
Strategyproof Allocation of Discrete Jobs on Multiple Machines

ERIC FRIEDMAN, ICSI and UC Berkeley
ALI GHODSI, ICSI and UC Berkeley
CHRISTOS-ALEXANDROS PSOMAS, ICSI and UC Berkeley

We present a model for fair strategyproof allocations in a realistic model of cloud computing centers. This
model has the standard Leontief preferences but also captures a key property of virtualization, the use
of containers to isolate jobs. We first present several impossibility results for deterministic mechanisms
in this setting. We then construct an extension of the well known dominant resource fairness mechanism
(DRF), which somewhat surprisingly does not involve the notion of a dominant resource. Our mechanism
relies on the connection between the DRF mechanism and the Kalai-Smorodinsky bargaining solution; by
computing a weighted max-min over the convex hull of the feasible region we can obtain an ex-ante fair,
efficient and strategyproof randomized allocation. This randomized mechanism can be used to construct
other mechanisms which do not rely on users’ being expected (ex-ante) utility maximizers, in several ways.
First, for the case of m identical machines one can use the convex structure of the mechanism to get a
simple mechanism which is approximately ex-post fair, efficient and strategyproof. Second, we present a
more subtle construction for an arbitrary set of machines, using the Shapley-Folkman-Starr theorem to show
the existence of an allocation which is approximately ex-post fair, efficient and strategyproof. This paper
provides both a rigorous foundation for developing protocols that explicitly utilize the detailed structure
of the modern cloud computing hardware and software, and a general method for extending the dominant
resource fairness mechanism to more complex settings.

Categories and Subject Descriptors: J.4 [Social and Behavioral Sciences]: Economics; I.2.11 [Dis-
tributed Artificial Intelligence]: Multiagent systems

General Terms: Theory; Economics

Additional Key Words and Phrases: Resource Allocation; Fair Division

1. INTRODUCTION
The problem of allocating jobs in a cloud computing center is of broad practical and the-
oretical interest. For the former, cloud computing centers (CCCs), both internal (such
as used by Twitter) and external (such as Amazon’s EC2) are used for a large frac-
tion of the world’s computing and growing rapidly. For the internal, the introduction of
the dominant resource fairness ([Ghodsi et al. 2011]) protocol has spurred much work
on strategyproof allocation for Leontief Economies ([Parkes et al. 2012], [Dolev et al.
2012], [Li and Xue 2013]) leading to important insights and unexpected connections
between computer science ([Joe-Wong et al. 2012]) and economics ([Friedman et al.
2011]). DRF has been extended to be used inside routers ([Ghodsi et al. 2012]) as well
as large organizations with hierarchies ([Bhattacharya et al. 2013]). In addition, it has

This work is supported by grants NSF-1216073, NSF-1161813, and the A.G. Leventis Foundation. See the
Acknowledgements section before REFERENCES.
Author’s addresses: Computer Science Division, Electrical Engineering and Computer Sciences Department,
University of California at Berkeley, and International Computer Science Institute. Emails: E.Friedman,
ejf@icsi.berkeley.edu; A.Ghodsi and C.A.Psomas, { alig , alexpsomi }@cs.berkeley.edu;
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or repub-
lish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
EC’14, June 8–12, 2014, Stanford, CA, USA. Copyright c� 2014 ACM 978-1-4503-2565-3/14/06 ...$15.00.
http://dx.doi.org/10.1145/2600057.2602889

been deployed in production, running on thousands of nodes at Twitter in the Mesos
resource manager ([Hindman et al. 2011]).

The basic model underlying the analysis of DRF is an extremely simplified setting
in which there is a single large machine and job allocations can be fractional. While
this has led to a widely used mechanism in CCCs, many issues, such as the discrete-
ness of jobs and the distributed computing environment have been dealt with in ad-hoc
manners. In this paper we consider a model which captures both the discreteness of
jobs and the multiplicity of machines. Our model is both an extension of previous mod-
els and a variation as we capture key properties of virtual machines – containers and
machine independence – that are hallmarks of modern CCC design.

The importance of containers is that they allow the underlying placement of jobs
on machines to be invisible to the users. Many cloud providers (e.g. Amazon.com) in-
deed hide from users whether two container instances are co-located or not. The user
is therefore given the illusion of owning a dedicated machine that is isolated from the
other instances, even though she is running on a container on a machine that has other
containers. There are many reasons for this. First, it enables container migration. Sec-
ond, not revealing co-location avoids applications that rely on co-location, limiting the
flexibility of the provider (once one customer relies on this, you have to support it for-
ever or break their applications). Finally, cloud providers often do not want to reveal
too much information about the exact technology they are using as that is a compet-
itive advantage as well as a potential vulnerability that attackers can exploit. Thus,
unlike previous papers on DRF, in our model the system directly allocates containers
(the term is borrowed from the Linux literature, c.f. [linuxcontainers.org 2014]), which
are isolated bundles of resources. This differs from the model in [Parkes et al. 2012]
as users cannot combine bundles. For example, if a user needs 2 units of a certain re-
source to run a job, but for strategic reasons only requests 1 unit per job, then even if
she gets allocated 2 jobs on the same machine she is unable to run her job, even though
she does have a total of 2 units of the resource. Of course the user could execute sep-
arate tasks in each container and have them use the network to coordinate as if they
were a single task, but this would have performance overheads (communication), as
well as cost overheads (parallelizing the code). Furthermore, a task might have the
consumption vector (3 CPU, 4 GB memory), and it cannot simply separate it into one
(3 CPU, 3 GB memory) and one (0 CPU, 1 GB memory) tasks.

Jobs are also not encapsulated in the analysis of DRF with multiple machines in
[Wang et al. 2013] as they allow fractional jobs. However, this encapsulation is central
to our analysis, complicating algorithmic issues, but simplifying some strategic ones as
well, since certain manipulations are clearly unprofitable. For example, as discussed
above, if a user halves all their resource requirements for a job, then every encapsu-
lated job that they receive will be of no value.

Our first set of results show the impossibility of satisfying sets of important prop-
erties in this model. These results are extensions of those in [Parkes et al. 2012]. Our
main result is the construction of a fair, efficient and strategyproof randomized mech-
anism for this model, which we call ”Containerized DRF” (CDRF). The CDRF mecha-
nism is modeled on a game theoretic interpretation of the standard DRF mechanism
and maintains all the positive aspects of DRF in this setting. Interestingly, we argue
that the obvious extension of DRF by generalizing the notion of a dominant resource is
flawed and instead work with the identification of the DRF mechanism as the Kalai-
Smorodinski solution of a bargaining problem ([Kalai and Smorodinsky 1975]). In this
interpretation, one can view the restrictions imposed by containers as creating a fea-
sible region which is discrete, as opposed to the convex feasible region in the original
DRF model. We show that by convexifying the feasible region we get a randomized
allocation mechanism (CDRF) which is (ex-ante) fair, efficient and strategyproof.

One difficulty with our ex-ante analysis of randomized mechanisms is that it re-
lies on the users being expected utility maximizers. This can be unrealistic because
even when the expected outcome has good properties, the realized outcome might not.
So, if users were risk averse, these mechanisms would lose many of their desirable
properties. Thus, it is important to consider an analysis based on approximate ex-post
properties of a mechanism. Such an ex-post analysis assumes that the user is always
(approximately) satisfied with the outcome of the mechanism and is valid irrespec-
tive of the users’ risk preferences. In order to construct mechanisms with good ex-post
properties, we compute allocations that are close to the average allocation computed
by CDRF. First, we show that in the case where there are at least m of every type
of machine, one can directly construct an approximate CDRF mechanism by choosing
the allocations of each machine according to a random distribution over allocations of
the single machine. Then we show that in the general case we can apply the Shapley-
Folkman-Starr theorem, which provides bounds for the non-convexity of Minkowski
sums of non-convex sets, to construct a mechanism with good approximate ex-post
properties.

As the CDRF mechanism is based on convexifying the set of feasible allocations it
appears to be quite robust and should be directly extendable in a variety of ways. For
example, it directly extends to the case where there are usable and unusable machines
([Ghodsi et al. 2013]), e.g. windows based jobs may not be able to run on linux based
machines.

1.1. Previous Work
DRF was initially introduced in the context of cloud computing ([Ghodsi et al. 2011]). It
was mainly used within the Mesos resource manager ([Hindman et al. 2011]), which is
used at Twitter to schedule thousands of machines. Later, Hadoop MapReduce imple-
mented the DRF model for their Capacity ([apache.org 2014a]) and Fair Schedulers
([apache.org 2014b]). It has also been extended to be used in real-time to do fine-
grained packet scheduling inside routers ([Ghodsi et al. 2012]) as well as hierarchical
scheduling within large organizations ([Bhattacharya et al. 2013]). Many of its more
theoretical properties have been studied, e.g. efficient computation of DRF allocations
([Gutman and Nisan 2012]) and fairness-efficiency tradeoffs ([Joe-Wong et al. 2012]).

The two closest papers to our work are [Parkes et al. 2012] and [Wang et al. 2013].
The former studied the allocation of integer valued jobs while the latter looked at con-
tinuous valued jobs with multiple machines. While the former considered alternative
properties to those in the original DRF paper, we focus on the original properties but
add randomization and approximation to evade their impossibility results. The latter
paper relies heavily on the ability to allocate fractional jobs and the use of a general-
ized dominant resource. However, this mechanism does not satisfy several desirable
properties, such as sharing incentives, which encourages users to join the CCC, rather
than building their own computing centers. Another violated property is independence
of dummy machines, since the addition of useless machines, i.e. machines on which
none of the users can run a single job (or fraction of one), can change the allocation
significantly under their mechanism.

2. MODEL
Before the formal model we present an illustrating example (Figure 1):

Example: Consider a cluster of two machines, with two resources each: machine
1 has 4 CPU’s and 6 GB RAM, while machine 2 has 4 CPU’s and 4 GB RAM. Two
users want to execute their tasks in this cluster. User 1 wants to execute tasks that
require 1 CPU and 3 GB’s of RAM each. User 2 wants to execute tasks that require 2
CPU’s and 1 GB RAM. In other words, the users have demands d

1

= (1, 3) and d
2

=

(2, 1) respectively. In a cluster like this we will assume that each user gets allocated a
set of containers; each container is a bundle of resources. A user can execute in each
container she gets as many tasks as she can ”fit”. Her total utility is simply the total
number of tasks she can execute in the cluster. So, say user 1 is allocated containers
c
1

= (1, 3) and c
2

= (1, 1) in machine 1, and container c
4

= (0, 2) in machine 2. User 2

gets allocated container c
3

= (2, 1) in machine 1 and c
5

= (4, 2) in machine 2. User 1 can
only use c

1

; c
2

and c
4

are too small. Moreover, she can’t combine these two containers
(this holds even if the containers were in the same machine). Thus, her utility is 1.
Similarly, user 2 has utility 3: she can fit one task in c

3

and two tasks in c
5

.

c
1

c
2

c
3

c
1

c
2

c
3

4 CPU 6 GB RAM

c
5

c
5

c
4

4 CPU 4 GB RAM

Fig. 1. Example of an allocation in a containerized setting with machines r1 = (4, 6) and r2 = (4, 4), and
users d1 = (1, 3) and d2 = (2, 1). User 1 gets containers c1 = (1, 3), c2 = (1, 1) and c4 = (0, 2). User 2 gets
containers c3 = (2, 1) and c5 = (4, 2)

2.1. Formal model
A cluster has m machines, n users and p resources. Each machine j has a vector of
resources rj 2 <p

+

, i.e. rjk � 0 of resource k. We will refer to the cluster, the vector
of machine vectors, as r. User i has true demand di 2 <p

+

for each job, where dik
is the amount of resource k that she needs to execute a task. We will say that d =

(d
1

, d
2

, . . . , dn) is a demand profile.
If there was a single machine and user i was allocated a bundle x 2 <p

+

of resources,
then in a continuous model she could run mink(xk/dik) jobs, while in a model without
fractional jobs she could only run bmink(xk/dik)c jobs. On the other hand, in a setting
with many machines, such as ours, users shouldn’t be able to combine resources across
machines. The key to our model is that the system allocates containers. The s’th con-
tainer cs 2 <p

+

is a bundle of resources on a single machine, i.e. csk is the amount of
resource k in the container s. In a containerized model, using container cs user i can
run bmink(csk/dik)c jobs. Combining resources across containers is not possible.

An allocation A =< C,M,P > consists of a set C of containers with a machine
function M(s) 2 [m] and a user function P (s) 2 [n]. M(s) is the machine on which
container s is located and P (s) the user who gets container s. For an allocation A, the
number of jobs that user i can execute is

ui(A, di) =
X

{s|P (s)=i}

bmin

k
(csk/dik)c

and note that the floor function is inside the sum. This number is exactly a user’s
utility. Observe that we have Leontief preferences: users require resources in fixed
proportions. We will often write ui(A) when the di is implicit.

An allocation is feasible, if

8j 2 [m] , k 2 [p] :
X

{s|M(s)=j}

csk  rjk

We denote by F (d) the feasible region, that is the set of all feasible allocations under
submitted demand profile d. We will also use Fj(d) for the feasible region of machine j.

A mechanism A(d, r) is a function that takes as input a demand profile d and a
cluster r and outputs an allocation. In much of the following we will consider a fixed
set of machines and resources, so will often simply write A(d) when r is implicit.

Our mechanisms work directly with the feasible region F (d), so it is useful to define
the following:

Definition 2.1. The Minkowski sum of sets A
1

, A
2

, . . . , Ak is the set

B = {
kX

i=1

xi : xi 2 Ai}

Observe that F (d) is the Minkowski sum of the Fj(d)’s. We will later use the fact
that the Minkowski sum of convex hulls is the convex hull of Minkowski sums.

2.2. Properties of mechanisms
We now consider several important properties of a good mechanism, almost all of which
have been discussed in more detail for divisible jobs in the single machine setting in
[Ghodsi et al. 2011] and [Parkes et al. 2012].

The first property we want our mechanisms to satisfy is sharing incentives (also
known as individual rationality): every user must prefer the CCC than running her
own computing facility with a fraction of the resources. To define this property, we first
define user’s i stand alone allocation in the CCC to be the number of jobs user i could
run if she had the entire system for herself

sai(d, r) =
mX

j=1

bmin

k
(rjk/dik)c

We will usually write sai to relax notation. A mechanism satisfies Sharing Incentives
if every user’s utility for the output allocation is at least her fair share bsai/nc.

A mechanism is Pareto optimal if the output allocation is efficient: there does not
exist an allocation which is strictly better for (at least) one user and every other user
is at least as well off.

Our users are selfish, i.e. user i will misreport her demand if that results in an
allocation where she can execute more jobs. We say that a mechanism is Strategyproof
if no user i can gain by misreporting her demand.

Next, we consider population monotonicity: A mechanism M is population monotonic
if no user is harmed (receives fewer jobs) when some other user leaves the system.
The last property we want our mechanisms to satisfy is independence of dummy ma-
chines, IDM, where a dummy machine is one on which no user can execute any job: A
mechanism satisfies IDM if adding or removing dummy machines does not change the
allocation. IDM is a simply proxy for robustness, since if a mechanism fails IDM then
it will fail a variety of other important robustness considerations.

In the next couple of subsections we present some warm-up results in this multidi-
mensional multiple-machine setting, concerning deterministic mechanisms that sat-
isfy a subset of these properties.

2.3. Limitations of Deterministic Mechanisms
As in the single machine case, when we demand integer allocations no mechanism can
satisfy sharing incentives, Pareto optimality, and strategyproofness simultaneously.
For the model without containers and a single machine, this was proven by the follow-
ing example in [Parkes et al. 2012]: consider a system with a resource of size 1 and two
users with demands d

1

= d
2

=

1

2

+✏. Assume w.l.o.g. that a mechanism that satisfies all
3 properties allocates to user 1. If user 2 reports d0

2

=

1

2

then sharing incentives dictates
that she should get half the resource. But, since the remaining half cannot be used by
user 1 and it can be used by user 2, Pareto-optimality dictates that user 2 gets that as
well. So, user 2 has a profitable deviation and the mechanism is not strategyproof.

However, this example does not prove impossibility in our model. To see this consider
a mechanism that allocates containers equal to demand vectors. Then user 2 would get
containers of size 1

2

when she reported d0
2

. But she cannot execute any jobs in these
containers, and she cannot combine them, so her utility when misreporting would be
zero. Nonetheless, a slightly more complicated example does work as seen below:

THEOREM 2.2. No deterministic mechanism can satisfy sharing incentives, Pareto
optimality and strategyproofness simultaneously, even for one machine, two resources
and two users.

PROOF. Assume such a mechanism M exists and consider a cluster with one ma-
chine and two resources r = (1, 1) and two users with demands d

1

= (0.25, 0.1) and
d
2

= (0.1, 0.25). Since M satisfies sharing incentives then each user should be allowed
to execute at least 2 tasks. A Pareto optimal mechanism should allocate one more job
for either user 1 or user 2. Without loss of generality assume that M chooses the first
option and allocates containers which result to utility 3 for user 1 and utility 2 for user
2.

Now, examine what happens when user 2 deviates with d0
2

= (

1

6

, 0.25). Again, sharing
incentives requires M to allocate containers that give utility at least 2 to each user.
This will use at least (5

6

, 0.7) of the available resources, leaving (

1

6

, 0.3) available, which
is enough for user 2 to schedule a task, but not user 1. Pareto optimality dictates that
the remainder should be allocated to user 2. Since d

2

“fits” in d0
2

, user 2’s utility strictly
increases, thus she has an incentive not to report her true demand vector and so, M is
not strategyproof, a contradiction.

2.4. SI allocations always exist
Even though all three main properties are impossible to satisfy at the same time, it
is very easy to construct a mechanism that satisfies only Pareto optimality and strat-
egyproofness. For example, a serial dictatorship, in which we choose a fixed order of
users and allow each user, in order, to allocate as many jobs as possible. However, it
is not clear if there always exists an allocation that satisfies sharing incentives for ev-
ery cluster. In this subsection we will prove that such an allocation always exists by
showing the correctness of a moving knife-like algorithm ([Dubins and Spanier 1961]).
In addition to providing a useful result for multiple machine settings, this will also be
necessary for the correctness proof of our main mechanism.

Recall the moving knife procedure for allocating a divisible cake to n players, when
each player’s value for the whole cake is 1: the referee moves a knife from left to right
until some player i calls ”cut”. Then the referee cuts at the point where the knife was
and allocates to player i everything on the left of the cut. If each player calls ”cut” when
she thinks the amount of cake on the left of the knife is worth 1

n the allocation is fair:
everybody gets utility at least 1

n .

Now, in our setting, given an arbitrary ordering of the machines, imagine a water
filling procedure for every user i that works as follows: starting from the first machine
and following the ordering, user i progressively fills the cluster using a constant frac-
tion of the resources. Every time she has ”filled” enough to be able to allocate her fair
share b sai

n c she puts a mark µi,k. So, the marks are such that, if she were allocated
everything between two consecutive marks, she would get exactly her fair share, with
the exception maybe of the last mark, where she would possibly get more if allocated
everything from that mark until the end. There are n� 1 such marks.

We will write µi,k = (f, j) to denote that the k-th mark of user i is in machine j,
when she reached an f fraction of that machine. Notice that this doesn’t mean that
she needs an f fraction of machine j to get her fair share, since two consecutive marks
can be many machines apart. We will say that µi,k  µj,k if µi,k is a mark in a machine
earlier in the ordering, or in the case that both marks are on the same machine, µi,k

uses a smaller (or equal) fraction.
We are now ready to state the algorithm:

ALGORITHM 1: Moving Knife Algorithm
Input: Cluster r = (r1, . . . , rm) and demand profile d
Output: A feasible allocation A
1: Pick an arbitrary ordering of the machines
2: For each user i compute n � 1 marks µi,k

3: S = set of users
4: µ = (0, 1) (mark the beginning of the first machine)
5: while |S| > 1 do
6: Pick user j 2 S with smallest µj,n�|S|+1 mark
7: Allocate to j everything from µ until µj,n�|S|+1

8: µ = µj,n�|S|+1

9: S = S \ {j}
10: end while
11: Allocate the rest to the last user

Example: Consider the cluster from the previous section (Figure 1), with an extra
user d

3

= (1, 2), and an extra machine with 4 CPU’s and 2 GB RAM. User 1, with d
1

=

(1, 3), would be able to execute 3 jobs if alone in the system: 2 jobs in machine 1 and 1
job in machine 2, so her fair share is 3

n = 1. She will put n� 1 = 2 marks: µ
1,1 = (

1

2

, 1)
and µ

1,2 = (1, 1). Similarly user 2, with sa
2

= 6, would have marks µ
2,1 = (1, 1) and

µ
2,2 = (1, 2). User 3, with sa

3

= 6 as well, would have µ
3,1 = (

2

3

, 1) and µ
3,2 = (

1

2

, 2),
because she can get her fair share with 1

3

of machine 1 and 1

2

of machine 2. Figure 2
shows the execution of the algorithm in this example.

THEOREM 2.3. The mechanism defined by the moving knife Algorithm 1 satisfies
sharing incentives.

PROOF. Assume some user i did not get her fair share of the system. She was al-
located some part of the system either in the first step, in some step k > 1 or in the
last step. In the first and last step cases we have an immediate contradiction from the
description of the algorithm; the user was definitely allocated her fair share. The only
interesting case is if she got picked in some step k > 1. In that case, we know that
she was not picked in step k � 1 because there was some other user j that had a mark
µj,k�1

 µi,k�1

. User i then got allocated everything between µj,k�1

and µi,k which is
more than everything between µi,k�1

and µi,k, which is by definition her fair share.

4 CPU 6 GB RAM 4 CPU 4 GB RAM 4 CPU 2 GB RAM

µ
1,1

µ1,2
µ2,1

µ
2,2

µ
3,1

µ
3,2

Fig. 2. Marks in a cluster with r1 = (4, 6), r2 = (4, 4) and r3 = (4, 2), and users with demands d1 =
(1, 3), d2 = (2, 1) and d3 = (1, 2). After the execution of algorithm 1, the dotted area shows the fraction user
1 gets, the lined area shows the fraction user 3 gets, and the grid the fraction user 2 gets

3. CONTAINERIZED DRF
3.1. DRF and DRFH
To motivate our main mechanism, we first recall the standard DRF mechanism for
a single machine with no integrality constraints. In the standard presentation, the
dominant resource of user i is defined as the resource k⇤ which maximizes dik/rk. A
user’s dominant share is si = xik⇤/rk⇤ , where xik is the amount of resource k user i
gets allocated. Then, the DRF mechanism finds the max-min optimal allocation of the
dominant shares. Note that in the case where dik > 0 for all users i this occurs when
all users have the same dominant shares; however, if some dik = 0 then it is possible
that there is no Pareto optimal allocation in which all users have the same dominant
shares. Thus, we will focus on the broader interpretation of max-min optimization in
which the max-min procedure uses a lexicographic order after ordering the shares. For
example in this sense, the vector (1, 2, 3) is dominated by (3, 1, 4) even though user 2
has a lower value in the second vector, since when the vectors are sorted we see that
(1, 3, 4) is larger than (1, 2, 3). Also recall that (3, 2, 2) is larger than (10, 1, 10) since its
sorted first element is larger that the sorted first element of the second vector.

In the case of a single machine with divisible jobs, DRF satisfies all of our prop-
erties: sharing incentives, Pareto optimality, strategyproofness and population mono-
tonicity simultaneously (IDM has no meaning in a single machine setting). However,
as discussed in [Wang et al. 2013], one cannot directly extend DRF to the setting with
multiple machines, even without integrality constraints on the jobs. For example, if
one directly applies DRF to each machine separately, then the allocation may not be
Pareto optimal: consider two machines r

1

= (2, 12) and r
2

= (12, 2), with two users
d
1

= (0.2, 1) and d
2

= (1, 0.2). If one tries to equalize dominant resources in each ma-
chine separately, the resulting allocation will give 5 jobs in machine 1 and 1 job in
machine 2 for user 1, and 1 job in machine 1 and 5 jobs in machine 2 for user 2. On the
other hand, giving machine 1 to user 1 and machine 2 to user 2 allows them to sched-
ule 10 jobs each. Thus, in [Wang et al. 2013] the authors construct a heterogeneous
version of DRF which they call DRFH.

DRFH is directly modeled on DRF. It considers the aggregate of all the resources,P
j rj , defines the dominant resource for user i using this aggregate resource vector

and then computes the max-min optimal allocation in terms of the global dominant
shares, which is the fraction of global dominant resources for each user.

One could directly extend DRFH to our containerized model, by maximizing the
global dominant resource shares; however, this mechanism fails to satisfy some basic
properties:

Example: Consider one machine with resource vector r
1

= (15, 15) and two users
with demand vectors d

1

= (1, 1

2

) and d
2

= (

1

2

, 1). Under DRFH, 1’s global dominant
resource is resource 1, since in order to execute a single task she needs a 1

15

fraction
of resource 1 and a 1

30

fraction of resource 2. Similarly, the global dominant resource
of user 2 is resource 2. DRFH allocates 10 tasks to each user. Note that each user’s
stand alone share is sai = 15 so this allocation satisfies the resource sharing property.
However, if we add a second machine with r

2

= (16, 0) then even though this machine is
unable to run a single job for either user, it changes the allocation significantly, giving
12 jobs to user 1 and 6 to user 2. This happens because user 1’s dominant resource is
now resource 2.

This example shows that DRFH need not satisfy the sharing incentives property
and that it also lacks the important independence of dummy machines property, as
the addition of dummy machine changes the allocation significantly. As we discuss in
the next section, these problems can be resolved by a fundamental reinterpretation of
the DRF mechanism without the notion of a dominant resource.

3.2. Randomized Mechanisms
As we showed in Theorem 2.2, one cannot exactly satisfy the basic properties with a
deterministic mechanism. However, as we shall now show there does exist a random-
ized mechanism, which is the natural extension of DRF, that satisfies all of the desired
properties on average (in an ex-ante sense). Since our mechanisms allocate contain-
ers equal to demands we will relax notation and refer to allocations simply as vectors
y 2 Nn, where yi is user’s i utility, i.e. the number of jobs she can execute in that allo-
cation. On the other hand, when talking about non integral solutions, allocations are
vectors in Rn

+

. This distinction should be clear from the context.
We will restrict our randomized mechanisms to be a random mixture of a finite set

of deterministic mechanisms. Our goal is to construct a randomized mechanism which
satisfies all of the desirable properties on average before the randomization is revealed,
i.e. ex-ante. We note that these do not necessarily satisfy the properties ex-post, that
is when the actual allocation is initialized, and discuss this issue later.

For most properties ex-post is a stronger guarantee than ex-ante. Notice though
that, somewhat surprisingly, ex-ante Pareto optimality implies ex-post Pareto opti-
mality, but not the converse. This happens because in order to achieve ex-ante Pareto
optimality one must make sure that the average allocation is not dominated. To see
this distinction, consider a randomized serial dictatorship: pick a random order on the
players and allocate as many jobs as possible to the first player in the order, then to the
second player etc. This mechanism is fair, strategyproof and ex-post Pareto optimal,
but not ex-ante Pareto optimal. For example, in a cluster with two users with demands
d
1

= (10, 1) and d
2

= (1, 10) and two machines with r
1

= (100, 10) and r
2

= (10, 100) the
randomized serial dictatorship yields allocations (11, 0) and (0, 11) with equal probabil-
ity combining for an ex-ante allocation of (5.5, 5.5). This is a dramatic loss of efficiency
considering that allocation (10, 10) is also feasible. Incidentally, (10, 10) will be the out-
put of our randomized mechanism with probability 1.

First, before we start describing our mechanism, we note that one can re-interpret
DRF. In the case of a single machine with divisible jobs, notice that the dominant share
si = xik⇤/rk⇤ is equal to the ratio of allocated jobs to user i divided by the number of
potential jobs for user i if she had the entire machine to herself. This equivalence
allows us to connect DRF to the Kalai-Smorodinsky bargaining solution ([Kalai and
Smorodinsky 1975]). To see this most clearly, recall that the total number of jobs which
can be allocated to user i is sai, which in the single machine with divisible jobs is sim-
ply mink

rk
dik

=

rk⇤
dik⇤ . The generalized Kalai-Smorodinski solution, if translated in this

setting, is the weighted max-min allocation of jobs with weight vector (1/sa
1

, . . . , 1/san)
over the feasible region. The DRF allocation is exactly this weighted max-min vector
of jobs.

One could extend this definition to our container based model; however, if done di-
rectly, this fails because the set of feasible allocations F (d) is not convex, a fact cru-
cial to the analysis. To resolve this, we convexify the feasible region to CH(F (d)), the
convex hull of set F (d), and compute the max-min 1

sai
�weighted vector of jobs over

CH(F (d)). A geometrical interpretation of this solution is this: the weighted max-min
is just the intersection of the Kalai-Smorodinski line, the line connecting the origin to
the (sa

1

, . . . , san) point, with CH(F (d)).
As we will show, this procedure, which we denote Containerized DRF (CDRF), pre-

serves the properties of DRF in this multiple-machine with indivisible jobs setting. In
addition, one can directly interpret this mechanism as a randomized mechanism, since
the resulting allocation is a convex combination of allocations in F (d), by the definition
of a convex hull. Moreover these allocations are Pareto optimal. In pseudocode, CDRF
is given as Algorithm 2.

ALGORITHM 2: Containerized-DRF
Input: Demand profile d and cluster r
Output: A feasible allocation z 2 Nn.
1: Compute the allocation CDRF (d, r) = (k1, k2, . . . , kn) 2 <n which is the max-min 1

sai
�weighted vector of jobs

over CH(F (d))
2: Compute n allocations z1, . . . , zn 2 F (d) such that CDRF (d, r) is their convex combination, i.e. 9b1, . . . , bn 2 <+

s.t.
nX

j=1

bjzj = CDRF (d, r) and
nX

j=1

bj = 1

3: Output allocation zj with probability bj

Example: The feasible region is n dimensional, so, for simplicity, we use the exam-
ple from Figure 1: two machines r

1

= (4, 6) and r
2

= (4, 4) and users with demands
d
1

= (1, 3) and d
2

= (2, 1). See Figure 3. The feasible region is the set of integer points
and the colored area is it’s convex hull. The set of Pareto optimal points of the feasible
region are {(3, 1), (2, 2), (1, 3), (0, 4)}. The stand alone shares are sa

1

= 4 and sa
2

= 3.
The intersection of the Kalai-Smorodinski line, connecting the origin with the (sa

1

, sa
2

)

point, is the point that maximizes the minimum ui
sai

over the colored area. In this ex-
ample that point is CDRF (d, r) = (

12

7

, 16

7

). This can be written as a convex combination
of (1, 3) and (2, 2) with coefficients 2

7

and 5

7

. Thus, CDRF will output the allocation (1, 3)
with probability 2

7

, and the allocation (2, 2) with probability 5

7

.
Let CDRF (d, r) 2 <n be the weighted max-min allocation for demand profile d; the

Kalai-Smorodinski solution. Observe that the expected number of containers user i
gets is exactly CDRFi(d, r). If i reports her true demand that CDRFi(d, r) is also her
utility. Since the region we’re maximizing over is convex, it immediately follows that
Containerized-DRF satisfies several key properties.

THEOREM 3.1. If users are expected utility maximizers then CDRF satisfies ex-ante
sharing incentive, ex-ante Pareto optimality, ex-ante population monotonicity and inde-
pendence of dummy machines.

PROOF. Pareto optimality is ex-ante satisfied since the expected allocation is on
the convex hull of the feasible region. Sharing incentives is similarly satisfied ex-ante

(0, 4)

(3, 1)

(2, 2)

(1, 3)

Kalai-Smorodinski

CDRF (d, r)

Fig. 3. CDRF in a cluster with r1 = (4, 6) and r2 = (4, 4), and users with demands d1 = (1, 3) and
d2 = (2, 1). CDRF (d, r) is the weighted max-min allocation, i.e. CDRF (d, r)i is the expected utility of
user i in CDRF. In higher dimensions CDRF (d, r) is not necessarily the intersection of CH(F (d)) and this
”Kalai-Smorodinski” line, as one needs to use the lexicographic max-min.

since the Kalai-Smorodinski solution always dominates the (bsa
1

/nc, . . . , bsan/nc) al-
location, and we know from Theorem 2.3 that this allocation is always feasible. Pop-
ulation monotonicity also follows directly since when a user leaves the system, the
feasible region can only expand. The independence of dummy machines property holds
since our mechanism works directly with the feasible region: if the feasible region is
not changed, then the allocation is not changed.

CDRF is also strategy proof in expectation, although the proof is somewhat more
complex.

THEOREM 3.2. If users are expected utility maximizers then CDRF is ex-ante strat-
egyproof.

The proof can be found in Appendix A.

4. APPROXIMATE EX-POST MECHANISMS
In certain situations, the randomized mechanism might be directly applicable. For
example, if individual job times are short then in a randomized mechanism the fluctu-
ations in users’ job shares would average out quickly. However, one potential problem
with this mechanism in practice is the possibility of large fluctuations in allocations
which may rely too heavily on the assumption that users maximize expected utility.
For example, consider the case with rj = (1) for 1  j  m and d

1

= d
2

= (1). The
randomized CDRF mechanism could choose to randomize between two allocations, the
first gives all the machines to user 1 and the second gives all the machines to user 2.
Thus, while the average allocation for each user is m/2 jobs, the fluctuations are huge.

In the following, we present several mechanisms which help resolve this issue. They
produce allocations which not only satisfy the properties in the expectation/ex-ante
sense, but also approximately satisfy these properties ex-post, i.e. after the actual al-
locations are realized. The key idea is that if we can always find an allocation that is
close to the CDRF allocation, then the mechanism that produces that allocation will
“inherit” approximate ex-post bounds for the properties satisfied by CDRF. We formal-
ize this as follows:

Definition 4.1. A mechanism M is an ✏-approximate CDRF mechanism if for all
demand profiles d and clusters r,

|Mi(d, r)� CDRFi(d, r)|
CDRFi(d, r)

 ✏

for all users i, and M is ex-ante Pareto Optimal.

In order to simplify the notation, in this section we let Mi(d, r) be the number of jobs
allocated to user i and require that the mechanism allocates containers of size di. Thus
the explicit discussion of containers will not be necessary.

It is straightforward to show that such a mechanism approximately satisfies the ex-
post versions of our properties, where we define these directly in terms of the fractional
changes to each user. For example, ✏-approximate ex-post sharing incentive implies
that the actual allocation

Mi(d, r) � (1� ✏)bsai(d, r)
n

c

and similarly for ✏-approximate ex-post population monotonicity and ✏-approximate
IDM. For ✏-approximate ex-post strategyproofness we require that no user can gain a
fractional increase in jobs of ✏ from a deviation.

THEOREM 4.2. If mechanism M is an ✏-approximate CDRF mechanism then it sat-
isfies:
1) ✏-approximate ex-post sharing incentives,
2) ex-ante Pareto Optimality,
3) ✏-approximate ex-post population monotonicity,
4) ✏-approximate IDM,
5) 3✏-approximate ex-post strategyproofness.

PROOF. Parts 1,3 and 4 follow immediately from the definition of “✏-approximate
ex-post” versions. Part 2 is immediate from the assumption that M is ex-ante Pareto
Optimal. Part 5 follows from the strategyproofness of CDRF: Consider a deviation for
a single user from di to d0i, with d and d0 the respective demand profiles. Assuming that
dik  d0ik < 2dik, for all resources k, we can see that

|ui(Mi(d0), d0i)� ui(CDRFi(d0), d0i)|
ui(CDRFi(d0), d0i)

 ✏

as is
|ui(Mi(d), di)� ui(CDRFi(d), di)|

ui(CDRFi(d), di)
 ✏

by the definition of an ✏-approximate mechanism. Next, by strategyproofness of CDRF,
we see that ui(CDRFi(d0), di) � ui(CDRFi(d), di)  0 and by the assumption on d0i,
ui(CDRFi(d0), d0i) = ui(CDRFi(d0), di), since user i can only fit one job in a con-
tainer of size d0i. Similarly ui(Mi(d0), d0) = ui(Mi(d0), d). Also, from the definition of
✏-approximate CDRF we can get ui(Mi(d),di)

1�✏ � ui(CDRFi(d), di). Combining these facts
we get:

ui(Mi(d0), di)� ui(Mi(d), di)

ui(CDRFi(d), di)
 2✏

which implies

ui(Mi(d0), di)� ui(Mi(d), di)

ui(Mi(d), di)
 2✏

1� ✏
< 3✏

which is the definition of 3✏ approximate ex-post strategyproofness. In the case
where d0i does not satisfy our assumption, we use the same techniques as in the proof
of theorem 3.2 to complete the analysis.

We note here that an ✏-approximate CDRF mechanism doesn’t have to be random-
ized. In case it is deterministic then the properties above are approximately satisfied
in the obvious way.

4.1. Identical Machines
While a typical CCC may contain a thousand to a hundred thousand machines, there
are typically only a few specific types of machines in the CCC, due to scalability con-
cerns, both for hardware and software. In this setting we can get an ✏-approximate
CDRF mechanism.

For simplicity, we first consider the case when all m machines are identical. In this
setting we compute z = CDRF (d, r

1

) which is the CDRF expected allocation for a
single machine. Since this z is a point in the convex hull of an n-dimensional space, we
can then find n feasible allocations zt 2 F

1

(d) and their associated ↵t’s such that z =Pn
t=1

↵tzt where each ↵i � 0 and
Pn

t=1

↵t = 1. Then we randomly assign each machine
to allocation zt with probability ↵t. Define ✏ =

q
12n logn

m and check that all users i,
are allocated at least (1 � ✏)mzi jobs. If this is not true, then repeat the randomized
procedure until it is. We denote this mechanism the Identical Machines-CDRF, or just
IM-CDRF.

THEOREM 4.3. Suppose that there are m identical machines. Then IM-CDRF is
O(

q
n logn

m)-approximate CDRF. In addition, the number of iterations is less than 2 on
average, and more than � with probability less than 2

�� .

The proof of this theorem can be found in Appendix B.
We can extend this to the case where there are several classes of identical machines,

but computing the IM-CDRF allocation separately for each class to get the GIM-CDRF
allocation.

COROLLARY 4.4. Suppose that there are t < nb machine types and at least c copies

of every machine. Then GIM-CDRF is O

✓q
nb logn

c

◆
-approximate CDRF. In addition,

IM-CDRF requires 2 iterations on average and only requires more than � iterations
with probability less than 2

�� .

PROOF. The constant in the approximation is increased by a factor of 21/2, since in
order to guarantee that the tail bounds apply to all classes of machines simultaneously
we need to choose k2 = (12 + b) log(n) in the proof of 4.3.

4.2. Deterministic mechanisms
One can improve this mechanism by reducing the randomization. For example, instead
of choosing the allocation for each machine independently on can directly assign bm↵tc
machines to allocation zt and then ignore the remaining machines. This mechanism
has the same properties as IM-CDRF but a somewhat different error bound of ✏ =

O(n2/m), and also is not Pareto Optimal.

Thus, in a common setting, we can directly construct approximate deterministic allo-
cations. In particular, one key property of GIM-CDRF is its simplicity as an algorithm:
One only needs to find the CDRF allocation on a single machine of each type and then
GIM-CDRF provides a simple algorithm for allocating all the machines. However, for
more general sets of machines computing a good allocation is more complex. In the
following, we provide a general approximation theorem for arbitrary sets of machines.
Our analysis relies on a famous result in convex analysis [Starr 1969]. This result is
non-constructive; it shows the existence of a good approximate CDRF deterministic
mechanism, but does not provide a reasonable way of computing it. There is a con-
structive version of this result ([Starr 1981]) but it comes with worse approximation
bounds and doesn’t solve our key algorithmic issue: computing maximum allocations
over the feasible region is NP-hard.

Given a set Si define the inner radius, IR(Si) to be the smallest value of ⇢ such that
for any point y 2 CH(Si) the ball of radius ⇢ centered at y will contain a subset of Si

whose convex hull contains y. For example, in Figure 3 the inner radius of the feasible
region is

p
2. The ball with radius

p
2 with center CDRF (d, r) contains (1, 3) and (2, 2),

whose convex combination can give CDRF (d, r).
Another example, where we can see that a point on the convex hull can be far from

any point in the feasible region is the following: Consider a cluster with n + 1 users
and n + 1 resources. Each user i, i = 1 . . . n, demands 1 unit of resource i and 1 unit
of resource 0. Player 0 demands n units of resource 0. Assume that this cluster has n
machines, where each machine j has n units of resource j and n units of resource 0. For
every machine j, (1, 0, . . . , 0) 2 Fj(d) and (0, . . . , 0, n, 0, . . . , 0) 2 Fj(d) where n is in the
j-th position.

�
n
2

, n
2

, . . . , n
2

�
2 CH(F (d)) is the CDRF allocation. The closest integral

allocation is (0, n
2

, . . . , n
2

), which is clearly not Pareto optimal, since (0, n, n, . . . , n) is
feasible; however in computing the inner radius the latter point is used. Thus the
inner radius here is 2n

p
n.

THEOREM 4.5 (SHAPLEY-FOLKMAN-STARR). Let S
1

, ..., Sm be a family of m com-
pact subsets of Rn, W =

Pm
i=1

Si. Then for any x 2 CH(W) there is y 2 W such that
kx� yk2

2

is bounded by the sum of squares of the n largest IR(Si).

In our setting, the Shapley-Folkman-Starr theorem states that one can approximate
any allocation in the convex hull of the feasible region, such as the CDRF allocation,
with an actual (integral) feasible allocation.

We are now ready to define the Shapley-Folkman-Starr mechanism: First we com-
pute the CDRF allocation z = CDRF (d, r). Remember zi is the expected number of
containers user i gets. Next, from the definition of Minkowski sums and the fact that
the convex hull of the sum is equal to the sum of the convex hulls, we can decom-
pose z =

Pm
j=1

zj where zj 2 CH(Fj(d)). Since z is Pareto optimal, all of the zj ’s must
also be Pareto optimal and furthermore they must lie on a face of CH(Fj(d)). This
face is composed of at most n points in Fj(d), which we will denote Gj ; Gj is just the
set of (Pareto optimal) allocations on machine j that can span zj . Then, we apply the
Shapley-Folkman-Starr theorem to the Minkowski sum of the Gj ’s to approximate z.
We call the resulting allocation y = SFS (d, r) the SFS mechanism.

In order to prove a reasonable bound on the SFS mechanism we need to make some
assumptions about the heterogeneity of the machines. For example, if one machine is
much larger than all the other machines then approximations will be difficult. Define
I⇤ to be the maximum inner radius out of all the Fj(d)’s: I⇤ = maxj IR(Fj(d)). The
bound will depend on I⇤. Next, since the bounds need to be multiplicative, if a user
is allocated a small number of jobs, then even a small additive approximation will be
problematic. Thus we make the simple, and reasonable, assumption that each user

can run at least one job per machine, on average. Thus, with m machines each user
will have a stand alone bound of sai � m. Under these assumptions we can prove the
following:

THEOREM 4.6. Let I⇤ be the max inner radius of a feasible region of a machine, and

suppose that for each user sai � m. Then SFS O

✓
n

3
2

m I⇤
◆

-approximates CDRF.

PROOF. First, we note that by applying the Shapley-Folkman-Starr bound to the
Gj ’s instead of the Fj(d)’s directly, we get a Pareto Optimal allocation. Remember
that SFS is deterministic, so ex-ante Pareto Optimal is the same as Pareto Optimal.
Next, we see from the Shapley-Folkman-Starr bound that kSFS(d, r)�CDRF (d, r)k

2

p
nI⇤. This implies that for each user i, |SFSi(d, r)� CDRFi(d, r)| 

p
nI⇤, since

k · k
2

� k · k1. Thus the fractional difference between the SFS allocation and the
CDRF allocation is less than

p
nI⇤

(m/n) =

n
3
2 I⇤

m . This holds because the fair share of user i

is at least m
n by assumption. Thus, we see that the SFS mechanism satisfies the stated

approximation ratio.

5. EXTENDABILITY AND FUTURE WORK
Our generic construction appears to be quite extendable to other types of allocation
constraints due to the robustness of our convexification approach. For example, one
might have jobs that can only run on a subset of the machines. However, it is less obvi-
ous how to extend it to “softer constraints” where an allocation is not impossible, but is
less preferred. For example, one important extension is to include locality preferences.
Disk-locality ([Hindman et al. 2011]), rack-locality ([Dean and Ghemawat 2001]), and
memory-locality ([Ananthanarayanan et al. 2011]) have all been important considera-
tions. For example, it can be efficient to put related jobs on the same machine or nearby
machines (same rack or same building) to reduce data transfer delays. The adaptation
of our analysis to these and other “soft constraints” appears challenging.

In addition, the construction of efficient algorithms for these mechanisms is an
important open problem. Most computational problems involving allocating discrete
jobs on a large number of machines are quite difficult and heuristics are widely used
in practice. Even simpler subproblems, such as bin packing and knapsack are NP-
complete. Nonetheless, under structural assumptions, such as identical machines, we
expect that fast algorithms are possible.

Acknowledgments
This research has been supported by grants NSF-1216073, NSF-1161813, and the A.G.
Leventis Foundation. We would also like to thank the anonymous reviewers for their
valuable comments and suggestions to improve the quality of the paper.
REFERENCES

ANANTHANARAYANAN, G., GHODSI, A., SHENKER, S., AND STOICA, I. 2011. Disk-
locality in datacenter computing considered irrelevant. In Proceedings of the 13th
USENIX Conference on Hot Topics in Operating Systems. HotOS’13. USENIX Asso-
ciation, Berkeley, CA, USA, 12–12.

APACHE.ORG. 2014a. YARN DRF extension to the Capacity Scheduler. https://issues.
apache.org/jira/browse/YARN-2.

APACHE.ORG. 2014b. YARN DRF extension to the Fair Scheduler. https://issues.
apache.org/jira/browse/YARN-326.

BHATTACHARYA, A. A., CULLER, D., FRIEDMAN, E., GHODSI, A., SHENKER, S., AND
STOICA, I. 2013. Hierarchical scheduling for diverse datacenter workloads. In

Proceedings of the 4th Annual Symposium on Cloud Computing. SOCC ’13. ACM,
New York, NY, USA, 4:1–4:15.

DEAN, J. AND GHEMAWAT, S. 2001. Mapreduce: Simplified data processing on large
clusters, osdi’04: Sixth symposium on operating system design and implementation,
san francisco, ca, december, 2004. S. Dill, R. Kumar, K. McCurley, S. Rajagopalan,
D. Sivakumar, ad A. Tomkins, Self-similarity in the Web, Proc VLDB.

DOLEV, D., FEITELSON, D. G., HALPERN, J. Y., KUPFERMAN, R., AND LINIAL, N.
2012. No justified complaints: On fair sharing of multiple resources. In Proceedings
of the 3rd Innovations in Theoretical Computer Science Conference. ITCS ’12. ACM,
New York, NY, USA, 68–75.

DUBINS, L. E. AND SPANIER, E. H. 1961. How to cut a cake fairly. The American
Mathematical Monthly 68, 1, pp. 1–17.

FRIEDMAN, E. J., GHODSI, A., SHENKER, S., AND STOICA, I. 2011. Strategyproofness,
leontief economies and the kalai-smorodinsky solution. Manuscript.

GHODSI, A., SEKAR, V., ZAHARIA, M., AND STOICA, I. 2012. Multi-resource fair
queueing for packet processing. SIGCOMM Comput. Commun. Rev. 42, 4, 1–12.

GHODSI, A., ZAHARIA, M., HINDMAN, B., KONWINSKI, A., SHENKER, S., AND STO-
ICA, I. 2011. Dominant resource fairness: Fair allocation of multiple resource types.
In Proceedings of the 8th USENIX Conference on Networked Systems Design and
Implementation. NSDI’11. USENIX Association, Berkeley, CA, USA, 24–24.

GHODSI, A., ZAHARIA, M., SHENKER, S., AND STOICA, I. 2013. Choosy: Max-min
fair sharing for datacenter jobs with constraints. In Proceedings of the 8th ACM
European Conference on Computer Systems. EuroSys ’13. ACM, New York, NY,
USA, 365–378.

GUTMAN, A. AND NISAN, N. 2012. Fair allocation without trade. In Proceedings
of the 11th International Conference on Autonomous Agents and Multiagent
Systems-Volume 2. International Foundation for Autonomous Agents and Multia-
gent Systems, 719–728.

HINDMAN, B., KONWINSKI, A., ZAHARIA, M., GHODSI, A., JOSEPH, A. D., KATZ,
R., SHENKER, S., AND STOICA, I. 2011. Mesos: A platform for fine-grained re-
source sharing in the data center. In Proceedings of the 8th USENIX Conference
on Networked Systems Design and Implementation. NSDI’11. USENIX Association,
Berkeley, CA, USA, 22–22.

JOE-WONG, C., SEN, S., LAN, T., AND CHIANG, M. 2012. Multi-resource allocation:
Fairness-efficiency tradeoffs in a unifying framework. In INFOCOM. 1206–1214.

KALAI, E. AND SMORODINSKY, M. 1975. Other solutions to nash’s bargaining prob-
lem. Econometrica 43, 3, pp. 513–518.

LI, J. AND XUE, J. 2013. Egalitarian division under leontief preferences. Economic
Theory 54, 3, 597–622.

LINUXCONTAINERS.ORG. 2014. http://linuxcontainers.org/.
PARKES, D. C., PROCACCIA, A. D., AND SHAH, N. 2012. Beyond dominant resource

fairness: Extensions, limitations, and indivisibilities. In Proceedings of the 13th
ACM Conference on Electronic Commerce. EC ’12. ACM, New York, NY, USA, 808–
825.

STARR, R. M. 1969. Quasi-equilibria in markets with non-convex preferences.
Econometrica 37, 1, pp. 25–38.

STARR, R. M. 1981. Approximation of points of the convex hull of a sum of sets by
points of the sum: an elementary approach. Journal of Economic Theory 25, 2, 314–
317.

WANG, W., LI, B., AND LIANG, B. 2013. Dominant resource fairness in cloud comput-
ing systems with heterogeneous servers. CoRR abs/1308.0083.

Appendix A

Proof of Theorem 3.2 :
Let d0 be the demand profile where the i-th user reports some d0i and every other user

l truthfully reports dl, and d the demand profile where everyone is truthful. Also, let
fi(d0i, di) be the number of tasks user i can execute in a container of size d0i. Remember
that CDRFi(d0, r) is the expected number of containers user i gets in profile d0. So, her
expected utility can be written CDRFi(d0, r) fi(d0i, di). We have to show that this value
is maximum for d0i = di.

First observe that by definition reporting a vector d0i with d0ir < dir for some resource
r gives zero utility, since fi(d0i, di) is zero. So, we only have to consider deviations d0i
that over demand resources.

Let pk = bd0
ik

dik
c. If all pk are not equal, the largest can be reduced without any

loss in utility: fi(d0i, di) will be the same, CH(F (d)) and sai can only increase, thus
CDRFi(d0, r) can only increase. Using the exact same argument we can see that
pk =

d0
ik

dik
, that is d0i is a better deviation for our mechanism when it is an integer

multiple of di. So, w.l.o.g. we can assume that all pk ’s are equal to some integer p, and
that d0ik = pdik.

All that’s left to show is that the best such p is p = 1. Let’s examine what happens
when the demand of user i changes from di to d0i = p di: sai becomes at least p times
smaller, since it is harder to allocate big tasks of size d0i than it is to allocate tasks of
size di. For the same reason, CH(F (d0)) is a subset of CH(F (d)) with the i-th dimension
rescaled by p. So, CDRFi(d0, r)  CDRFi(d,r)

p , while fi(d0i, di) = p, for any p � 1. Thus
there is no profitable deviation.

2

Appendix B

Proof of Theorem 4.3 : First note that the feasible region of the cluster is the
Minkowski sum of the single machine feasible region m times with itself. Since
the Minkowski sum of convex hulls is the convex hull of Minkowski sums, if z =

CDRF (d, r
1

) then mz = CDRF (d, r). Now, let Yj be random variable for the alloca-
tion on the j’th machine which takes on value zt with probability ↵t.

To simplify the presentation, consider the “normalized variables”, Wji =

Yji/sai(d, r1) and vi = zi/sai(d, r1) and note that both are contained in the interval
[0, 1].

First, we note that E [Wji] = vi by construction, so E
hPm

j=1

Wji

i
= mvi. Next we note

that V ar [Wji]  vi(1 � vi) since the Wji has mean vi and is contained on the interval
[0, 1] and the maximum variance for such a random variable arises when the random
variable takes on only the values 0 and 1. This implies that V ar

hPm
j=1

Wji

i
 mvi(1�

vi) and thus for the standard deviation � we have � = �
hPm

j=1

Wji

i


p
mvi(1� vi).

Then, using Chernoff ’s inequality we get that

Pr

2

4

������

mX

j=1

Wji �mvi

������
� k�

3

5  2e�k2/4.

Setting k2 = 12 log n gives us

Pr

2

4

������

mX

j=1

Wji �mvi

������
� k�

3

5  2/n3.

We then apply a union bound to obtain

Pr

2

4

8
<

:

������

mX

j=1

Wji �mvi

������
� k�

9
=

; 8i

3

5  2n/n3

= 2/n2

which is less than 1/2 for n � 2.
To complete the proof we note that

Pr

2

4

������

mX

j=1

Wji �mvi

������
� k�

3

5
= Pr

"�����

Pm
j=1

Wji �mvi

mvi

����� �
k�

mvi

#

which is the fractional difference between the number of jobs allocated to user i under
IM-CDRF and the expected number allocated under CDRF. Thus, we see that the ✏ in
the approximation bound is given by

✏  k�

mvi


p
12 log n mvi(1� vi)

mvi


p
12 log np
m/n

=

r
12 n log n

m

which is the desired bound, where we used the fact that 1 � vi < 1 and vi > 1/n by
resource sharing.

Since the probability of this bound being exceeded is less than 1/2, the number of
iterations is bounded by a geometric distribution, leading to the stated bound on it-
erations. Lastly, ex-ante Pareto optimality is immediate, since all the zt’s are Pareto
optimal and lie on the face that contains the CDRF allocation. 2

