terms of efficiency and
job starvation. Also, through simulations on a Face-
book cluster trace and example workloads on our pro-
totype, we show that H-DRF outperforms hierarchical

ni ‘(1) np (1)
nyy (1)
ny (1) nz,z‘ (2) m3(2)
nyp1 (1)

Figure 2: Example hierarchy, with node notation and weights
in parenthesis.

slot schedulers by better packing of jobs and achieving a
higher throughput.

2 Background

We begin by providing background on hierarchical
scheduling and multi-resource fairness.

2.1 Hierarchical Scheduling

Notation. A hierarchical scheduler is configured with
a weighted tree, such that each node in the tree has a pos-
itive weight value (see Figure 2). The weights denote rel-
ative importance and do not have to sum to 1. The leaves
in the tree denote the jobs (or users)! that are ultimately
to be allocated resources, whereas the internal nodes rep-
resent organizational or hierarchical groups. We assume
each job/user submits a set of rasks, whose demands are
not necessarily known in advance.

A node in the tree is denoted n; where L is a list
of numbers that describe how the node can be found
when starting at the top of the tree and going down, left
to right. The root node of the tree is n,. For example
ny 14 is found by starting at the root, picking its sec-
ond (from left) child, picking that child’s first child, and
that child’s fourth child. We denote the weight of node
nr’s weight by wy.. The parent of a node is given by P(),
ie, P({2,2,1)) = (2,2). We write P/(L) to refer to the
ith predecessor of node ny, i.e., P3(L) = P(P(P(L))).
Similarly, the set of children of a node is given by C().
We mostly only care about the set of nodes that are cur-
rently demanding more resources. A leaf node is de-
manding if it asks for more resources than are allocated
to it, whereas an internal node is demanding if any of its
children are demanding. The function A() takes a set of
nodes in a tree and returns the subset of those nodes that
currently are demanding.

Hierarchical Share Guarantee. The main idea be-
hind hierarchical scheduling is to assign to each node in
the tree some guaranteed share of the resources. A node
in the hierarchy is entitled a fraction of resources from

'We use the terms job and user interchangeably to denote a leaf
node in the hierarchy

its parent proportional to the ratio of its weight to that of
its demanding siblings’ including itself. That is, a node
ny, is guaranteed to get a fraction of resources from its
parent np(p) of at least:

wL

Yiea(c(p(L) Wi

In the example in Figure 2, assume there are 480 slots?
in a cluster, and that all nodes are demanding. Then, n;
and n; should get 240 slots each, as they have the same
weight, 1. One level down, the children of n; should get
a number of slots from their parent’s allocation propor-
tional to their weights, i.e., ny ; should get 48 (=240/5),
while 7 7 and n; 3 should get 96 (= 240x2/5) each.

The above hierarchical share guarantee captures a key
feature that hierarchical scheduling provides, called sib-
ling sharing, which enables resources to stay within
a sub-organization in the hierarchy when jobs finish
within that sub-organization. Sibling sharing guarantees
that if a node in the tree leaves, its resources are given
to its demanding siblings in proportion to their weights.
If it has no demanding siblings, the resources are given
to its parent, which recursively gives it to the parent’s
siblings. For example, if all nodes are demanding and
ny 3 leaves, then its 96 slots are split 32 and 64 to ny
and ny 5, respectively. Unlike flat scheduling, nothing is
given to ny or its children, unless there are no demanding
nodes in the subtree of n5.

2.2 Dominant Resource Fairness (DRF)

Many datacenters exhibit a diverse workload, contain-
ing a mix of jobs that can be CPU-intensive, memory-
intensive, or I/O intensive [15, 1]. A multi-resource fair-
ness mechanism known as Dominant Resource Fairness
(DRF) [1] introduced the concept of a job’s (user’s) dom-
inant resource, which is the resource that the job needs
the highest share of. DRF seeks to equalize the dominant
shares across all jobs (users) in a cluster. A job’s domi-
nant share is simply the share of its dominant resource
that it is currently allocated.

For example, if a cluster has 100 GB of memory, and
100 CPUs and each of a job’s task requires 3 GB of
memory and 2 CPUs to run, memory is the job’s dom-
inant resource because each of its tasks requires 3% of
the entire cluster memory whereas it only requires 2%
of the entire cluster CPUs.

If the same cluster runs two jobs whose task require-
ments are (3GB, 2CPUs), and (2GB, 3CPUs), each job
receives a dominant share of % = 0.6 (or 60%) as
shown in Figure 3. This is unlike single-resource fair-
ness, in which the sum of all jobs’ dominant shares can

2A slot is a fixed fraction of a server, e.g., 1 core, 4 GB memory,
and 10 GB disk [9].

never be more than 1.0 (or 100%). We call this phe-
nomenon of jobs having complimentary dominant re-
sources leading to the sum of dominant shares being
more than 1.0 as dovetailing.

Note that one of the important aspects of multi-
resource fairness, as identified in DRF [1], is that some
job might have zero demand for some resources. For in-
stance, some jobs might not need to use GPUs or spe-
cialized hardware accelerators. This is likely to increase
as more resources are accounted for by schedulers.

[l Job 1 <3GB, 2 CPUs>
[] Job 2 <2GB, 3 CPUs>

60 CPUs

40 CPUs

Memory CPU
(100 GB total) (100 CPUs total)

Figure 3: DRF allocation shares for two jobs whose tasks have
the resource requirements shown in angular brackets. Note that
the share of Job 2’s dominant resource (CPU) is equal to the
share of Job 1’s dominant resource (Memory)

3 Hierarchical DRF (H-DRF)

We first adapt the definition of static dominant share al-
location in DRF [1] to support hierarchies (§3.1). We
shall call such allocations Static H-DRF allocations.
However, achieving the static H-DRF allocations in a
dynamic system is non-trivial. §3.2 and §3.3 describe
the shortcomings of two existing approaches that could
be used to achieve the static H-DRF allocations in a
dynamic setting — Collapsed hierarchies and Naive H-
DRF. Finally, we propose our solution — Dynamic H-
DRF in §3.4.

Although we assume in this section, for simplicity,
that all nodes have the same weight, our discussion can
be generalized to multiple weights in a straightforward
fashion (c.f, [1]).

3.1 Static H-DRF Allocations

We develop a static version of DRF to handle hierar-
chies. The static definition is not meant to be used for
scheduling, but rather to define the allocation. The dy-
namic algorithm is instead used to schedule resources to
achieve the static allocation.

The main aim of static H-DRF allocations is to equal-
ize the dominant resource share between each pair of
sibling nodes in the hierarchy. Given a set of nodes(jobs)

R={r1,--,rm) > total resource capacities
C={c1, - ,cm) > consumed resources, initially O
ny > root node in hierarchy tree
C(n) > children of any node n

P=(P'(n)),P*(n;)---) > List of n;’s parents
s;i (i=1...n) >node n;’s dominant shares, initially O
Ui= (i1, - ,uim) (i=1...n) > resources given to

node n;, initially

0
P=0
ni = n,

while resources exist to allocate more tasks do
while #; is not a leaf node (job) do
P=PU <}’l,>
nj =node with lowest dominant share s; in
C(n;), which also has a task in its subtree
that can be scheduled using the current
free resources in the cluster

n; —= nj
_ £ . T
D; = WT” s.t. T; is n;’s task demand vector
C=C+HD; > update consumed vector
for each node k in n; UP do

U, = Ui+ D; > update allocation vectors
se = max’_ {U;;/r;} > update Dominant
Resource shares

Algorithm 1: Static H-DRF Allocation

with demands and a set of resources, static Hierarchi-
cal DRF (H-DREF) starts with every job being allocated
zero resources, and then repeatedly increasing each job’s
allocation with a thin sliver (&) of resources until no
more resources can be assigned to any node. The final
assignment constitutes the static H-DRF allocation for
the given nodes’ demands and total available resources.

More precisely, at each moment, record the amount
of resources assigned to each leaf node (job) in the hier-
archy. Internal, non-leaf, nodes (sub-organizations) are
simply assigned the sum of all the resources assigned
to their immediate children. Start at the root of the tree,
and traverse down to a leaf, at each step picking the de-
manding (c.f., §2.1) child that has the smallest dominant
share. In case of tie, randomly pick a node. Then allocate
the leaf node an € amount of its resource demands, i.e.,
the resource demand vector of that node is resized such
that that node’s dominant share is increased by £.> Al-
gorithm 1 shows pseudocode for how static allocations
are computed.

For example, the H-DRF allocation for the hierarchy
in Figure 4(a) can be computed as follows in a system
with 10 CPUs and 10 GPUs. Node 7y ; is first assigned

3e.g a if a node demands (1CPU,2GPU), with equal amounts of
both resources in the cluster, the node is allocated (§CPU,eGPU)

(€,0). This makes n;’s dominant share €. Thereafter, ny
is traversed, since it has a lower dominant share than
ny, picking n ;, which is assigned (€,0). Next, np» as-
signed (0,€). This puts ny at (g,€), which gives it a
dominant share of €. This process is repeated by as-
signing € tasks until some resource is completely ex-
hausted, which in this case will be CPU. At this point,
nodes ny 1 and ny 1 become non-demanding as they can-
not be allocated more resources, as all 10 CPU re-
sources have been allocated. Thereafter, the process con-
tinues by assigning (0, €) tasks to ny until all GPUs
have been assigned. This defines the H-DRF alloca-
tion to be (5 CPUs,0 GPUs) to n;,; and ny ;| each, and
(0 CPUs,10 GPUs) to ny » (Figure 4(b) depicts the allo-
cation).

Howeyver, in a cluster, tasks finish and new ones are
launched. Re-calculating the static H-DRF allocations
for each of the leaves from scratch at the arrival of each
new task is computationally infeasible. The following
subsections will formulate an algorithm that achieves the
static-HDRF allocations in such dynamic settings.

3.2 First attempt: Collapsed Hierarchies

One well-known approach, which we call collapsed hi-
erarchies [22], converts a hierarchical scheduler into a
flat one. The idea is to take the hierarchical specifica-
tion and compute what the corresponding weights for
each leaf node would be if the hierarchy was flattened.
These weights are then used with a flat scheduler, such
as the original weighted DRF algorithm [1]. Each time
jobs are added, removed, or change their demand-status,
the weights are recalculated. For simplicity, we ignore
how recalculation is done as this approach breaks down
even without recalculation.

This approach always works when only one resource
is involved. Interestingly, the approach fails to work
when multiple resources are scheduled. In particular, it
will violate the hierarchical share guarantee for internal
nodes in the hierarchy if they dovetail.

Consider a slight modification to the example hierar-
chy in Figure 4(a), where n; ; instead wants to run tasks
with demands (1 CPU, 1 GPU):

ny

n150%

|
ni1 <1,1> 100%

n250%

21 (1,0)50% na, (0,1)50%

The hierarchy is flattened by assigning to each node
a weight that corresponds to the product of its weighted
shares in the hierarchy from the leaf to the root. Nodes
ny1 and ny, are each assigned 0.5x0.5 = 0.25, since
they each are entitled to half of their parents allocation,

(a) Hierarchy with two organizations

ny

n150%

\
n.1 (1CPU,0 GPUs) 100%

n2.1 (1CPU,0 GPUs) 50%

n2 50%

122 (0CPUs,1 GPU) 50%

(b) Static H-DRF allocation for (a)

100%

Jobn,
50%

Jobn,,
100%

GPUs

Figure 4: Simple hierarchy and its static H-DRF allocation

which is entitled to half of the cluster. Node 71 is simi-
larly assigned 0.5x1.0 = 0.5. These weights accurately
capture the share guarantee for each leaf node.

We now run the original non-hierarchical DRF algo-
rithm [1] configured with these weights and get the fol-
lowing allocation:

0%

CPUs

GPUs

Since nj; has twice the weight of the rest of the
leaves, DRF will increase its dominant share at twice
the rate of those other nodes. Both resources, CPU and
GPU, will then saturate when nj ; is allocated % of the
CPUs and GPUs, and n; and n» are allocated % of
their respectively demanded resource. While each leaf
node’s hierarchical share guarantee has been satisfied,
the internal node n, has only gotten 33% of resources
as opposed to its entitled 50%, violating the hierarchical
share guarantee.

The above problem is new in the multi-resource set-
ting. Consider a modification to the problem that turns it
into a single-resource problem. Assume that n, > would
have demanded (1 CPU,0 GPUs), thus making all jobs
only demand CPU:

ny

T

n150% n350%
\
n1.1(1,0)100%
' ny.1 <1,0> 50% n 2 <1,0> 50%
Then the above method would allocate 50% of the
CPUs to ny,1, and 25% each to jobs np 1 and nj», sat-
isfying the hierarchical share guarantees for all nodes in
the hierarchy. The problem in the multi-resource setting
is that dove-tailing of resource demands, i.e., that jobs

have complementary resource demands (n2 ;s (1,0) and
n22’s (0,1) in the example) “punishes” the parent nodes.

3.3 Second Attempt: Naive H-DRF

We now turn to a natural adaptation of the original DRF
to the hierarchical setting and show that it can lead to
starvation. In particular, we show how the hierarchical
share guarantee is violated for leaf nodes. In fact, the
current Hadoop implementations, which implement hi-
erarchical DRF [18], take this approach and, hence, suf-
fer from starvation as we show in the evaluation (§5.2).
Consider a dynamic algorithm—which we call Naive H-
DRF—that simply assigns a task in a similar manner
to how the static H-DRF allocation is computed each
time resources become available i.e., traverse the tree
from root to leaf, at each step pick the demanding child
with smallest dominant share, until a leaf node (job) is
reached and allocate one task to that leaf node.

To see how starvation can occur, consider the example
hierarchy given in Figure 4(a), and assume 10 CPUs, 10
GPUs, and three demanding leaf nodes.

The algorithm will initially allocate 5 CPUs each to
n1,1 and ny 1, and 10 GPUs to ny 2, as illustrated in Fig-
ure 4(b). The problem occurs when when tasks finish
and new ones are launched. Consider when job n; ; fin-
ishes a task, which has dimension (1 CPU,0 GPUs). The
dynamic algorithms traverses the tree, but notes that the
internal node n; has a dominant share of 100% (10 GPUs
out of 10 total). It will therefore pick n; and finally al-
locate a task to ny 1. This will repeat itself until job 75
is completely starved and 10 CPUs have been allocated
to ny 1 and 10 GPUs to ny . At this point, the algorithm
has equalized and allocated a dominant share of 100%
to each group n; and ny, but has violated the hierarchi-
cal sharing guarantee for node n; 5, which is allocated
zero resources. This leads to the following allocation:

100%

50%7 Job n Job 0,
100% 100%
0,
0% CPUs GPUs

3.4 Our solution : Dynamic Hierarchical
DRF

We now derive the Dynamic Hierarchical DRF algo-
rithm, H-DRF. We do so in two steps, combining two
ideas that together achieve static H-DRF allocations, do
not suffer from starvation, and satisfy the hierarchical
share guarantee.

Rescaling to Minimum Nodes. Starvation happens in
the Naive H-DRF algorithm because of the way the algo-
rithm attributes resource consumption to internal nodes.
In the example of Figure 4(b), node n, is attributed to
have a dominant share of 100% since one of its jobs
(n22) has a dominant share of 100%. Naive H-DRF
keeps punishing 7,1 as long as ny» has a higher dom-
inant share than n; ;. We therefore change how resource
consumption is attributed at internal nodes.

To compute the resource consumption of an internal
node, proceed in three steps. First, find the demand-
ing child with minimum dominant share, M. Second,
rescale every child’s resource consumption vector so that
its dominant share becomes M, i.e., each element of a
resource consumption vector with dominant share D is
multiplied with %. Third, add all the children’s rescaled
vectors to get the internal node’s resource consumption
vector.

Consider, for example, how ny’s resource consump-
tion vector is computed in the example given in Figure 4.
First, the children of n, have dominant shares 0.5 and
1.0, respectively, yielding the minimum M = 0.5. Sec-
ond, we rescale each child’s whole resource consump-
tion vector to have a dominant share of 0.5. This means
that n,’s vector is rescaled to 32 x (0.5,0) = (0.5,0).
Similarly, n, 5 is rescaled to 23 x (0,1) = (0,0.5). Third,
the internal node n;’s resource consumption is the sum
of those vectors, i.e, (0.5,0.5), yielding a dominant
share of 0.5 for n,.

The above method avoids the previously given star-
vation scenario. Consider the allocation given by Fig-
ure 4(b). If ny ; finishes a task, it will be allocated a new
task since its dominant share will go below 50%, making
the parent’s dominant share go—through rescaling—
below 50% as well. Similarly, if any other job finishes
a task, the resources are offered back to it.

While rescaling helps the above example, it alone is
not enough to achieve static H-DRF allocations, as min-
imization can give an unfair advantage to certain nodes

as the following example shows. The hierarchy in Fig-
ure 5(a) has the static H-DRF allocation given by Fig-
ure 5(b). The first resource is the most demanded and
will saturate first. At that point, every leaf is allocated
% of its dominant share. Thereafter, only leaves 13 > and
n4,1 can still run more tasks, so the rest of the second
resource is split evenly between them.

H-DRF with rescaling only (the algorithm described
thus far) will, however, yield the following allocation:

It allocates tasks similarly until the first resource be-
comes saturated. But rescaling will always normalize
n3,’s dominant share to that of n3 1, i.e., to % As soon
as another task is assigned to n4 1, n4’s dominant share
will be higher than n3’s, resulting in all remaining GPU
resources being repeatedly allocated to 13 >. Thus, in the
final allocation n3 > gets % of GPUs, while n4 | gets only

% of the GPUs. We address this problem next.

Ignoring Blocked Nodes. When rescaling to attribute
internal node consumption, dynamic H-DRF should
only consider non-blocked nodes for rescaling. A leaf
node (job) is blocked if either (i) any of the resources it
requires are saturated, or (ii) the node is non-demanding,
i.e., does not have more tasks to launch. Recall, that a
resource is saturated when it is fully utilized. An inter-
nal node is blocked if all of its children are blocked.
The three aforementioned steps required to compute an
internal node’s resource consumption vector are modi-
fied as follows. First, pick the minimum dominant share,
M, among non-blocked nodes. Second, only every non-
blocked node’s resource consumption vector is rescaled
such that its dominant share is M. Third, all nodes’—
blocked as well as non-blocked—vectors are added to
get the parent’s resource consumption vector. Further-
more, we ignore saturated resources when computing
the dominant share of any internal node.

The above modification will now ensure that the ex-
ample in Figure 5(a) is correct, i.e., the algorithm will
yield the static H-DRF allocation given in Figure 5(b).
To see this, the algorithm will behave the same until the
first saturation point, as there will be no blocked jobs.
When the first resource saturates, every job has a domi-
nant share of % Since n3 1 is blocked on CPU, its dom-
inant share will not be used during rescaling. Thus, n3’s
dominant share will thereafter be equal to n3»’s. There-
fore, the remainder of GPUs will be equally allocated
to n3 and ny, yielding the static H-DRF allocation in

(b) Static H-DRF allocation for

(a) Hierarchy for which rescaling breaks. (a)

ny

ni na n3

.1 (1,0) 21 (L0 gy 1,0)

N

n320,1)

ng4

|
n47] <0, 1>

Figure 5: Hierarchy that breaks rescaling and its static H-DRF allocation. The demand vector (i, j) represents i CPUs and j GPUs.

Figure 5(b).

Just ignoring blocked nodes, without rescaling, will
not be sufficient to achieve static H-DRF allocations.
To see this, consider the example in Figure 4(a), where
job no 1 eventually gets starved because its resources are
given to ny 1 in a dynamic system. Recall that the prob-
lem was that the internal node n, was attributed to have a
dominant share of 100%. Ignoring blocked nodes indeed
will ensure that n; 1 is not starved, as ny 5 is blocked, giv-
ing n> a dominant share equal to that of ny ;. If we, how-
ever, modify the example so that np | demands (1,€), ig-
noring blocked nodes alone will no longer suffice. Each
time ny ; finishes a task (1, €), some amount of both re-
sources is released. Thus, n; 5 is no longer blocked as
there are no saturated resources. Thus, n,’s dominant
share will again be close to 100%. Rescaling will, how-
ever, remedy the problem as n, > is scaled back to n 1,
ensuring that CPUs are split equally between ny; and
naj.

Final Dynamic H-DRF Algorithm Algorithm 2 puts
together the ideas that were derived in this section,
i.e., naive H-DRF modified with rescaling to minimum
nodes, and ignoring blocked nodes. It begins by recur-
sively computing the rescaled dominant shares based on
the demanding leaves (Algorithm 3) and then applies the
same allocation procedure as in the static version based
on the rescaled dominant shares (Algorithm 4). Note that
the recompilation of the rescaled dominant shares can
be simplified when the set of available resources has not
changed; however for simplicity of presentation we ig-
nore this below.

To compare the static and the dynamic H-DREF, con-
sider a simple dynamic model of system behavior. Begin
with no resources assigned and run the dynamic H-DRF
where tasks can complete at arbitrary times and when-
ever there are resources available they are iteratively al-
located according to dynamic H-DRF. We assume that
tasks are small since allocations are done by small slices.
We then compare dynamic H-DRF with the static alloca-
tion at times when there are no excess resources, except
those which are not useful to any of the leaves. Under

R={ri, ,rm) > total resource capacities
C={c1, " ,Cm) > current consumed resources
W resources to allocate > Assumption:R —C > W
Y set of nonzero resources in W

A (demanding), set of leaf nodes that use only re-

sources in Y or parents of demanding nodes

ny > root node in hierarchy tree
C(n) > children of any node n
s; (i=1...n) > dominant shares

Ui= (i1, uim) (i=1...n) > resource
consumption of node i
Recompute s: U pdateS(n,)

Allocate the resources: Alloc(W)

Algorithm 2: Dynamic H-DRF Algorithm

function (recursive) UpdateS(n;)
if n; is a leaf node then

S = maxU,-j/Rj forjey

return U;
else

Q = set of U;’s from UpdateS(n;) for children of
n;

f = minimum dominant share from Q restricting
to nodes in A and resources in Y

Rescale demanding vectors in Q by f

U; = sum of vectors in Q

si=maxU; j/RjforjeY
return U;

Algorithm 3: Dynamic H-DRF Rescaling Function

this model, we can show the following.

Theorem 1 Static H-DRF allocations agree with dy-
namic H-DRF allocations whenever resources are fully
allocated.

To see why this result holds, we first note that by the
monotonicity of the static allocations of resources (dis-
cussed in more detail after Theorem 2), for the initial
allocation of resources, before any tasks complete, the

function Alloc(W)
ni = ny
while 7; is not a leaf node (job) do
n; = node with lowest dominant share s; in
C(n;), which also has a task in its subtree
that can be scheduled using W

n; = nj
D; = %Th s.t. T; is n;’s task demand vector
C=C+HD; > update consumed vector
U =U;+D; > update leaf only

Algorithm 4: Dynamic H-DRF Allocation Function

dynamic and the static version algorithms are identical,
as no rescaling is necessary.

To complete the analysis we need to show that when
a (very small) task completes it is reallocated to the leaf
that completed it. It is clear that this occurs for any task
that has the same set of resources as the last task allo-
cated in the static H-DREF. It is also true for other com-
pleted tasks.

To see why, consider a leaf that was one of the first to
be blocked in the static H-DRF allocation by the com-
plete allocation of a resource r. Define s to be the domi-
nant resource shares for the nodes at that instant, s to be
the shares after the release of the task and s* the shares
at the completion of the static H-DRF. Since the static
H-DREF allocation is monotonic, s’ < sx. However, if we
consider the final allocation under static H-DRF but as-
sume that r is demanding, then by the rescaling rule the
dominant resource shares will be s”. This implies that s
is smaller than s" for all parents of the leaf that com-
pleted the task and unchanged for all other nodes, which
implies that the algorithm will allocate the task back to
the node that released it. One can apply this argument
inductively to show that it works in general.

4 Allocation Properties

The previous section showed that a simple approach to
supporting hierarchies in DRF failed to provide certain
guarantees and proposed H-DRF, which satisfies those.
This section discusses several important properties of H-
DREF and provides intuitions behind these properties.
The reasoning of H-DRF will be based on the static
version of H-DRF which is easier to analyze and as
we discussed in the previous section, the static and dy-
namic versions of H-DRF lead to the same allocations.
The key idea behind the analysis of the static H-DRF
allocation procedure is that it can be viewed as a wa-
ter filling algorithm, with multiple types of “water” and
carefully adjusted flow rates at each node. Then we use
the monotonicity of water filling, since as the algorithm
runs, the allocation of leaf nodes is increased monotoni-

cally. Since dominant shares are being equalized when-
ever possible, the sooner a leaf becomes blocked the
lower its dominant share will be.

The static H-DRF algorithm does not depend on
the scaling of a leaf’s requirements, (3GB, 2CPUs) is
treated the same as (6GB, 4CPUs), so we can simplify
our analysis by assuming that the requirement for every
dominant resource is 1 and also that the total amount of
each resource is 1.

4.1 Hierarchical Share Guarantees

In the previous section we saw job starvation with naive
H-DRF and that both naive H-DRF and Collapsed Hier-
archies violated the group guarantees for internal nodes
in the hierarchy. The Hierarchical Share Guarantee (de-
fined in Section 2) precludes such violations. We now
show that static (and hence dynamic) H-DRF satisfies
these.

Theorem 2 Static H-DRF allocations satisfy the Hier-
archical Share Guarantee property.

This guarantee implies that the allocation satisfies the
so-called Sharing incentive, which implies that every
node prefers the H-DRF allocation to splitting the en-
tire system among the nodes. For example, given the hi-
erarchy in Figure 4, both n; and n, prefer the H-DRF
allocation to receiving half of the total resources.

To see why this result is true, consider a modified
problem where we add a single additional resource with
demand 1 to all the leaves. Now, consider running the
static algorithm until the first time where this resource
is fully utilized. At this instant it is easy to see recur-
sively that every node has received exactly its hierarchi-
cal share guarantee. Now, compare this allocation to that
without the extra resource. Until the point where the ex-
tra resource is fully utilized, the allocations on the other
resources are unchanged. Thus, by monotonicity of the
water filling, each node will end up with as good or bet-
ter an allocation than the modified one.

4.2 Group Strategyproofness

Somewhat surprisingly, the original DRF [1] paper
showed that in the multi-resource setting users can ma-
nipulate schedulers by artificially using more resources.
This is a problem that does not occur in single-resource
settings, but is an important concern in the multi-
resource setting.

In the context of hierarchical scheduling, other ma-
nipulations become natural. For example, users within
an organization could collude, coordinating their manip-
ulations. To prevent these problems we require that the
allocation mechanism satisfy group strategyproofness, a
hierarchical extension of group strategyproofness.

Definition An allocation mechanism is group strate-
gyproof if no group of users can misrepresent their re-
source requirements in such a way that all of them are
weakly better off* and at least one of them is strictly
better off.

Theorem 3 H-DRF allocations satisfy group strate-
gyproofness.

To understand this result, again consider stopping the
static H-DRF algorithm at the time where the first re-
source becomes saturated. If one of the leaves that is
blocked at this point were to decrease its requirement for
some of its non-dominant resources then the blocking
time would not change and that leaf would receive less
of the resources with the decreased requirements lead-
ing to a decrease in number of jobs. Alternatively, the
leaf node could try to increase its requirement for some
of its non-dominant resources. Two cases are possible
in this scenario — either this would not change the first
blocking time and the leaf would get more resources, but
would not be able to utilize them as their allocation of
their dominant resource would be unchanged, or alterna-
tively, one of these non-dominant resources might block
first, but then the leaf would get even less of their dom-
inant resource. Thus we see that one of the first blocked
leaves can not increase its allocation by lying about its
requirements. One can also see that no group of first
blocked leaves can lie so that all get better allocations
by the same reasoning. Lastly, combining the recursive
nature of the algorithm with the time monotonicity of the
water filling it is straightforward to show that the same
reasoning applies to all leaves independent of their first
blocking time.

4.3 Other properties

The previous sections covered the most important prop-
erties of H-DRF. Here we briefly mention two other
properties: recursive scheduling and population mono-
tonicity.

Recursive Scheduling.

Definition Recursive scheduling: It should be possible
to replace any sub-tree in the hierarchy tree with another
scheduler.

Recursive scheduling is useful in many ways and al-
lows one to modify a procedure by changing the algo-
rithm on specified nodes of the tree. This allows any sub-
organizations the autonomy to use alternative allocation
rules e.g., FIFO, Fair, efc if they so wish.

Theorem 4 H-DRF allocations
scheduling.

satisfy Recursive

4By weakly better off we mean that no one is worse off.

ny
ni nz
‘ /\

n1,1<3>2> n271<1,1> n2,2<173>

Figure 6: Example showing that H-DRF does not satisfy pop-
ulation monotonicity. The demand vector (i, j) represents i
CPUs and j GPUs.

The replacement of H-DRF at some internal node
with some other allocation rule may clearly impact the
sharing incentive and strategy proofness for all children
of that node, but does not in the other parts of the tree.

Population Monotonicity.

Definition Population monotonicity: Any node exiting
the system should not decrease the resource allocation
to any other node in the hierarchy tree.

In other words, in a shared cluster, any job comple-
tion should not affect the dominant resource share of any
other node or job. This is important because job comple-
tions are frequent in a large cluster. Unfortunately, this
does not hold for H-DRF. But this is because population
monotonicity is incompatible with the share guarantee.

Theorem 5 H-DRF allocations do not satisfy Popula-
tion monotonicity.

. Job n, D Job n,; D Jobn,,
100% 100% |
30% 30% 50% 50%
50% —_— 50%
| 0%
0% - 0%
CPUs GPUs CPUs GPUs

Figure 7: Resource allocations to the leaf nodes in Figure 6,
when all three leaf nodes - nj 1, np 1 and n > are demanding
(left), and when only n; ; and ny | is demanding (right)

Thus, when a user or organization in the hierarchy
tree becomes non-demanding, other nodes may receive a
lower share of their dominant resource. Let us consider
the simple hierarchy shown in Figure 6. HDRF gives

ny 60% share of its dominant resource (CPUs) when all
three leaf nodes are demanding (Figure 7). If n » were to
become non-demanding, the dominant resource share of
n; reduces to 50%, since both queues n; and n; now have
the same dominant resource. The intuition behind why
H-DRF is not population monotonic is that the dominant
resource of an internal node might change when any of
it’s children nodes becomes non-demanding resulting in
reduction of dovetailing.

5 Evaluation

We evaluate H-DRF by deploying a prototype on a 50-
server EC2 cluster running hadoop-2.0.2-alpha [21] and
through trace-driven simulations. We modify hadoop-
2.0.2-alpha to add support for GPUs as a resource.
The H-DRF implementation in our prototype is single-
threaded and centralized. H-DRF maintains a headroom
equal to the size of the largest task on each server, to
ensure that large tasks do not get starved out.

We first demonstrate fair sharing in H-DRF through
a simple experiment. Then, we compare the perfor-
mance of H-DRF to the Capacity Scheduler provided in
Hadoop [6]. Finally, we compare the job performance
metrics of H-DRF to that of hierarchical slot-based fair
schedulers ([9]) through an example workload on our
prototype, and through a simulation of a 10-day Face-
book trace.

Notation: Jobs are only submitted to the leaf nodes in
the shown hierarchies. Every job has the same resource
requirements for all its tasks. In this section, the notation
(i, j,k) denotes i GB of memory, j CPUs and k GPUs.

5.1 Hierarchical Sharing

ny

ni(4) na(1)

nia(1,1,0) ni2(1,0,1) nz1(1,1,0) np2(1,1,0)
Figure 8: Hierarchy to demonstrate the working of H-DRF and

fair allocation of resources

We illustrate fair share allocation by H-DRF on a
simple example. Consider the hierarchy tree shown
in Figure 8. We use 49 Amazon EC2 servers in this
experiment, configuring hadoop to use 16GB memory
and 4 CPUs and 4 GPUs on each server. The weights
of parent nodes nj:n; as 4:1. The weights for all other
nodes are equal to 1. One long running job (2000 tasks)
is submitted to each of the leaves in the hierarchy. Each
task in the jobs submitted to 7y 1, 11 2, 12,1 and np > have

=°n;, n;, n,; * Ny,
D
ot
«<
= 1
7
D
I P
5075 1
2]
4 \
& oos Vooon
=
-
025 a .
g \
S el .
g, S
200 300 400 500 600 700
Time (s)

Figure 9: Resource sharing between the leaf nodes shown in
Figure 8

resource requirements (1,1,0), (1,0,1), (1,1,0) and
(1,1,0) respectively. Thus, the dominant resource of
n1,1, n2,1 and ny» is CPU, while the dominant resource
of ny, is GPU. Figure 9 shows the dominant share
allocated by H-DRF to the various leaf nodes in the
hierarchy across time. Between 200-300s all leaf nodes
are active. The job submitted to 71,1 ends at 350s, n; > at
400s, ny 1 at 550s and finally n; > at 600s.

Weighted proportional fair sharing of dominant
resources: The 4:1 ratio of weights between n; and n;
requires that all children of n; combined should receive
0.8 share of the cluster. When all four leaf nodes in
the hierarchy are active (between 200-300s), this is
indeed the case. nj; gets 0.8 share of the CPUs (its
dominant resource) , while n; 1 and n; > receive a share
of 0.1 each, making the total share of CPUs received
by parent n, 0.2 (i.e., exactly 1/4th that of nj). Thus,
H-DREF delivers proportional dominant resource sharing
between all sibling nodes in this hierarchy. Also note
that instead of 7 > receiving a 0.8 share of the GPUs in
the cluster (its dominant resource), it receives a share of
1.0 because no other node in the hierarchy is contending
for the cluster’s GPUs. All the CPUs and GPUs in the
cluster consumed by tasks demonstrates that H-DRF
achieves a pareto-efficient’ allocation.

Normalization in H-DRF: ni,’s dominant share of
1.0 does not affect the sharing between nj 1, ny; and
ny». H-DRF normalizes the share of nj, to 0.8 to
calculate the total allocation vector of n;.

Spareto efficiency implies that no node in the hierarchy can be al-
located an extra task on the cluster without reducing the share of some
other node

Sharing of resources between sibling queues: Once
n1,1 completes at 300s, its resources are taken over by
ny1 and npp, taking their dominant resource (CPU)
share to 0.5 each. The share of n remains 1.0 because
none of the other nodes require GPUs. This demon-
strates the sibling sharing property where a node can
increase its share to take advantage of a non-demanding
sibling. This property is also exhibited when nj>
finishes at 400s, and n, | increases its share to use all
the CPUs in the cluster.

5.2 Comparison to existing Hadoop multi-
resource schedulers

ny

ni np n3
n n
L1 ! np1 N2z N3

2 n3,1

Figure 10: Hierarchy used in §5.2

In this section, we show that starvation does indeed
occur when current open-source schedulers are used.
We do so by running a workload and comparing the
performance of the H-DRF prototype implementation
to the Capacity scheduler implemented in Hadoop
2.0.2-alpha [6]. The Capacity scheduler performs
hierarchical multi-resource scheduling in Hadoop in the
manner described in §3.3. Our cluster consists of 50
Amazon EC2 servers, each configured to have 6 GB
memory, 4 CPU cores and 1 GPU (Total 300GB, 200
cores and 50 GPUs). We run three schedulers - (i) an
unchanged implementation of the Capacity Scheduler
(henceforth named C.S-Current, and which is not pareto
efficient), (ii) the pareto-efficient implementation of the
same scheduler (Pareto-Efficient-C.S) and (iii) H-DRF,
on the same workload and compare throughput and job
response times.

Hierarchy Tree: The hierarchy tree chosen for this ex-
periment is based on typical hierarchies seen by Cloud-
era, a cloud-based company with hundreds of customers
running hierarchical scheduling, and is shown in Figure
10.

Input Workload: The input job schedule has the
same job size distribution as a 10-day Facebook trace
(collected in 2010). Table 1 shows the job sizes of the
input job schedule in our experiment and the Facebook
trace. We create a 100-job schedule by sampling job

sizes® from the enterprise trace. If the sampled job has
memory as its dominant resource in the Facebook trace,
it is configured to use 1.5 GB memory per task, else it
is configured to use 1 GB memory per task. All jobs
request one CPU core and no GPUs per task, except the
jobs submitted to ny > which request one GPU core and
no CPU. The 100 jobs are divided into six groups to be
submitted to each of the leaf nodes in the hierarchy. The
ten large jobs (>500 tasks) are divided between nodes
ni,1, n2 and n3 1, while the smaller jobs (<500 tasks)
are divided between the leaf nodes of ny. The order of
the jobs submitted to the leaves is kept the same across
the different experiments. Each leaf node runs its next
job as soon as the previous one finishes. The jobs are
written to precisely use the amount of memory and CPU
specified.”.

Comparison Metrics: We compare two metrics for the
three schedulers. First we note the throughput of each
leaf node in terms of the number of its tasks running at
any point. Second, we calculate the improvement in job
response time in H-DRF as compared to the other two
schedulers. The percentage improvement in job response
time for H-DREF is calculated as how much earlier the
same job completed in H-DRF as compared to the other
scheduler, as a percentage of the job duration time in the
other scheduler.®

Table 1: Characteristics of the input job schedule. The input
job schedule maintains the job size distribution from the Face-
book trace

Bin (# tasks) % Jobs in Num. jobs in
Facebook our workload
trace
0-19 73 74
20-149 10 10
150-499 7 6
500+ 9 10

Comparison against C.S-Current: C.S-Current uses
the naive H-DRF technique (§3.3) and tries to equalize
the dominant share allocation between every pair of
sibling nodes. However, it is not pareto-efficient because
it stops allocating tasks to nodes as soon as any of the
cluster resources is fully utilized. The consequence is
that once all the CPUs in the cluster become utilized,

Snumber of tasks

7Note that due to some tasks requiring only 1GB of memory, there
may be enough memory left over in each server after allocating four
CPU-based tasks to allocate a GPU task

8Due to a higher throughput obtained by H-DRF in some cases, a
particular job may start much earlier in H-DRF than in the other sched-
ulers, leading to the percentage improvement in job response time to
be more than 100%

(a) Throughput of leaf nodes under the current implementation of the Capacity Scheduler (C.S-Current),
Capacity Scheduler modified to be Pareto-efficient(Pareto-Efficient-C.S), and H-DRF for the hierarchy

tree in Figure 10.
200
Pareto-Efficient C.S
150
STARVATION

100 83 79

48 49

21
1 6 2

Median Throughput
(Tasks running simultaneously)

N2

9

-]

® HDRF O C.S-Current

158

NOT PARETO EFFICIENT

11 14 14

N2z

Leaf Nodes

(b) Percentage Improvement in Job Response Times on using H-DRF as compared to C.S-Current and

Pareto-Efficient-C.S

500
413

400
4— STARVATION EFFECT

300 254

200

100

% Improvement in Job Response
Time

-200

® Pareto-Efficient C.S

6

° 1
-100

-9 n,,

O C.S-Current

€—— NON-PARETO-EFFICIENCY EFFECT

77
16 31
e e
-22

ny, 23

Leaf Nodes

Figure 11

C.S-current stops scheduling tasks of nj (which uses
GPUs) even though there are enough resources in the
cluster for it to increase its share. Thus, nj>, whose
dominant resource share is 21/50 = 0.42, is pinned
down to roughly the dominant resource share of nj
(dominant share of 79/200 =~ 0.40) (see Figure 11la).
H-DREF, on the other hand, is Pareto-efficient and allows
nyp to increase its dominant share beyond that of n ;.
The throughput of the remaining nodes are roughly
equal for both schedulers. H-DRF improves its job
response times for ny 5 by almost 250% on the average
(Figure 11b).°

Comparison against Pareto-Efficient-C.S: We then
modified C.S-Current to enable pareto-efficiency by
adding support for non-usage of an available resource,
by removing task reservations on servers, and by con-
tinuing scheduling tasks if there exists leaf nodes that
do not demand the saturated resources. On each server
we maintain a headroom equal to the resources required
by the largest task'” to ensure that a task with large re-
source demands does not get starved out by tasks with

Note that C.S-current behaves exactly like H-DRF and is pareto-
efficient when every task uses at least some portion of every cluster
resource.

101n this case (1.5,1,1)

smaller demands (the reason for task reservations in the
C.S-Current). Figure 11a shows that in Pareto-Efficient-
C.S (which is now exactly the naive H-DRF technique
in §3.3), ny2’s share increases beyond its sibling’s share
to use almost all the GPUs in the cluster. However, the
increase in n1’s share also increases the dominant re-
source share of its parent node #; to 1.0. In an attempt to
raise np and n3’s dominant share to match that of nj,
Pareto-Efficient-C.S allocates any new CPU cores va-
cated by a finishing task of ny 1 to a leaf node of n; or
n3. The starvation of n; gets so dire that its median
throughput in Pareto-Efficient-C.S drops to just 1 task,
with its fair share being divided among the remaining
leaf nodes. The increased share for the leaf nodes of ny
and n3 leads to an improvement in their job response
times over H-DRF. n; 1 only achieves its fair share once
all jobs of nj 5 finish, resulting in H-DRF finishing jobs
413% faster.

5.3 Comparison to hierarchical slot-based
Fairness: Prototype and Simulation
Results

Slot-based schedulers divide a server’s resources equally
into a pre-defined number of slots, and assign one task
to each slot with the objective of equalizing the num-
ber of tasks allocated to any pair of sibling nodes. As-

signing a task to a slot without enforcing that the task’s
resource requirements be lesser than the slot size, can
lead to under or over-subscription of server resources de-
pending on the slot count per server and the task sizes (as
shown in [1]). Over-subscription of memory on a server
may lead to thrashing which will dramatically reduce
throughput and job response times. In section 5.3.1 we
quantify the benefits of H-DRF over slot-based sched-
ulers through our prototype implementation, and in sec-
tion 5.3.2 through simulation.

5.3.1 Prototype results

400

© 351 ® 4 Slots 5slots U6 slots
]
2 289
g — 275
-4
=
S
= 200
- %]
ZE 166
SFE 129
=] 112 107
4 100
=]
ot
E' 33 3232
o 0 4
= AN m]
)
0-20 20-149 150-499 >500

Bins (# Tasks)

Figure 12: Improvement of average job response times by H-
DREF against hierarchical slot-based scheduling on our imple-
mented prototype

We use a 50-server Amazon EC2 cluster, each server
having 7 GB memory and 8 CPUs. We configure each
server to use 6 GB of memory (leaving 1 GB to be
used by the Operating System). Each server is config-
ured to behave as having 4 CPUs and 4 GPUs. We use
the same job schedule and node hierarchy as the previous
section (§5.2) and use the same definition of percentage
improvement in job response time, except that we set
the weight of n3 to 2 in each run. We compare H-DRF
against three possible configurations of the hierarchical
slot scheduler - with 4, 5 and 6 slots per server.

The job schedule completes execution in 1379 , 1446,
1514 and 1732 seconds for H-DREF, 4-slot, 5-slot and 6-
slot scheduling respectively. Figure 12 shows the per-
centage improvement in job response times obtained
by H-DRF over slot scheduling. H-DRF can more effi-
ciently pack jobs in a cluster, ensuring superior through-
put and resulting in jobs finishing quicker. The 4-slot
case gets worse for larger jobs because its through-
put is lower than that of H-DRF. Since small jobs fin-
ish in a single wave, the increased throughput in H-
DREF does not play a significant role in the comparison
against 4-slots. From 5-slots onwards, small jobs (a ma-
jority of which use 1.5 GB memory for each of their

tasks) encounter thrashing due to the slot scheduler over-
committing the amount of memory on the server. The 6-
slot scheduler also encounters thrashing for smaller jobs,
but by virtue of packing more tasks per server, its perfor-
mance improves for larger jobs.

5.3.2 Simulation results

100
© | 10 slots 12 slots 14 slots
z 83]2
S 80 80
§ 80
< 68
[~ 67 65 64
S 60
= 48 47 47
- D
E £ 44
S =40
£
ﬂ)
=
a 20
£
—_
X

0-20 20-149 150-499 >500

Bins (# Tasks)

Figure 13: Improvement in job response times of H-DRF
against hierarchical slot-based scheduling while simulating the
Facebook trace

We also use a trace-driven simulator to compare H-
DREF to slot scheduling. We use the same configuration
as reported in [23]. The input to the simulator was a
10-day trace from a 2000-server cluster at Facebook.
We simulate the trace on a 1200-node cluster in order
to achieve high utilization and make fairness a relevant
concern. The simulator re-creates the exact resource us-
age and time taken by each job in the Facebook trace.

In the trace, we found that memory requirements of
each job could vary up to 9 GB, and CPU requirements
up to 3 cores. Each server was configured to have 32
GB memory, 16 CPUs, in addition to which 200 of the
servers had 16 GPUs. We use the same hierarchy as
shown in Figure 10. Each leaf node was assumed to have
25 users submitting a mixed workload (small jobs and
large jobs), with inter-arrival times sampled from the
Facebook trace. The time of submission of a job was
kept the same across all the experiments. If jobs got
queued at a leaf node, they were served in a first-in-first-
out manner. The simulation was stopped at 604800 sec-
onds (or 1 week) , and the improvement in job response
time achieved by H-DRF among completed jobs as com-
pared to the slot scheduler with 10, 12 and 14 slots was
computed. As shown in Figure 13, H-DRF improved the
response times over hierarchical slot scheduling by 44-
83% by achieving higher utilization.

6 Related Work

Our work builds on the notion of Dominant Resource
Fairness [1]. DRF guarantees multi-resource fairness
only for non-hierarchical systems, and has been ex-
tended to other non-hierarchical settings such as in
[10, 11, 12, 13]. H-DRF extends the concept of Dom-
inant Resource Fairness to the hierarchical setting, and
provides new properties such as group-strategy proof-
ness.

Hierarchical scheduling has been studied in many
fields of Computer Science such as in networking [24]
to allocate bandwidth between different classes of flows,
in Operating Systems [25, 26] to support isolation and
performance guarantees to different classes of applica-
tions. Ensuring storage performance requirements for
different sub-organizations in a company arranged in a
hierarchical fashion has been studied in [27]. Hierar-
chical scheduling has also been studied in grid com-
puting for multi-grid resource allocation and manage-
ment [28, 29]. Hierarchical schedulers such as Fair [9]
and Capacity [6] have been implemented in Hadoop. The
Hadoop Fair scheduler assigns resources at the slot gran-
ularity, which might lead to underutilization or oversub-
scription of resources on a server. H-DRF considers mul-
tiple resources during its allocation decisions, and hence
avoids these issues.

Finally, the Hadoop Next-Generation (YARN) [19]
has recently added multi-resource DRF support to its
Capacity scheduler [18]. Furthermore, there is a recent
JIRA from Cloudera on implementing a new DRF-based
fair scheduler [20]. As we showed in our evaluation,
the hierarchical implementation of DRF in YARN can
leave resources unallocated and sometimes starve jobs.
Our implementation of H-DRF in YARN does not suffer
from these problems.

7 Conclusion and Future Work

Hierarchical scheduling is an essential policy that is
supported by most cloud schedulers. Recently, multi-
resource fairness has emerged as an important additional
requirement for job scheduling to deal with heteroge-
neous workloads. For this reason, industry has devel-
oped two separate hierarchical schedulers for Hadoop
YARN. Unfortunately, we show that they suffer from ei-
ther job starvation or leave some resource unallocated
despite demand. This is because multi-resource fairness
introduces new challenges for hierarchical scheduling.
We have proposed H-DRF, which is a hierarchical multi-
resource scheduler for Hadoop. Our evaluation shows
that it outperforms the traditional slot scheduling, and
does not suffer from starvation and inefficiencies.
H-DRF presents several areas for future research.
First, H-DRF does not deal with issues arising out of

task placement constraints. The notion of dominant re-
source fairness under placement constraints is still an
open question. Second, H-DRF’s allocation vector up-
date step may require recomputing the dominant shares
of every other node in the hierarchy. This might be com-
putationally expensive in a hierarchy with a large num-
ber of nodes. Third, pre-emptions could be added to
H-DRF to enable nodes achieve their dominant shares
faster.

8 Acknowledgments

We would like to thank Ganesh Ananthanarayanan
and our shepherd Ajay Gulati for their valuable feed-
back. This research is supported in part by NSF CNS-
1161813, NSF CNS-0931843, NSF CISE Expeditions
award CCF-1139158, DARPA XData Award FA8750-
12-2-0331, National Science Foundation under Grants
CNS-0931843 (CPS-ActionWebs) and gifts from Ama-
zon Web Services, Google, SAP, Cisco, Clearstory Data,
Cloudera, Ericsson, Facebook, FitWave, General Elec-
tric, Hortonworks, Intel, Microsoft, NetApp, Oracle,
Samsung, Splunk, VMware and Yahoo!

References

[1] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwin-
ski, I. Stoica, and S. Shenker. Dominant resource
fairness: Fair allocation of multiple resource types.
In NSDI, 2011.

[2] Michael Isard, Vijayan Prabhakaran, Jon Currey,
Udi Wieder, Kunal Talwar, and Andrew Goldberg.
Quincy: Fair scheduling for distributed computing
clusters. In SOSP, 2009.

[3] Matei Zaharia, Dhruba Borthakur, Joydeep
Sen Sarma, Khaled Elmeleegy, Scott Shenker,
and Jon Stoica. Delay Scheduling: A Simple
Technique for Achieving Locality and Fairness in
Cluster Scheduling. In EuroSys, 2010.

[4] T. A. Henzinger, A. V. Singh, V. Singh, T. Wies,
and D. Zufferey. Static scheduling in clouds. In
HotCloud, June 2011.

[5] Matei Zaharia, Andy Konwinski, Anthony D.
Joseph, Randy Katz, and Ion Stoica. Improving
MapReduce Performance in Heterogeneous Envi-
ronments. In Proc. OSDI, December 2008.

[6] Hadoop

//hadoop.apache.org/docs/current /hadoop-yarn/

Capacity Scheduler. http:

hadoop-yarn-site/CapacityScheduler.html.

[7] Malte Schwarzkopf, Andy Konwinski, Michael
Abd-El-Malek, and John Wilkes. Omega: flexi-
ble, scalable schedulers for large compute clusters.

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

In Proceedings of the 8th ACM European Confer-
ence on Computer Systems, pages 351-364. ACM,
2013.

Alexey Tumanov, James Cipar, Gregory R Ganger,
and Michael A Kozuch. alsched: Algebraic
scheduling of mixed workloads in heterogeneous
clouds. In Proceedings of the Third ACM Sympo-
sium on Cloud Computing. ACM, 2012.

Hadoop Fair Scheduler. nttp://hadoop.apache.org/

common/docs/r0.20.2/fair_scheduler.html

Carlee Joe-Wong, Soumya Sen, Tian Lan, and
Mung Chiang. Multi-resource allocation: Fairness-
efficiency tradeoffs in a unifying framework. In
INFOCOM, pages 1206-1214, 2012.

Avital Gutman and Noam Nisan. Fair Allocation
Without Trade. In AAMAS, June 2012.

David C. Parkes, Ariel D. Procaccia, and Nisarg
Shah. Beyond Dominant Resource Fairness: Ex-
tensions, Limitations, and Indivisibilities. In ACM
EC, 2012.

Ali Ghodsi, Vyas Sekar, Matei Zaharia, and Ion
Stoica. Multi-resource fair queueing for packet
processing. In SIGCOMM, 2012.

Charles Reiss, Alexey Tumanov, Gregory R.
Ganger, Randy H. Katz, and Michael A. Kozuch.
Heterogeneity and dynamicity of clouds at scale:
Google trace analysis. In ACM Symposium on
Cloud Computing (SoCC), San Jose, CA, USA,
October 2012.

Bikash Sharma, Ramya Prabhakar, Seung-Hwan
Lim, Mahmut T. Kandemir, and Chita R. Das.
Mrorchestrator: A fine-grained resource orchestra-
tion framework for mapreduce clusters. In IEEE
CLOUD, pages 1-8, 2012.

R. Boutaba, L. Cheng, and Q. Zhang. On cloud
computational models and the heterogeneity chal-
lenge. J. Internet Services and Applications,
3(1):77-86, 2012.

B. Hindman, A. Konwinski, M. Zaharia, A. Gh-
odsi, A. D. Joseph, R. H. Katz, S. Shenker, and
I. Stoica. Mesos: A platform for fine-grained re-
source sharing in the data center. In NSDI, 2011.

YARN DREF extension to the Capacity Scheduler.
https://issues.apache.org/jira/
browse/YARN-2.

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

The Next Generation of Apache Hadoop MapRe-
duce. http://developer.yahoo.com/blogs/hadoop/

posts/2011/02/mapreduce-nextgen.

YARN DRF extension to the Fair Scheduler.
https://issues.apache.org/jira/
browse/YARN-326.

Hadoop Yarn 2.0.2-alpha.

org/docs/current/

http://hadoop.apache.

Abhishek Chandra and Prashant Shenoy. Hierar-
chical scheduling for symmetric multiprocessors.
IEEE Transactions on Parallel and Distributed
Systems, 19:418-431, 2008.

Ali Ghodsi, Matei Zaharia, Benjamin Hindman,
Andrew Konwinski, Scott Shenker, and Ion Stoica.
Dominant resource fairness: Fair allocation of mul-
tiple resource types. Technical Report UCB/EECS-
2011-18, EECS Department, University of Califor-
nia, Berkeley, Mar 2011.

Jon C. R. Bennett and Hui Zhang. Hier-
archical packet fair queueing algorithms. In
IEEE/ACM Transactions on Networking, pages
143-156, 1997.

Pawan Goyal, Xingang Guo, and Harrick M. Vin.
A Hierarchical CPU Scheduler for Multimedia Op-
erating Systems. In OSDI, pages 107-121, 1996.

C. A. Waldspurger. Lottery and Stride Schedul-
ing: Flexible Proportional Share Resource Man-
agement. PhD thesis, MIT, Laboratory of Com-
puter Science, September 1995. MIT/LCS/TR-
667.

Ajay Gulati, Ganesha Shanmuganathan, Xuechen
Zhang, and Peter Varman. Demand based hierar-
chical QoS using storage resource pools. In Pro-
ceedings of the Annual USENIX Technical Confer-
ence, 2012.

Volker Hamscher, Uwe Schwiegelshohn, Achim
Streit, and Ramin Yahyapour. Evaluation of job-
scheduling strategies for grid computing. In Grid
ComputingGRID 2000, pages 191-202. Springer,
2000.

V. Subramani, R. Kettimuthu, S. Srinivasan, and
S. Sadayappan. Distributed job scheduling on com-
putational grids using multiple simultaneous re-
quests. In High Performance Distributed Com-
puting, 2002. HPDC-11 2002. Proceedings. 11th
IEEE International Symposium on, pages 359 —
366, 2002.

