Concretely efficient Computational Integrity (CI) from PCPs

Eli Ben-Sasson, Technion

June 2017
PCP efficiency

- Recent asymptotic progress: short proofs, few queries, large soundness
 - Quasilinear PCPs, $O(1)$ queries, polylog verifier [BS05,D08,BGHHSV05,Mie08]
 - Nearly-linear PCPs, 3 bit queries, soundness $1/2 - o(1)$ [MR10]
 - Linear-length PCPs, n^ϵ queries [BKKMS16]
 - LTCs approaching GV bound, $\log n^{\log \log n}$ queries [GKORS17]
 - Linear-length 2-round IOP, 3 queries, soundness $1/2 - \epsilon$ [BCGRS17]

- This talk is about concrete, i.e., non-asymptotic PCPs
 1. Why should we care? (Decentralized crypto-currencies, for example)
 2. How should we measure progress? (compression functions)
 3. What do we study? (new IOPs, soundness upper bounds)
 4. Measurements
Decentralized crypto-currency evangelism

- Decentralized crypto-currencies
 - Fiat, in Latin, is “It shall be”
 - Fiat Money (€, $, ...) managed by Trusted Party (TP)
 - Bitcoin: Decentralized Fiat Money; “In Crypto We Trust”
 - Innovation: TP-based “societal function” replaced by algorithms!!
 - Which TP-based systems next? Law? Government?

- Abolishing TP creates a problem: Computational Integrity (CI)
 - CI problem: is the reported output of a computation correct?
 - Bitcoin’s solution: naïve verification by re-execution
 - This solution harms privacy, fungibility and hence, adoption

- Cryptographic proofs (IP, PCP, IOP, ...) solve CI with
 1. **Efficiency**: verifying proofs \(\ll\) executing computation [BFL90, BFLS91]
 2. **Privacy**: ZK arguments [Kilian92, Micali94]

- Zerocash [BCGGMTV13]: zkSNARKs enhance privacy, fungibility

- Given zkSNARKs, what do PCP-based ones add?
 - **Transparency**: AM protocols, verifier messages are public randomness
 (double) Scalability, security, speed, & de-central verification
Overview

1. Motivation ✓
2. Complexity measures for concrete proof systems
 - definitions
 - compression measures
3. Concrete soundness
4. Measurements
Definition

A proof system S for $L \in NTIME(T(n))$ is a pair $S = (V, P)$ of randomized interactive algs, satisfying

- **efficiency** V is randomized polynomial time; P unbounded
- **completeness** $x \in L \Rightarrow \Pr[V(x) \leftrightarrow P(x) \rightsquigarrow \text{accept}] = 1$
- **soundness** $x \notin L \Rightarrow \Pr[V(x) \leftrightarrow P(x) \rightsquigarrow \text{accept}] \leq 1/2$
Models of interactive systems

- **IP** [BM, GMR]: V, P send messages
- **PCP** [BFL]
 - P “sends” oracle π_1
 - V has random access to π_1
 - *query complexity*, denoted q, is \# symbols read by V,
 - *proof length*, denoted ℓ, is $|\pi_1|$
- **IOP/PCIP** [BCS16, RRR16]
 - P “sends” oracle π_1
 - V sends randomness r_1
 - P “sends” oracle $\pi_2(r_1)$
 - V sends randomness r_2
 - \ldots
 - V has random access to π_1, \ldots, π_r
 - *query complexity* (q) is \# symbols read by V from all oracles
 - *proof length* (ℓ) is $|\pi_1| + \ldots + |\pi_r|$
- IOPs offer results that are not known in PCP model
 - 2 rounds, perfect ZK for NP, scalable prover (run-time is $\tilde{O}(T + k)$) [BCGV16]
The Kilian-Micali (KM) argument compiler

- 3 steps: (i) P commits oracle(s); (ii) V sends queries (public randomness); (iii) P opens commitments at relevant locations
- need global commitment c_{π} to π, local verification of answers
- use hash $H : \{0,1\}^{2\lambda} \rightarrow \{0,1\}^{\lambda}$; λ is security parameter

- global commitment c_{π} is label of root
- locally verify answers by appending authentication path to c_{π}

Take-away: KM compiler increases answer size by $\lambda \cdot \log |\pi|$ bits
The Kilian-Micali compiler

- 3 steps: (i) \(P \) commits oracle(s); (ii) \(V \) sends queries (public randomness); (iii) \(P \) opens commitments at relevant locations

Theorem ([BM88, GMR88, BFL88, BFL91, BGKW88, FLS90, BFLS91, AS92, ALMSS92, K92, M94])

Each \(L \in NEXP \) has an argument system \(S = (V, P) \) with

- **scalable verifier**: run-time \(\text{poly}(n, \log T) \); this bounds proof length
- **transparency**: verifier messages are public random coins
- **zero knowledge**: proof preserves privacy of nondeterministic witness
- **can be noninteractive** assuming Random Oracle

Lemma ([BCS16])

The KM compiler can be applied to a multi-round IOP, preserving soundness and ZK; assuming RO, can be noninteractive.
Overview

1. Motivation ✓
2. Complexity measures for concrete proof systems
 - definitions ✓
 - compression measures
3. Concrete soundness
4. Measurements
Concrete efficiency threshold \[\textbf{[BCGT13]} \]

- Tradeoff between prover complexity and verifier complexity
- How do we simultaneously improve both, for concrete inputs?
- Use complexity measures μ that penalize both complexities, like

\[\mu(n) = \frac{\ell(n)}{T(n)} \cdot q(n) \]

- Define the \textit{concrete complexity threshold} as smallest n s.t.

\[\mu(n) < T(n) \]

- Now we can compare systems, measure progress . . .
- Today: introduce complexity measures that have a concrete meaning
Compressioin ratio — PCP version

- Fix language $L \in \text{NTIME}(T(n))$ decided by M, and proof system S
- Let $w(n)$ denote witness size (for M)
- Let $q_{\lambda}(n)$ denote query complexity for soundness error $\leq 2^{-\lambda}$

Definition (Compression ratio and threshold)

The compression function of L, M, S, λ is witness/argument ratio,

$$C(n) = \frac{w(n)}{\lambda \cdot q_{\lambda}(n) \cdot \log \ell(n)}$$

and the compression threshold θ is minimal integer (if exists) s.t.

$$\forall n \geq \theta \quad C(n) \geq 1$$
Compression ratio — PCP version

Definition (Compression ratio and threshold)

The compression function of \(L, M, S, \lambda \) is witness/argument ratio,

\[
C(n) = \frac{w(n)}{\lambda \cdot q_\lambda(n) \cdot \log \ell(n)}
\]

and the compression threshold \(\theta \) is minimal integer (if exists) s.t.

\[
\forall n \geq \theta \quad C(n) \geq 1
\]

Remarks

- higher \(C(n) \) is better; lower \(\theta \) is better
- \(C(n) \) scales logarithmically with \(\ell(n) \), but prover complexity scales super-linearly with \(\ell(n) \)
- doubly scalable systems have \(C(n) \sim w(n)/\text{poly}(\log T(n)) \); we care about concrete \(n \)
Concrete complexity measures

Compression ratio — IOP version

Definition (Compression ratio and threshold)

The compression function of \(L, M, S, \lambda \) is witness/argument ratio,

\[
C(n) = \frac{w(n)}{\lambda \cdot q_\lambda(n) \cdot \log \ell(n)}
\]

\[
C(n) = \frac{w(n)}{\lambda \cdot \sum_{i=1}^{r} q_i^\lambda(n) \cdot \log \ell^i(n)}
\]

and the compression threshold \(\theta \) is minimal integer (if exists) s.t.

\[
\forall n \geq \theta \quad C(n) \geq 1
\]

\(C(n) \) for IOP with proofs \(\pi^1, \ldots, \pi^r \) and \(q_\lambda^i \) queries to \(\pi^i \) is . . .
Which language to compress?

- the hash of a sequence $w_1, \ldots, w_n, w_i \in \{0, 1\}^\lambda$ is

$$
\mathcal{H}(w_1, \ldots, w_n) = \begin{cases}
H(w_1||w_2) & n = 2 \\
\mathcal{H}(H(w_1||w_2), (w_3, \ldots, w_n)) & \text{otherwise}
\end{cases}
$$

- suggestion: study the compression function and threshold of

$$L_H = \{(x, n) \mid \exists w = (w_1, \ldots, w_n), \mathcal{H}(w) = x\}$$

Why this language?

- stepping stone towards aggregating and compressing proofs
- required for incrementally verifiable computation [V08, BCCT13]
- side question: which H minimizes threshold for a given proof system?
Proximity proof systems – Definitions

- Scalable PCPs use PCPs of Proximity (PCPP) as building block
- PCPPs used to verify proximity of a purported codeword to a code
- IOPP generalize PCPP exactly like IOP generalizes PCP

Definition (IOPP)

An r-round IOPP for a family of codes C with proximity parameter δ (say, $\delta = \delta_C/3$) is an $(r + 1)$-round IOP; the first oracle (π_0), is a purported codeword, and

- **efficiency** V is randomized polynomial time; P unbounded
- **completeness** $\pi_0 \in C \Rightarrow \Pr[V \leftrightarrow P \leadsto \text{accept}] = 1$
- **soundness** $\Delta(\pi_0, C) > \delta, \Rightarrow \Pr[V \leftrightarrow P \leadsto \text{accept}] \leq 1/2$

A 1-round IOPP is a PCPP; a 0-round IOPP is an LTC.
IOPP compression

Definition (Compression ratio and threshold)

The compression function of C, S, δ, λ is code-dim/argument ratio,

$$\Theta(k) = \frac{k}{\lambda \cdot \sum_{i=1}^{r} q^{i}_{\lambda}(n) \cdot \log \ell^{i}(n)}$$

and the compression threshold θ is minimal integer (if exists) s.t.

$$\forall k \geq \theta \quad \Theta(k) \geq 1$$

Remarks

- code compression is cleaner problem than language compression
- for “PCP-friendly” codes (Hadammard, RS, RM, …) code compression needed for language compression
- compression meaningful for LTCs (0 rounds) and PCPPs (1 round)
LTC compression – examples

- Hadamard: $\ell_0 = 2^k$; 3-query tester rejects δ-far words w.p. $\geq \delta$
 - so $q_0^\lambda = 3\lambda / \log(1/1 - \delta)$, and

$$\Theta(k) = \frac{k}{\lambda \cdot 3\lambda / \log(1/1 - \delta) \cdot \log 2^k} = \frac{\log(1/1 - \delta)}{3\lambda^2} > 1$$

- Corollary: Hadamard PCP, with KM-compiler, cannot compress any L

- Bivariate RM, fractional degree $1/2$, code rate $= 1/4$,
 - \sqrt{k} query tester rejects δ-far words w.p. $\geq \delta$
 - so $q_\lambda^0 = \sqrt{k}\lambda / \log(1/1 - \delta)$, and

$$\Theta(k) = \frac{k}{\lambda \cdot \sqrt{k}\lambda / \log(1/1 - \delta) \cdot \log 4k} = \frac{\log(1/1 - \delta) \cdot \sqrt{k}}{\lambda^2 \log 4k} = c_{\delta, \lambda} \cdot \frac{\sqrt{k}}{\log 4k}$$

- compression threshold for $\lambda = 128$ and $\delta = 1/8$ is $\approx 2^{40}$ or 1 Tera.
PCPP compression – examples

- Hadamard: $\ell^0 = 2^k$; 3-query tester rejects δ-far words w.p. $\geq \delta$
 - Corollary: Hadamard PCP, with KM-compiler, cannot compress any L
- Bivariate RM, fractional degree $1/2$, code rate $= 1/4$,
 - \sqrt{k} query tester rejects δ-far words w.p. $\geq \delta$
 - $\Theta(k) = c_{\delta,\lambda} \cdot \frac{\sqrt{k}}{\log 4k}$, $\theta_{128} \approx 2^{40}$
- Quasilinear Reed Solomon (RS) PCPP [BS05]
 - recursive construction, uses bivariate RM
 - with 1 level of recursion has similar compression to RM
 - with 2 levels $q \sim k^{1/4}$, soundness $\sim 3\delta/64$, so $\Theta(k) = c'_{\delta,\lambda} k^{3/4}$ and $\theta_{128} = 2^{31}$ or 2 Mega
New: Biased RS (BRS) IOPP (submitted) [BBHR17]

Theorem (RS proximity w/ linear arithmetic complexity)

Rate-1/4 RS codes have a $\frac{\log k}{2}$-round IOPP with $q = 2\log n$; rejection prob. $\geq \delta - o(1)$ for $\delta < \delta_C/4$, and moreover

- given π_0, prover has total arithmetic complexity $< 6 \cdot n$
- Verifier decision circuit has total arithmetic complexity $< 21\log n$
- Length of ith oracle is $\ell^i(n) = n/4^i$

Remarks

- first proximity proof w/ linear prover-side arithmetic complexity and non-trivial q
- soundness + q combination better than [BS05]
- low “code complexity”, parallelizable, implemented in STARK (later)

\[\Theta(k) = \frac{k}{\lambda^2 \cdot \log(1/1 - \delta) \cdot 4\left(\frac{(\log 4k)}{2}\right)} > c_{\delta, \lambda} \cdot \frac{2k}{(\log k + 2)^2} \]

(assuming threshold for $c_{\delta, \lambda}$, 128 and $\delta < 1/8$ in $\Theta(k)$)
Compression — summary

- Hadamard: no compression threshold
- RM: $\Theta(k) \sim k^{1/2}/\log k$, $\theta_{128} \approx 2^{40}$
- 2-level [BS05]: $\Theta(k) \sim k^{3/4}/\log k$, $\theta_{128} \approx 2^{31}$
- BRS-IOPP: $\Theta(k) \sim k/\log k$, $\theta_{128} \approx 2^{26}$
- even if soundness 1/2 requires only 1 query, $\theta_{128} \geq \lambda^2 = 2^{14}$
- for better compression, need tests with high soundness
Overview

1. Motivation ✓
2. Complexity measures for concrete proof systems ✓
 - definitions ✓
 - compression measures ✓
3. Concrete soundness
4. Measurements
Improving concrete soundness

- soundness parameter s: probability of rejecting false claim
- some PCPs have tight lower bounds on soundness . . .
 - [Hästad 00]: 3-bit-query PCP, test is CNF clause, $s \geq 7/8 - \epsilon$
 - [Moshkovitz-Raz 08]: $q = 3$, $s \geq 7/8 - o(1)$, nearly-linear pf-length
 - [Raz-Safra 96]: Plane-vs.-plane test of RM codes, $q = n^\epsilon$, great soundness
- . . . but use concretely long proofs, have large compression threshold
- concrete soundness of scalable PCP/IOP systems not tight
- consider PCPPs for RS codes, distance $\delta_C = 1 - \rho_C$
 - PCPP soundness analysis breaks at unique decoding radius ($\delta < \delta_C/2 = (1 - \rho)/2$)
 - goals: soundness for list-decoding radius $(1-\sqrt{\rho})$, and even capacity $(1 - \rho)$
 - bottleneck is the Polischuk-Spielman (PS) bivariate test [PS94]
 - [CMS17]: First PS soundness beyond unique-decoding radius
- [BBGR16]: initiate study of soundness upper bounds
 - no known non-trivial upper bounds on soundness, for any δ, even up to capacity $(1 - \rho)$
Compression using soundness upper bounds

Theorem (RS proximity w/ linear arithmetic complexity)

Rate-\(\rho\) RS codes have a \(\frac{\log k}{2}\)-round IOPP with \(q = 2\log n\); rejection prob.
\(\geq \delta - o(1)\) for \(\delta < (1 - \rho)/4\), and moreover

- given \(\pi_0\), prover has total arithmetic complexity \(< 6 \cdot n\)
- Verifier decision circuit has total arithmetic complexity \(< 21\log n\)
- Length of \(i\)th oracle is \(\ell^i(n) = n/4^i\)

Conjecture (RS proximity w/ linear arithmetic complexity, to capacity)

Rate-\(\rho\) RS codes have a \(\frac{\log k}{2}\)-round IOPP with \(q = 2\log n\); rejection prob.
\(\geq \delta - o(1)\) for \(\delta < 1 - \rho\), and moreover

- given \(\pi_0\), prover has total arithmetic complexity \(< 6 \cdot n\)
- Verifier decision circuit has total arithmetic complexity \(< 21\log n\)
- Length of \(i\)th oracle is \(\ell^i(n) = n/4^i\)
Overview

1. Motivation ✓
2. Complexity measures for concrete proof systems ✓
 - definitions ✓
 - compression measures ✓
3. Concrete soundness ✓
4. Measurements
Practical implementation \[\text{[BBHR17]}\]

- New implemented system – (zk)STARK
 - **Scalable**: quasilinear prover, polylog verifier
 - **Transparent**: AM protocol, verifier messages are public randomness
 - **Argument of Knowledge**: can extract witness from “good” proof
 - Perfect ZK in IOP model \[\text{[BCGV16, BCGRS17]}\]; Computational ZK
 - Kilian-Micali argument \[\text{[BCS16]}\]
 - “Post-quantum secure” – no number-theoretic assumptions
 - Uses BRS-IOPP (among other things)
Practical zk-STARK benchmark: forensic DNA profile

- FBI holds forensics DNA profile DB D
- $\mathcal{H}(D)$ knows $\mathcal{H}(D)$
 - Davies-Meyer-AES160
- FBI reports Andy’s DNA profile match result, along with zk-STARK proof, $\lambda = 80$
- The program verified:

```python
def prog(database):
    currHash = 0

    for currEntry in database:
        if currEntry matches AndysDNA:
            REJECT
            currHash = Hash(currEntry, currVal)

        if currHash == expectedHash:
            ACCEPT
        else:
            REJECT
```

Any match for Andy?

No match found
Measurements

Machine specifications:
- **Prover:** CPU: 4 X AMD Opteron(tm) Processor 6328 (32 cores total, 3.2GHz), RAM: 512GB
- **Verifier:** CPU: Intel(R) Core(TM) i7-4600 2.1GHz, RAM: 12GB, Circuit: runtime simulated for long inputs
- **Security:** Security level: 80 bits (Probability of cheating < 2^{-80})

Conclusions: Prover asymptotic behaviour as predicted; Proving is $\sim \times 50K$ slower than program execution

Conclusions: Verifier asymptotic behaviour as predicted; Speedup achieved only for a few generated arguments
Comparison to other approaches

Machine specifications:
CPU: 4 X AMD Opteron(tm) Processor 6328 (32 cores total, 3.2GHz), *RAM*: 512GB

Benchmark:
Executing subset-sum solver for 64K TinyRAM steps (9 elements — exhaustive algorithm).

<table>
<thead>
<tr>
<th>Prover (mins)</th>
<th>Verifier (mSec)</th>
<th>Comm. (bytes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10s</td>
<td>4.2 days</td>
<td>43M</td>
</tr>
<tr>
<td>4.2 days</td>
<td>28min</td>
<td>25</td>
</tr>
<tr>
<td>25</td>
<td>40</td>
<td>9</td>
</tr>
<tr>
<td>9</td>
<td>500</td>
<td>452K</td>
</tr>
<tr>
<td>452K</td>
<td>230</td>
<td>42M</td>
</tr>
<tr>
<td>42M</td>
<td>374</td>
<td>43M</td>
</tr>
<tr>
<td>374</td>
<td>230</td>
<td>42M</td>
</tr>
</tbody>
</table>

Comparison to other systems - lower is better (log scale)

- **STARK**
- **SCI**[BBCGGHPRSTV17] — based on IOP.
- **KOE**[BCGT13] — zkSNARK based on Knowledge Of Exponent hardness. **Non-succinct setup required.**
- **IVC**[BCTV14] — Incrementally Verifiable Computation based on KOE. **Setup required (succinct).**

Fastest prover; verifier nearly fastest; lowest total CC; argument $\sim \times 1K$ “best”
Concluding remarks

1. Motivation ✓
2. Complexity measures for concrete proof systems ✓
 - definitions ✓
 - compression measures ✓
3. Concrete soundness ✓
4. Measurements ✓

- attempting to implement “practical PCPs” led to new theory results
 - IOP model
 - scalable PZK for NEXP
 - RS proximity proofs with linear arith. comp.
 - ...

- and uncovered interesting theory questions
 - best compression ratio?
 - “proof-system friendly” crypto primitives?
 - soundness gaps for scalable PCPs?
 - concrete soundness beyond unique decoding radius?

- and lets us interact with new communities
 - crypto-currencies
 - decentralized “societal functions”
 - ...

... but need more theoreticians to think about these questions!

E. Ben-Sasson
Concretely efficient CI from PCPs
June 2017 29 / 29