
Proof-Carrying Data and Hearsay Arguments
from Signature Cards
Alessandro Chiesa∗ Eran Tromer

Massachusetts Institute of Technology
Computer Science and Artificial Intelligence Laboratory

32 Vassar St., Cambridge, MA 02139, USA
{alexch,tromer}@csail.mit.edu

Abstract:
Design of secure systems can often be expressed as ensuring that some property is maintained at every
step of a distributed computation among mutually-untrusting parties. Special cases include integrity of
programs running on untrusted platforms, various forms of confidentiality and side-channel resilience,
and domain-specific invariants.
We propose a new approach, proof-carrying data (PCD), which circumnavigates the threat of faults and
leakage by reasoning about properties of the output data, independently of the preceding computation.
In PCD, the system designer prescribes the desired properties of the computation’s outputs. Correspond-
ing proofs are attached to every message flowing through the system, and are mutually verified by the
system’s components. Each such proof attests that the message’s data and all of its history comply with
the specified properties.
We construct a general protocol compiler that generates, propagates and verifies such proofs of compli-
ance, while preserving the dynamics and efficiency of the original computation. Our main technical tool
is the cryptographic construction of short non-interactive arguments (computationally-sound proofs) for
statements whose truth depends on “hearsay evidence”: previous arguments about other statements. To
this end, we attain a particularly strong proof of knowledge.
We realize the above, under standard cryptographic assumptions, in a model where the prover has black-
box access to some simple functionality — essentially, a signature card.

Keywords: secure distributed systems; computationally-sound proofs

1 Introduction
Security in distributed systems typically re-

quires maintaining properties across the compu-
tation of multiple, potentially malicious, parties.
Even when human participants are honest, the
computational devices they use may be faulty (due
to bugs or transient errors [11]), leaky (e.g., covert
and side channels [48]) or adversarial (e.g., due to
components from untrusted sources [12]).

We address the general problem of secure dis-
tributed computation when all parties are mutually
untrusting and potentially malicious. Computation
may be dynamic and interactive, and “secure” may

∗I dedicate this paper to my father Corrado Chiesa. He was
a loving dad and wonderful person.

be any property that is expressible as a predicate
that efficiently checks each party’s actions.

Our approach, proof-carrying data (PCD), is
based on augmenting every message passed in the
distributed computation with a short proof string
attesting to the fact that the message’s data, along
with all of the distributed computation leading to
that message, satisfies the desired property. These
proofs are efficiently produced, verified and aggre-
gated at every node. Ultimately, the proof string
attached to the system’s final output attests that the
whole computation had the desired property.

1

1.1 Motivation and Goals

Motivation. Let us consider a few examples of se-
curity properties whose attainment, in the general
case and under minimal assumptions, is a major
open problem — and how they can be approached
in the framework of proof-carrying data.

• Integrity. Consider parties engaged in a dis-
tributed computation. Each party is supposed to
transmit messages produced by executing some
program on his own inputs and earlier mes-
sages received from other parties. Can we ob-
tain evidence that the computation’s final output
is indeed the result of correctly following the
prescribed program in the aforementioned pro-
cess? For example, if the computation consists
of a physics simulation (whether realistic or that
of a virtual online world), can we obtain evi-
dence that all parties have “obeyed the laws of
physics”?

• Information flow control. Confidentiality and
privacy are typically expressed as a negative
condition forbidding certain effects. However,
following the approach of information flow con-
trol (IFC) [27][55], one may instead reason
about what computation is allowed and on what
inputs.
Thus, within a distributed computation, we can
define the security property of intermediate re-
sults as being “consistent with a distributed
computation that follows the IFC rules”. In IFC,
intermediate results are labeled according to
their confidentiality; PCD augments these with a
proof string attesting to the validity of the label.
Ultimately, a censor at the system perimeter lets
through only the “non-secret” outputs, by veri-
fying their associated label and proof string. Be-
cause verification inspects only the (augmented)
output, it is inherently unaffected by anomalies
(faults and leakage) in the preceding computa-
tion; only the censor needs to be trusted to prop-
erly verify proof strings.

• Fault isolation and accountability. Consider a
distributed system consisting of numerous un-
reliable components. Let any communication
across component boundaries carry a concise
proof of correctness, and let each component
verify the proofs of its inputs and generate
proofs for its outputs. Whenever verification of

a proof fails, the computation is locally aborted
and outputs a proof of the wrongdoing. Dam-
age is thus controlled and attributed. In principle
this may be realized at any scale, from individ-
ual chips to whole organizational units.

Many applications involve multiple such goals.
For example, in cloud computing, clients are typi-
cally interested in both integrity [38] and confiden-
tiality [62]. Further details and examples appear in
Section 5.

Goals. Generalizing the above, we can state our
goal: a compiler that, given a protocol for dis-
tributed computation, and a security property (in
the form of a predicate to be verified at every node
of the computation), yields an augmented protocol
that verifies the security property.

We wish this compiler to respect the original
distributed computation, i.e., it should preserve
communication, dynamics and efficiency:

• Preserve the communication graph: Parties
should not be required to engage in additional
communication channels beyond those of the
original distributed computation. For example:
protecting the distributed computation carried
out by a system of hardware components should
not require each chip to continuously communi-
cate with all other chips; agents executing in the
“cloud” should remain trustworthy even when
their owners are offline; and parties should be
able to conduct joint computation on a remote
island and later re-join a larger multiparty com-
putation.

• Allow dynamic computations: The compiler
should allow for inputs that are provided on the
fly (e.g., determined by human interaction, ran-
dom processes, or nondeterministic choices).

• Minimize the blowup in communication and
computation: The induced overhead in com-
munication between parties, and computation
within parties, should be kept at a minimum
(e.g., at most a local polynomial blowup).

This implies, in particular, that scalability is pre-
served: if the original computation can be jointly
conducted by numerous parties, then the compiler
produces a secure distributed computation has the
same property.

2

Alice Bob

x, F G
y

πy

“z = G(F (x))”“y = F (x)”

z

πzfor for

Sunday, November 15, 2009

Figure 1: The “F and G” example.

1.2 Our Approach

Proof system. In our approach, proof-carrying
data, every piece of data flowing through a dis-
tributed computation is augmented by a short proof
string that certifies the data as compliant with some
desired property. These proofs can be propagated
and aggregated as the computation proceeds.

Let us illustrate our approach by a simple sce-
nario. Alice has some input x and a function F .
She computes y := F (x) at a great expense, along
with a proof string πy for the claim “y = F (x)”,
and then publishes the pair (“y = F (x)”, πy) on
her webpage. A week later, Bob comes across Al-
ice’s webpage, notices the usefulness of F (x), and
and wants to use it as part of his computations: he
picks a function G and computes z := G(y). To
convince others that the combined result is correct,
Bob also generates a new proof string πz for the
claim “z = G(F (x))”, using both the transcript of
his own computation of G on y, and Alice’s proof
string πy . (See Figure 1 for a diagram.) Crucially,
Bob does not have to recompute F (x). The size of
πz is merely polylogarithmic in Bob’s own work
(i.e., the time to compute G on y and the size of
the statement “z = G(F (x))”), and is essentially
independent of the past work by Alice.

We generalize the above scenario to any dis-
tributed computation. Also, we generalize “cor-
rectness” to be any property that should hold at
every node of the computation. More precisely,
we consider properties that can be expressed as
a requirement that every step in the computa-
tion satisfies some compliance predicate C com-
putable in polynomial time; we call this notion C-
compliance. Thus, each party receives inputs that
are augmented with proof strings, computes some
outputs, and augments each of the outputs with a
new proof string that will convince the next party
(or the verifier of the ultimate output) that the out-
put is consistent with a C-compliant computation.

See Figure 2 for a high-level diagram of this idea.1

We thus define and construct a proof-carrying data
(PCD) system primitive that fully encapsulates the
proof system machinery, and provides a simple but
very general “interface” to be used in applications.

PCD generalizes the “incrementally verifiable
computation” of Valiant [68]. The latter com-
piles a (possibly super-polynomial-time) machine
into a new machine that always maintains a proof
for the correctness of its internal state. PCD ex-
tends this in several essential ways: allowing for
the computation to be dynamic (interactive and
nondeterministic); allowing for multiple parties
and arbitrary communication graphs; and allow-
ing for an arbitrary compliance predicate, instead
of considering only the special case of correct-
ness. These greatly expand expressibility, but en-
tail significant technical challenges (for example,
dynamic computation forces us to recursively ag-
gregate proofs in polynomially-long chains, in-
stead of the logarithmically-deep trees of [68], and
this requires a much stronger knowledge extrac-
tor). Crucially, our construction circumvents a ma-
jor barrier which precluded a satisfying proof of
security even for the simpler functionality of in-
crementally verifiable computation.2

Construction and tools. Our main techni-
cal tool, potentially of independent interest, is
assisted-prover hearsay-argument (APHA) sys-
tems. These are short non-interactive argu-
ments (computationally-sound proofs) for state-
ments whose truth depends on “hearsay evidence”
from previous arguments, in the sense of the
above “F and G” example. As pointed out by
Valiant [68], this is not implied by standard sound-

1 Moreover, we obtain a proof-of-knowledge property (see
[34, Sec. 4.7] for the definition), which implies that not only
does there exist a C-compliant computation consistent with the
output, but moreover this computation was actually “known”
to whoever produced the proof. This is essential for applica-
tions that employ cryptographic functionality that is secure only
against computationally-bounded adversaries, since an efficient
cheating prover can only “know” efficient C-compliant compu-
tation.

2Valiant [68] offers two constructions: one that assumes the
existence of a cryptographic primitive that is nonstandard and
arguably implausible [68, Theorem 1], and one whose overall
security is conjectured directly without any reduction [68, Sec-
tion 1.3 under “The Noninteractive CS Knowledge Assump-
tion”]. The difficulty seems inherent; see Section 3.2. In our
model, we attain provable security under standard generic cryp-
tographic assumptions.

3

final
verifier

m1, π1

m2
, π2

m3, π3

m4, π4

m
5 , π

5 m6, π6

m
7 , π

7

Figure 2: A distributed computation in which parties send messages mi augmented by proof strings πi.

ness: the latter merely says that if the verifier for a
statement “z = G(F (x))” is convinced then there
exists a witness for that statement. But if the wit-
ness is supposed to contain a proof string πy for
another statement y = F (x), the mere existence
of πy (that would be accepted by the verifier) is
useless: such πy may exist regardless of the truth
of the statement “y = F (x)”, since the sound-
ness of the argument is merely computational. We
actually need to show that if the proof string for
“z = G(F (x))” was generated efficiently, then
a valid proof string for “y = F (x)” can be gen-
erated with essentially the same efficiency (and
acceptance probability) and is thus also convinc-
ing. Technically, this is captured by a particularly
strong proof-of-knowledge property.

Our construction of APHA systems is built
on argument systems [37][14]. Specifically, we
use universal arguments [6] which (following [43]
and computationally-sound proofs [53]) invoke the
PCP theorem [5] to achieve compact proofs and ef-
ficient verification.

However, such argument systems do not by
themselves suffice: where they offer a strong
proof-of-knowledge property [30][68], they do so
by relying on random oracles, which precludes
nesting of proofs since the underlying PCP system
does not relativize [31][18]. Even in the restricted
case of incrementally-verifiable computation [68],
this difficulty precluded a satisfying proof of secu-
rity.

We address this problem, both in general and for
the special case of [68], by extending the model
with a new assumption: an oracle that is invoked
by the prover, but not by the verifier. The former
facilitates knowledge extraction, while the latter
allows for aggregation of proof strings. The oracle
provides a simple signed-input-and-randomness
functionality: for every invocation, it augments the

input xwith some fresh randomness r, and outputs
r along with a signature on (x, r) under a secret
key sk embedded in the oracle. This is discussed
next.

1.3 Model and Trust
We assume that all parties have black-box

access to the aforementioned signed-input-and-
randomness functionality. Concretely, we think of
this oracle as realized by hardware tokens, such
as existing signature cards, TPM chips or smart-
cards. It can also be implemented by a trusted In-
ternet service (see [21] for a demonstration). Alter-
native realizations include obfuscation and multi-
party computation; see Section 3.6 for further dis-
cussion.

Comparable assumptions have been used in pre-
vious works, as setup assumptions to achieve
universally-composable functionality that is oth-
erwise impossible [16]. In this context, Hofheinz
et al. [39] assume signature cards similar to ours.
The main differences in the requisite functional-
ity is that we require the card to generate random
strings and include them in its output and signa-
ture (a pseudorandom generator suffices — see
Section 3.6), and to use slightly stronger signature
schemes (see Section 2).

The more general result of Katz [42] assumes
that parties can embed functionality of their choice
in secure tokens and send it to each other; follow-
up works in similar models include [54][17][25].
However, in our case we cannot afford a model
where parties generate tokens and send them to
all other parties, since this does not preserve the
communication graph of the original computation.
Thus, our model is closer to that of [39].

For simplicity, we assume the following setup
and trust model. A trusted party generates a signa-
ture key pair (sk, vk) and many signed-input-and-

4

}collision-resistant
hashing

universal
arguments

signature
schemes

APHA
systems

PCD
systems

assisted-prover model
(SIR oracle)

Saturday, November 14, 2009
Figure 3: Collision-resistant hashing schemes imply
public-coin constant-round universal arguments and
secure signature schemes (with the additional prop-
erty discussed in Section 2). From these two, we de-
rive APHA systems, and then PCD systems.

randomness tokens containing sk. Each party is
told vk and receives a token. All parties trust the
manufacturer and the tokens, in the sense that each
party, upon seeing a signature on some (x, r) that
verifies under vk, believes that the signature was
produced by some token queried on (x, |r|).

One can easily adapt this to a certificate-
authority model where each token uses its own se-
cret key sk, and publishes the corresponding public
key vk along with a certificate for vk (i.e., a signa-
ture under the key of a trusted certificate author-
ity).3

1.4 Our Results
In summary, we present the following results:

An argument system for hearsay. We define
assisted-prover hearsay-argument (APHA) sys-
tems: non-interactive arguments for NP which can
efficiently prove statements that recursively rely on
earlier APHA proof strings, using a very strong
proof-of-knowledge property. We construct these
in a model where the prover has black-box access
to a simple stateless functionality, namely sign-
ing (under a secret key) every input along with
fresh randomness. Our construction relies on stan-

3Technically, this variant is realized by tweaking the PCD
machine of Section 4.3 to verify the authority’s signature on
this vk.

dard generic assumptions: collision-resistant hash-
ing schemes and signature schemes (see Figure 3).
Distributed computations and proof-carrying
data. We propose proof-carrying data (PCD) as
a framework for expressing and enforcing secu-
rity properties, and formally define proof-carrying
data (PCD) systems that capture the requisite pro-
tocol compiler and computationally-sound proof
system. We construct this primitive under the same
assumptions as above (see Figure 3).
Applications. We discuss a number of open prob-
lems in the security of real-world applications,
where PCD offers a powerful solution approach by
circumventing current difficulties.

1.5 Previous Approaches

Proof aggregation As discussed in Section 1.2,
our aggregation-of-proofs approach is related to
incrementally verifiable computation [68]. Both
are built on top of efficient argument sys-
tems [37][14]: specifically, CS proofs [53] and
universal arguments [6].

Metaproofs [65] also involve recursive aggrega-
tion of proofs, but using very different techniques;
these seek statistical soundness rather than con-
ciseness and efficient verification.

Signatures of knowledge [19] and their main ap-
plication of delegatable anonymous credentials [8]
yield proofs that are aggregatable, but at the ex-
pense of the proof size or the number of times ag-
gregation (in their case, delegation) is allowed.

The problem of ensuring properties of a distributed
computation has been previously studied by a va-
riety of approaches.
Secure multiparty computation. Secure multi-
party computation [36][9][20] considers the prob-
lem of correctly executing multiparty protocols in
the presence of adversaries. Our approach follows
that of [36] in that parties prove to each other, by
cryptographic means, that they have been behav-
ing correctly. The main differences are as follows.
First, we address a more general setting, where
the computation does not have to be known in ad-
vance to the parties. Second, [36][9][20] is unscal-
able in the sense of not preserving the communi-
cation graph of the original computation: even the
simple “F and G” example of Section 1.2, would
require everyone on the Internet to talk to each

5

other. By contrast, in the PCD approach, parties
perform only local computation to produce proof
strings “on the fly”, and attach them to outgoing
data packets. Conversely, the constructions in this
paper are not zero-knowledge.4

Distributed algorithms. Distributed algo-
rithms [52] typically address achieving specific
properties of a global nature (e.g., consensus).
By contrast, we offer a general protocol compiler
for ensuring local properties of individual steps
in the distributed computation. In this sense the
problems are complementary. Indeed, trusted
tokens turn out to be a powerful tool for global
properties as well, as shown by A2M [22] and
TrInc [50].

Platforms, languages, and static analysis. In-
tegrity can be achieved by running on suitable
fault-tolerant systems. Confidentiality can be
achieved by platforms with suitable information
flow control mechanisms [27][55], e.g., at the
operating-system level [47][69]. Various invari-
ants can be achieved by statically analyzing pro-
grams, and by programming language mechanisms
such as type systems [3][26].

The inherent limitations of these approaches
(beside their difficulty) is that the output of such
computation can be trusted only if one trusts the
whole platform that executed it; this renders them
ineffective in the setting of mutually-untrusting
distributed parties.

Proof-carrying code. Proof-carrying code (PCC)
[56] addresses scenarios in which a host wishes to
execute code received from untrusted producers,
and would like to ascertain that the code adheres
to some rules (e.g., because the execution envi-
ronment is not inherently confining). In the PCC
approach, the producer augments the code with
formal, efficiently-checkable proofs of the desired
properties — typically, using the aforementioned
language or static analysis techniques. Such sys-
tems have been built for scenarios such as packet
filter code [57], mobile agents [58] and compiled
Java programs [23].

PCC and PCD thus address disjoint scenarios,
by different techniques (see Table 1 for a sum-

4 Zero-knowledge PCD systems are naturally defined, and
necessary for some of our suggested applications. We do not
see fundamental barriers to their existence. Their efficient con-
struction is a subject of present investigation.

mary). However, the two approaches can be com-
posed: a potentially powerful way to express se-
curity properties is to require messages to be cor-
rectly produced by some program prg that has de-
sired properties (e.g., type safety), and then prove
these properties of prg using proof-carrying code.
Here, the PCD compliance predicate C consists of
running the PCC verifier on prg and then executing
prg.

Dynamic analysis. Dynamic analysis monitors
the properties of a program’s execution at run time
(e.g., [59][66][46]). Our approach can be inter-
preted as extending dynamic analysis to the dis-
tributed setting, by allowing parties to (implicitly)
monitor the program execution of all prior parties
without actually being present during the execu-
tions.

Fabric. The Fabric system [51] is similar to PCD
in motivation, but takes a very different approach.
Fabric addresses execution in a network of nodes
which have partial trust in each other. Nodes
express their information flow and trust policies,
and the Fabric platform (through a combination of
static and runtime techniques) ensures that com-
putation and data will be delegated across nodes
only when requisite trust relations exist for pre-
serving the information flow policy. Thus, Fab-
ric is a practical system that allows “as much del-
egation as we are sure is safe” across a system of
partially-trusting nodes (where a violated trust re-
lation will undermine security). In contrast, PCD
allows (somewhat different) security properties to
be preserved across an arbitrary network of fully-
mistrustful nodes, but with a much higher over-
head.

1.6 Organization

In Section 2, we set up preliminaries. In Sec-
tion 3, we define and construct hearsay-argument
systems, and discuss the inherent difficulties in-
volved as well as their resolution by assisted-
prover model. In Section 4, we define proof-
carrying data systems and construct them using the
results of the previous sections. In Section 5, we
discuss some potential applications. In Section 6,
we conclude and suggest open problems.

6

Proof-carrying data Proof-carrying code
Message data executable code

Statement about specific past history all future executions
Proof method cryptography + formal methods

compliance predicate
Main computation prover verifier

executed by (sender) (host)
Recursively aggregatable yes n/a

Table 1: Comparison between proof-carrying data and proof-carrying code.

2 Preliminaries

General notation. We let ε denote the empty
string, and N the positive integers. For n ∈ N,
we denote by [n] the set {1, . . . , n}. We say that
a function µ : N → [0, 1] is negligible if, for ev-
ery positive polynomial p, µ(n) < 1/p(n) for all
sufficiently large n.

If M is a Turing machine, then 〈M〉 is its
description (on occasion identified with M) and
timeM (x) is the time that M takes to halt on in-
put a string x. If C is a circuit C, then 〈C〉 is its
representation and |C| is its size. For a probability
distribution D, we denote by y ← D drawing an
element from D. Similarly, y ← M(x) denotes
the output of the machine or circuit M on input x;
if M is a probabilistic machine then y is a random
variable.

For a directed graph G = (V,E), and ver-
tex v ∈ V , in(v) are the incoming edges of v,
out(v) its outgoing edges, parents(v) are its neigh-
bors across in(v), and children(v) are its neighbors
across out(v).

Universal arguments. We use universal argu-
ments [6], a variant of CS proofs [53]. These are
an efficient interactive argument system for prov-
ing membership into the universal set SU , defined
as the set of all tuples y = (M,x, t) for which
there exists a witness w such thatM(x,w) accepts
within t steps. We denote by RU the witness rela-
tion of the universal set, and by RU (y) the set of
valid witnesses for a given instance y.

A universal argument consists of a prover PUA

and a verifier VUA. For an instance y = (M,x, t),
universal arguments are efficient in the sense that
the complexity of the verifier VUA is polynomial
in |y|, i.e., in poly(|M | + |x| + log t). Moreover,
the complexity of the prover PUA is polynomial in

|M |+ |x|+ timeM (x,w). Beyond the usual com-
putational soundness required of an argument sys-
tem, universal arguments also satisfy a weak proof-
of-knowledge property. This property (defined in
[6]) is essential in one of our proofs.

The universal argument construction of Barak
and Goldreich [6] is a public-coin, 4-message
protocol built from any collision-resistant hash-
ing scheme ([35, Sec. 6.2.2.2]). The aforemen-
tioned efficiency comes from the use of a PCP sys-
tem for compressing proofs (following Micali [53]
and Kilian [44]). While PCP constructions are
notorious for being efficient only in the asymp-
totic sense, there are indications [10] that recent
progress approaches practicality.

The universal argument construction of Barak
and Goldreich [6] is a public-coin, 4-message
protocol built from any collision-resistant hash-
ing scheme ([35, Sec. 6.2.2.2]). The aforemen-
tioned efficiency comes from the use of a PCP
system [5] for compressing proofs (following Mi-
cali [53] and Kilian [44]). While PCP construc-
tions are notorious for being efficient only in the
asymptotic sense, there are indications [10] that re-
cent progress approaches practicality.

Signature schemes. We denote a signature
scheme SIG by a triple (GSIG, SSIG, VSIG) consist-
ing of the key generation, signing, and verification
algorithms respectively. (See [35, Sec. 6.1].)

We use signature schemes that, beyond satis-
fying the standard property of security against
chosen message attack, also satisfy the (indepen-
dent) property of security against signature-only
forgery: it is infeasible for a chosen-message at-
tack to forge a hitherto-unseen signature that is
valid for any message (the forger is not required
to say which one).

7

It is simple to construct such a scheme: start
from a signature scheme that is secure against
chosen message attack, and modify its signature
algorithm to append the message to the signa-
ture (and modify the verification algorithm accord-
ingly). However, the parameters of our construc-
tion require concise signatures whose length is in-
dependent of the message (i.e., merely polynomial
in the security parameter).

This can be achieved using a hash-then-sign
approach. Starting with any super-secure signa-
ture scheme5 (G′SIG, S

′
SIG, V

′
SIG) and a collision-

resistant hashing scheme Hs ([35, Sec. 6.2.2.2]),
we derive (GSIG, SSIG, VSIG) as follows. The key
generation algorithm GSIG invokes (sk′, vk′) ←
G′SIG, and generates a public seed s for the hash
function. To sign a message m, SSIG((sk′, s),m)
computes h = Hs(m) and σ′ = S′SIG(sk, h),
and outputs σ = (h, σ′). To verify an alleged
signature σ = (h, σ′) for m, VSIG((vk, s),m, σ)
computes h̃ = Hs(m), verifies h = h̃ and runs
V ′SIG(vk′, h, σ′). Security is easily verified.

The super-secure signature schemes used above
are known to exist if one-way functions exist
[35, Theorem 6.5.2]. Moreover, there are ef-
ficient constructions based on the computational
Diffie-Hellman assumption in bilinear groups [13],
and generic transformations from regular signature
schemes [40].

Therefore, in the rest of this paper, when we
mention a signature scheme SIG, we shall assume
that it is secure against chosen message attack and
against signature-only forgery, and that it produces
short signatures. This is without loss of generality,
because our constructions already assume the exis-
tence of collision-resistant hashing schemes (e.g.,
to obtain universal arguments).

3 An Argument System for Hearsay
3.1 Overview

We introduce a new argument system for NP,
which can prove statements based on “hearsay ev-
idence”, i.e., statements expressed by a decision
procedure that itself relies on proofs generated by

5 A super-secure signature scheme (also called a strongly
unforgeable signature scheme) is one where no new message-
signature pair can be forged, even for messages that were al-
ready signed by the chosen-message oracle. See [35, Section
6.5.2].

earlier, recursive invocations of the proof system
(as in the “F and G” example of Section 1.2).

At a high level, our goal is a proof system with
the following features:
• Non-interactive, so that (i) its proof strings

can be forwarded and included as part of the
“hearsay evidence” for subsequent proofs, and
so that (ii) its proof strings can be used to aug-
ment unidirectional communication in proof-
carrying data.

• Efficient, so that proof strings (and their verifi-
cation) are much shorter than the time to decide
statements they attest to.

• Aggregatable, which means that it can generate
an argument for a statement decided by a proce-
dure that verifies “hearsay evidence” that is the
aggregation of at most polynomially many argu-
ments.

We call an argument system that satisfies the above
set of properties a hearsay-argument system. In
our construction the prover is assisted by an or-
acle, so we define and obtain an assisted-prover
hearsay-argument system.

Next, we explain why achieving the above prop-
erties involves a fundamental difficulty, and show
how we resolve it by introducing an assisted
prover. After that, we define the new argument
system, then state which assumptions are sufficient
to construct it, and then exhibit a construction for
those assumptions. Finally, we discuss the realiz-
ability of an assisted prover.

3.2 Difficulties and Our Solution
In constructing an argument system that satisfies

the properties discussed in Section 3.1, two oppos-
ing requirements arise:
1. We must not use oracles. While we know

how to construct efficient argument systems us-
ing different approaches (using a short PCP
and a Merkle tree [44][53][6], or using a long
PCP and homomorphic encryption [41]), all
known efficient argument system constructions
are based on the PCP theorem, and there is
some evidence that this is inherent [63]. Since
the PCP theorem does not relativize [31] (not
even with respect to a random oracle [18]),
these systems cannot prove statements that are
decided by a procedure that accesses an oracle.
Thus, to allow recursive aggregation of proofs,

8

it seems the system cannot rely on oracles.
2. We must use oracles. Efficient non-interactive

argument systems for NP are only known to ex-
ist in the random oracle model, where the ver-
ifier needs access to the random oracle. More-
over and more fundamentally, in order to prove
statements involving “hearsay evidence”, we
need a proof-of-knowledge property — as dis-
cussed in Section 1.2, mere soundness does
not suffice. To support repeated aggregation of
such proofs, the proof-of-knowledge must be
of a very strong form: a very efficient online
[60][30] knowledge extractor with a tight suc-
cess probability. The only known approach to
such knowledge extraction is to force the prover
to expose the witness in queries to an oracle.

Previous difficulties. The tension between
the above two requirements arises in Valiant’s
work [68]. On one hand, he uses CS proofs as non-
interactive arguments. Hence, his construction is
ill-defined: it requires generating (PCP-based) CS
proofs for statements decided by a procedure that
needs oracle access. Therefore, one can at best
conjecture (as done in [68]) that the construction,
once the random oracle has been instantiated by an
appropriate function ensemble, is secure.

Moreover, in order to prove the existence of an
efficient knowledge extractor with a tight success
probability, he exhibits a procedure that examines
a prover’s calls to the random oracle. However,
once the random oracle has been instantiated, the
procedure fails since there are no oracle calls to
examine.

This difficulty seems inherent: Valiant’s con-
struction uses an online knowledge extractor that
observes an execution of a prover only through its
inputs, outputs, and oracle calls (of which there are
none after instantiation), and the online knowledge
extractor must be able to extract a witness of size
3n given a proof string of size only n. The exis-
tence of such a procedure would imply that for any
NP language, the witnesses can be compressed by
a factor of 3, which seems unlikely.

Lastly, note that the proof-of-knowledge prop-
erty we require is even stronger than [68] aimed
for, in terms of the knowledge extractor’s tight-
ness. This is because incrementally verifi-
able computation allows proofs to be aggregated
in a logarithmically-deep tree, so a multiplica-

tive blowup can be tolerated at every extrac-
tion step. Conversely, PCD systems must handle
polynomially-long chains of proofs, and can thus
tolerate an additive blowup per extraction step;
hence the knowledge extractor can do little more
than merely run the prover.

Our solution. We manage to simultaneously
satisfy the above requirements, by requiring the
prover to access an oracle but not requiring the ver-
ifier to do so. A high-level description follows.

We start with the interactive protocol for public-
coin, constant-round universal arguments. By
granting the prover access to a signed-input-and-
randomness oracle (informally defined in Sec-
tion 1.4 and to be formally defined in Section 3.4),
we turn this into a non-interactive protocol: the
prover obtains the public-coin challenges from the
oracle instead of the verifier (in a way that also en-
forces the proper temporal dependence).

The oracle signs its answers using a public-key
signature scheme, so that the oracle’s random an-
swers are verifiable without access to the oracle.
This asymmetry breaks the tension of the two re-
quirements above, i.e., it breaks the “PCP vs. ora-
cles” tension.

Additionally, we require the prover to obtain a
signature for the witness that he uses to generate
an argument, thus forcing the prover to query the
oracle with the witness. This yields a very strong
form of proof-of-knowledge property.

We exploit two (related) properties of the ora-
cle: explicitness and temporal dependence. See-
ing the oracle’s signature on (x, r) implies that r
was drawn at random after x was explicitly written
down. In the construction, x will be (for example)
a purported prover message in an interactive argu-
ment, and r will be the verifier’s (public-coin) re-
sponse. Such forcing of temporal ordering is rem-
iniscent of the Fiat-Shamir heuristic [29]. Extrac-
tion of witnesses from oracle queries was used by
Pass [60], Fischlin [30] and Valiant [68]. Our ap-
proach of using signatures to force oracle queries
is similar in spirit to that of Chandran et al. [17].

The introduction of an oracle accessible by the
prover is, of course, an extra requirement of our
model. Yet given the discussion above, it seems
inevitable. In Section 3.6, we argue that the spe-
cific oracle that we choose, a signed-input-and-
randomness oracle, is reasonable in practice.

9

3.3 Definition of APHA Systems
We define assisted-prover hearsay-argument

(APHA) systems and discuss their properties.
An APHA system is a triple of machines
(GAPHA, PAPHA, VAPHA) that works as follows:

• the oracle generator GAPHA: for a security pa-
rameter κ ∈ N, GAPHA(1κ) outputs the descrip-
tion of a probabilistic6 stateless oracle O to as-
sist the prover, together with O’s verification
key vk;

• the prover PAPHA: for a verification key vk, an
instance y = (M,x, t), and a string w such that
(y, w) is in the witness relation RU of the uni-
versal set SU (i.e., the machine M , on input x
and w, accepts within t steps), POAPHA(vk, y, w)
outputs a proof string π for the claim that y ∈
SU ; and

• the verifier VAPHA: for a verification key vk, an
instance y, and a proof string π, VAPHA(vk, y, π)
accepts if π convinces him that y ∈ SU .

The triple (GAPHA, PAPHA, VAPHA) must satisfy
three properties — the first two are essentially the
verifying and proving complexity requirements of
computationally-sound proofs and universal argu-
ments, and the third one is a form of proof-of-
knowledge property (that is strictly stronger than
the regular one [34, Sec. 4.7]).

First, proof strings generated by the prover
should be efficiently verifiable by the verifier:
VAPHA halts in time that is polynomial in the se-
curity parameter κ and the length of the instance
y; in particular, the length of a proof string π is
also so bounded.

Second, the prover should be able to prove true
theorems using a reasonable amount of resources:
whenever it is indeed the case that (y, w) ∈ RU ,
POAPHA(vk, y, w) always convinces VAPHA; more-
over, PAPHA halts in time that is polynomial in the
security parameter κ, the size of the description of
M , the length of x, and timeM (x,w). (Note that
timeM (x,w) is the actual time it takes for M to
halt on input x and w, and not the upper bound t.)

Third, there exists a fixed list extractor circuit
LE of size poly(κ) such that, for any (possibly
cheating) prover circuit P̃ of size poly(κ) that
outputs an instance y and proof π that convince

6 While our constructions are given for a probabilistic ora-
cle, in Section 3.6 we discuss how to “derandomize” the oracle
and make it deterministic.

VAPHA, LE produces a valid witness for y in the
following sense. By examining only the oracle
query-answer transcript 〈P̃ (vk), O〉 of P̃ , LE pro-
duces a list of triples {(yi, πi, wi)}i with the prop-
erty that there exists some triple (yj , πj , wj) for
which yj = y, πj = π, and for every such triple
wj is a valid witness for y. This implication holds
with all but negligible probability (over the out-
put of GAPHA). Note that LE is not explicitly told
which y or π to look for. Formally:

Definition 1 (APHA System). An assisted-prover
hearsay-argument system with security parame-
ter κ is a triple of polynomial-time machines
(GAPHA, PAPHA, VAPHA), whereGAPHA is a proba-
bilistic, PAPHA is deterministic with oracle access,
and VAPHA is a deterministic, that satisfies the fol-
lowing conditions:
• Efficient verification: There exists a polyno-

mial p such that for any κ ∈ N, (O, vk) ∈
GAPHA(1κ), instance y = (M,x, t), and proof
string π,

timeVAPHA
(vk, y, π) ≤ p(κ+ |y|) .

In particular, |π| ≤ p(κ + |y|), i.e., the
proof string length is poly(κ + |〈M〉| + |x|) +
polylog(t).

• Completeness via a relatively-efficient prover:
For every κ ∈ N and (y, w) ∈ RU ,

Pr
[
VAPHA(vk,y, π) = 1

∣∣∣
(O, vk)← GAPHA(1κ) ;

π ← POAPHA(vk, y, w)
]

= 1

(where the probability is taken over the inter-
nal randomness of GAPHA and O). Further-
more, there exists a polynomial p such that for
every κ ∈ N, (O, vk) ∈ GAPHA(1κ), and
((M,x, t), w) ∈ RU ,

timePO
APHA

(
vk, (M,x, t), w

) ≤
p
(
κ+ |〈M〉|+ |x|+ timeM (x,w)

)
.

Note that timeM (x,w) ≤ t.
• List extraction: There exists a list extractor cir-

cuit LE such that for every (possibly cheating)
prover circuit P̃ of size poly(κ), for all suffi-
ciently large κ, if P̃ convinces VAPHA then LE

10

extracts a list containing a witness:

Pr
[
VAPHA(vk, y, π) = 1 −→((∃ (yi, πi, wi) ∈ extlist s.t. yi = y, πi = π

)
and

(∀ (yi, πi, wi) ∈ extlist

s.t. yi = y, πi = π : (yi, wi) ∈ RU
)) ∣∣∣

(O, vk)← GAPHA(1κ) ; (y, π)← P̃O(vk) ;

extlist← LE
(〈
P̃ (vk), O

〉)]
> 1− µ(κ)

(where the probability is taken over the internal
randomness of GAPHA and O), for some negli-
gible function µ. Furthermore, |LE| is poly(κ).

Proof of knowledge. The list-extraction property
implies the standard proof-of-knowledge property,
in which a knowledge extractor directly outputs
a witness corresponding to an instance-proof pair
that convinces the verifier (indeed, the knowledge
extractor need only run the list extractor LE and
locate the relevant triple in the list).
Adaptive soundness. As always, proof-of-
knowledge implies soundness: if the prover con-
vinces the verifier (with probability better than
1/p(κ)) then a witness can be extracted with
nonzero probability and thus exists. Moreover,
APHA systems are adaptively sound, i.e., sound-
ness holds even when the prover choose the in-
stance for which he wishes to produce a proof
string. In particular, the instance may depend on
the oracle and vk.

3.4 Construction of an APHA System
In the assisted-prover model, every party has

black-box access to a certain functionality. In our
case, the black-box functionality is defined as fol-
lows.7

Definition 2 (Signed-Input-and-Randomness
functionality). Let SIG = (GSIG, SSIG, VSIG) be
a signature scheme. Let κ ∈ N be the security
parameter of SIG. Given sk1 and sk2 (generated
by GSIG(1κ)), the signed-input-and-randomness
(SIR) functionality with respect to sk1 and sk2,
denoted Osk1,sk2 , is given by the probabilistic

7The need for two separate keys arises for technical reasons
of avoiding thorny dependencies across the transitions in the
proof (Section 3.5).

machine defined as follows: On input (x, s)
where x ∈ {0, 1}∗ and s ≥ 0, Osk1,sk2 does the
following:

1. r ← {0, 1}s
2. If s = 0, σ ← SSIG(sk1, (x, r))
3. If s > 0, σ ← SSIG(sk2, (x, r))
4. Output (r, σ)

Our main technical result is constructing APHA
systems from constant-round public-coin universal
arguments and signature schemes:

Theorem 3.1 (APHA from universal arguments
and signatures). APHA systems whose oracle is
signed-input-and-randomness can be built from
any signature scheme and (public-coin, constant-
round) universal arguments.

Such public-coin, constant-round universal ar-
guments are known to exist if collision-resistant
hashing schemes exist [6, Theorem 1.1], and like-
wise for signatures schemes (see Section 2). We
thus deduce the existence of APHA systems under
a mild, generic assumption:

Corollary 3.2 (Existence of APHA systems). As-
suming the existence of collision-resistant hashing
schemes, there exist APHA systems whose oracle
is signed-input-and-randomness.

Let us proceed to prove Theorem 3.1 by con-
structing an APHA system, following the intuition
presented in Section 3.2. The oracle generator
GAPHA is constructed as follows.

Algorithm 1 (GAPHA). The oracle generator
GAPHA, on input a security parameter κ ∈ N, does
the following:
1. (sk1, vk1)← GSIG(1κ)
2. (sk2, vk2)← GSIG(1κ)
3. vk ≡ (vk1, vk2)
4. 〈O〉 ≡ 〈Osk1,sk2〉, where Osk1,sk2 is a SIR

oracle
5. Output (〈O〉, vk)

To prove y ∈ SU , we will not invoke universal
arguments directly on the instance y = (M,x, t),
but rather on an a slightly larger augmented in-
stance yaug = (Maug, xaug, taug). The augmented
decider machine Maug invokes M to check an (al-
leged) witness w for y, and also verifies an (al-
leged) signature on y and w. (The prover will be

11

forced to query the oracle on w in order to obtain
such a signature, and this will facilitate knowledge
extraction.) Let us define the subroutine AUG that
maps y to yaug:

Algorithm 2 (AUG). Let p(κ,m) be a polyno-
mial that bounds the running time of VSIG with se-
curity parameter κ on messages of length at most
m. Fix a security parameter κ ∈ N and let
(O, vk) ∈ GAPHA(1κ) and parse vk as (vk1, vk2).
Let y = (M,x, t) be an instance, and let σ be an
(alleged) signature on a witness for y. The subrou-
tine AUG, on input (vk1, σ, y), does the following:

1. xaug ≡ (vk1, σ, y)
2. taug ≡ t+ p(κ,m) where
m ≡ |((“inst-wit”, y, 1t), ε)|

3. Define Maug to be the machine that, on input
(x,w), works as follows
(a) Let b1 be the output of

VSIG(vk1, ((“inst-wit”, y, w), ε), σ)
(b) Let b2 be the output of M(x,w) after run-

ning for t steps
(c) Output b1 ∧ b2

4. Output yaug ≡ (Maug, xaug, taug)

We proceed to describe the construction of the
prover PAPHA and verifier VAPHA. Let p1 and p2

be polynomials such that, given an instance y of
length n, the first message of VUA has length p1(n)
and the second message of VUA has length p2(n).8

Algorithm 3 (PAPHA). Fix a security parameter κ
and let (O, vk) ∈ GAPHA(1κ). Let y = (M,x, t)
be an instance and w be a string, supposedly such
that (y, w) ∈ RU . The prover POAPHA(vk, y, w)
does the following:
1. Obtain a signature of the witness. Call O with

query q0 ≡ ((“inst-wit”, y, w), 0) to obtain
answer a0 = (ε, σ).

2. Compute the augmented instance. Parse vk as
(vk1, vk2); compute yaug ← AUG(vk1, σ, y).

3. Simulate VUA’s first message. Call O with
query q1 ≡

(
yaug, p1(|yaug|)

)
to obtain answer

a1 = (r1, σ1).
4. Compute PUA’s first message. Execute the first

step of PUA(yaug, w), using r1 as the verifier’s

8For convenience, the construction here is specialized to the
2-round (4-message) universal arguments protocol of [6]. It
naturally generalizes to any constant-round public-coin proto-
col.

first message, to obtain resp1, the prover’s first
response.

5. Simulate VUA’s second message. Call O with
query q2 =

(
(resp1, a1), p2(|yaug|)

)
to obtain

answer a2 = (r2, σ2).
6. Compute PUA’s second message. Continue the

above execution of PUA(yaug, w), using r2 as
the verifier’s second message, to obtain resp2,
the prover’s second (and last) response.

7. Package the signature and (part of) the tran-
script into a preliminary proof string. Define
π′ ≡ (σ, tr), where tr ≡ (a1, resp1, a2, resp2).

8. Obtain a signature on the instance and pre-
liminary proof. Call O with query q3 ≡
((“proof”, π′), 0) to obtain answer a3 =
(ε, σ′).

9. Output the signed proof. Output π ≡ (π′, σ′).

Algorithm 4 (VAPHA). Fix a security parameter κ
and let (O, vk) ∈ GAPHA(1κ). Let y = (M,x, t)
be an instance and let π be an (alleged) proof string
for “y ∈ SU”. The verifier VAPHA(vk, y, π) does
the following:
1. Parse vk as (vk1, vk2); parse π as (π′, σ′),

where π′ ≡ (σ, tr), tr ≡ (a1, resp1, a2, resp2),
a1 = (r1, σ1), and a2 = (r2, σ2).

2. Verify that the signature is valid. Check that
VSIG(vk1, ((“proof”, π′), 0), σ′) = 1.

3. Compute the augmented instance.
yaug ← AUG(vk1, σ, y).

4. Verify that the transcript is consistent. Check
that:
(a) VSIG(vk2, (yaug, r1), σ1) = 1 and
|r1| = p1(|yaug|)

(b) VSIG(vk2, ((resp1, a1), r2), σ1) = 1 and
|r2| = p2(|yaug|).

5. Verify that the transcript is convincing. Check
that the third step of VUA(yaug), using r1 and r2
as the verifier’s first and second messages, and
using resp1 and resp2 as the prover’s first and
second messages, accepts.

3.5 Correctness of the APHA Construction
We complete the proof of Theorem 3.1 by show-

ing that the above construction is indeed an APHA
system. Efficient verifiability, as well as complete-
ness via a relatively-efficient prover, follow easily
from the construction.

12

(“inst-wit”, y, w), 0

PUA VUA

a0 = (ε, σ)

a1 = (r1, σ1)

a2 = (r2, σ2)

a3 = (ε, σ3)

yaug, p1(|yaug|)

(resp1, a1), p2(|yaug|)

PAPHA

VAPHA
π = (π′, σ′)

r1

r2

resp1

resp2 (“proof”, π′), 0

O

O

O

O
y

?∈ SU

PUA

VUA

Figure 4: Diagram for the construction of PAPHA; recall that tr ≡ (a1, resp1, a2, resp2) and π′ ≡ (σ, tr).

The remaining property, list-extraction, is ful-
filled by the following list extractor LE:

Algorithm 5 (LE). Given vk and a prover-oracle
interaction transcript 〈P̃ (vk), O〉, LE(〈P̃ (vk), O〉)
does the following:
1. extlist← newLIST()
2. In the transcript 〈P̃ (vk), O〉, let

(q1, a1), . . . , (ql, al) be the query-answer
pairs in which the query is of the form
qi = ((“proof”, π′i), 0).

3. for i ∈ [l] do:
(a) Parse π′i as (σi, tri) and ai as (ε, σ′i).
(b) Find some (q, a) in 〈P̃ (vk), O〉 such that

a = (ε, σi) and q is of the form q =
((“inst-wit”, y, w), 0). If none exists,
output ⊥ and abort.

(c) Add (y, (π′i, σ
′
i), w) to extlist.

4. Output extlist.

Claim 3.3. LE fulfills the list-extraction property
of (GAPHA, PAPHA, VAPHA).

The following is an overview of the proof struc-
ture; see [21] for details.

Proof sketch. To prove the success of LE, we de-
fine a sequence of intermediate constructions of in-
creasing power, starting from universal-argument
systems (with a weak proof of knowledge prop-
erty) and ending at APHA systems (with full-
fledged list extraction). Each construction is built

via black-box access to the functionality proved
for the preceding one.

First construction: adaptivity. Starting from a
universal-argument system (PUA, VUA), which has
a weak proof-of-knowledge (PoK) property, we
show how to construct a pair of machines (P1, V1)
for which the weak PoK property holds even when
the prover itself adaptively chooses the claimed in-
stance y. The prover has oracle access to a func-
tionality O1 that outputs random strings upon re-
quest; the prover interacts with O1, and then out-
puts an instance y and a proof string π1 for the
claim “y ∈ SU”. When verifying the output of
the prover, we allow V1 to see all the query-answer
pairs of the prover to O1.
V1 works by requiring a (possibly cheating)

prover P̃1 to produce a transcript of the universal-
argument protocol which VUA would have ac-
cepted, and, moreover, by verifying that the
public-coin challenges in the transcript were ob-
tained by P̃1, in the right order, as answers from
O1.

We show that whenever a prover P̃1 convinces
V1 on some instance y of its choice, P̃1 can be
converted into a cheating P̃UA that convinces VUA

on y, from which a witness for “y ∈ SU” can be
extracted using the universal-argument knowledge
extractorEUA. We thus obtain a knowledge extrac-
tor E1.

Second step: stateless oracle. Starting from the
pair of machines (P1, V1), we show how to con-

13

struct a triple of machines (G2, P2, V2) for which
the weak PoK property still holds. This time, the
prover has oracle access to a stateless probabilistic
oracle O2 generated by G2, instead of the afore-
mentioned stateful oracle O1. On input x, O2 out-
puts a random string r together with a signature on
(x, r). When verifying the output of the prover,
this time V2 does not see the query-answer pairs
of the prover to O2. Instead, it verifies the signa-
tures in the transcript provided by the prover, to be
convinced that the queries were made to O2.

That is, V2 requires a (possibly cheating) prover
P̃2 to produce a proof string that V1 would have
accepted, along with corresponding signatures that
are valid under the verification key of O2.

As before (but by a different technique), we
show that whenever a prover P̃2 convinces V2 on
some instance y of its choice, P̃2 can be converted
into a prover P̃1 that convinces V1 on y, from
which a witness for “y ∈ SU” can be extracted
using the knowledge extractor E1. We thus obtain
a knowledge extractor E2.

Third step: list extraction. Starting from
(G2, P2, V2), we show how to construct a triple
of machines (GAPHA, PAPHA, VAPHA) that is an
APHA system. Similarly to the previous step,
provers for VAPHA have access to a stateless
signed-input-and-randomness oracle O (follow-
ing Definition 2), generated by GAPHA; however,
(GAPHA, PAPHA, VAPHA) satisfies a PoK property
in a much stronger sense, specified by the APHA
list-extraction property and its list-extractor LE.
This “knowledge boosting” relies on forcing the
prover to explicitly state its witness in some query
to O.
VAPHA works by requiring the (possibly cheat-

ing) prover P̃ to produce a proof string that V2

would have accepted; however, the proof string
should not be about the claim “y ∈ SU” (for some
instance y chosen by the prover), but about some
related claim “yaug ∈ SU”, where yaug is derived
from y. Essentially, the prover can convince V2

that “yaug ∈ SU” only if it knows a signature, that
verifies under the verification key of O, for a valid
witness that “y ∈ SU”. Thus, the prover is forced
to explicitly query O on such a witness — and this
query can be found by the knowledge extractor.

Crucially, the knowledge extractor E2 is not in-
voked by the APHA list extractor LE; rather, E2

is used just in the proof of correctness of LE, in a
reduction from failure of LE to forgeability of sig-
natures.9 Since signatures are forgeable with neg-
ligible probability, the polynomial loss of the weak
PoK amounts to just a small increase in the secu-
rity parameter.

Thus, we show that whenever VAPHA accepts the
output of P̃ we can (with all but for negligible
probability) efficiently find a valid witness for the
instance output by P̃ among the queries of P̃ toO,
which is the main ingredient of the proof of cor-
rectness of the list extractor LE.

3.6 Realizability of an Assisted Prover
Our construction attain APHA systems (and

eventually PCD systems) assuming black-box ac-
cess to single, fixed functionality: signed-input-
and-randomness. This functionality is stateless,
and is parametrized by a single concise secret (the
signing key sk).
Communication. The communication between
the prover and the oracle O is as low as one could
hope for given our approach to knowledge extrac-
tion (see Section 3.2): linear in the witness size
|w|, and polynomial in the instance |y| and secu-
rity parameter κ. Moreover, only four queries are
needed. Note that the total communication is lin-
ear in the length of the original witness w for the
statement y = (M,x, t) ∈ SU , rather than (as in
non-interactive CS proofs) a much longer PCP wit-
ness which contains the whole t-step execution of
M(x,w).
Computation. Using the hash-then-sign approach,
and typical hash function constructions, the com-
putational complexity of the signed-input-and-
randomness functionality is essentially linear in its
communication complexity size and polynomial in
the security parameter.
Realization. How would such an oracle
be provided in reality? As noted ear-
lier, similar requisites arose in related
works [39][42][54][17][25][50]. One well-
studied option is to use a secure hardware token
that is tamper-proof and leak-proof. Indeed,
similar signing tokens are already prescribed by
German law [28]. Similarly, the functionality
can be embedded in cryptographic coprocessors,

9This is similar in spirit to the extractor abort lemma of
Chandran et al. [17].

14

TPM chips, and general-purpose smartcard such
as TEMs [24]. Alternatively, one may hope that
this specific functionality can be obfuscated,
either in the strict virtual-box-box sense [7] or (for
real-world security applications) in some heuristic
sense. Lastly, the functionality can be realized
via standard MPC techniques between multiple
parties, tokens, or services, if the requisite fraction
of honest participants is available.

Removing randomness. The randomness of the
signed-input-and-randomness functionality is not
essential: one could replace the fresh random bits
with pseudorandom bits obtained by a pseudoran-
dom function, applied to the input, whose seed is
kept secret. In this way, one only has to trust the
token to hide its secret bits (the signing key and the
seed) and to operate correctly, but not to also gen-
erate random bits. Indeed, our constructions do not
require the randomness from the token to be fresh
for repeated queries with the same input, and se-
curity holds even if the randomness comes from
a pseudorandom function. Intuitively, this holds
since even with a randomized oracle, adversaries
can replay old answers.

4 Proof-Carrying Data Systems
We define and construct proof-carrying data

(PCD) systems, which realize the framework of
proof-carrying data. The following subsections are
organized as follows: in Section 4.1, we define the
notion of compliance for distributed computation;
in Section 4.2, we define PCD systems and dis-
cuss their properties; in Section 4.3, we construct
a PCD system, and, in Section 4.4, we sketch its
correctness.

4.1 Compliance of Computation
We begin by specifying our notion of distributed

computation.

Definition 3 (Distributed computation transcript).
A distributed computation transcript (abbreviated
transcript) is a triple DC = (G, code, data) repre-
senting a directed acyclic multi-graph G = (V,E)
with labels code on the vertices and labels data on
the edges. Vertices represent the computation of
programs, and edges represent messages sent be-
tween these programs. Each non-source vertex v
is with labeled its program code, denoted code(v).

Each edge (u, v) is labeled by data(u, v), which is
the data that is (allegedly) output by the program
of u and is given as input to the program of v. Each
source vertex has a single outgoing edge, carrying
an input of the distributed computation; there are
no programs at sources, so we set their label to ⊥.
The final output of the distributed computation is
the data carried along edges going into sinks.

An augmented distributed computation tran-
script (abbreviated augmented transcript) is a
quadruple ADC = (G, code, data, proof) such
that (G, code, data) is a transcript, and proof is an
additional labeling on the edges of G, specifying
proof strings carried along those edges. (See Fig-
ure 5.)

Given a transcript DC = (G, code, data), at
times we need to consider the part of the dis-
tributed computation up to a certain point. For an
edge (u, v) ∈ E, we define the transcript of DC up
to (u, v), denoted DC|(u,v) = (G′, code′, data′),
to be the labeled subgraph induced by the subset
of vertices consisting of v, u and all ancestors of
u.

A transcript captures the propagation of infor-
mation via messages in the distributed computa-
tion, and thus the graph is acyclic by definition. A
party performing several steps of computations on
different inputs at different times is represented by
distinct corresponding vertices.

Next, we define what we mean for a distributed
computation to be compliant, which is our no-
tion of “correctness with respect to some specifi-
cation”. We capture compliance via an efficiently
computable predicate C that is required to hold
true at each vertex, when given the program of the
vertex together with its inputs and (alleged) out-
puts.

Definition 4 (C-compliance). A compliance
predicate C is a polynomial-time computable
predicate on strings. A distributed computa-
tion transcript DC = (G, code, data) is C-
compliant if for every vertex v ∈ V it holds
that C

(
data(in(v)), code(v), data(out(v))

)
= 1

(where data(in(v)) denotes the list of data labels
on v’s parents, and analogously for data(out(v))).

Alternatives. One may consider stronger forms
of compliance. For example, the compliance pred-
icate could get as extra inputs the graph G and

15

prga

prge

prgb prgf

prgc

prgd

prgg

za,
πa

zb, πb

zc, πc

zd, πd

ze, πe zf , πf

za ′, π
a ′

z
b ′, π

b ′

ze′ , πe′

zd′ , πd′zin, πin

zout, πout

⊥
input

output

Figure 5: Example of an augmented distributed computation transcript. Programs are denoted by prg’s, data
by z’s, and proof strings by π’s. The corresponding (non-augmented) distributed computation transcript is
with the proof strings omitted.

the identity of the vertex v (so that the compliance
predicate “knows” which vertex in the graph it is
examining). Stronger still, the compliance predi-
cate could be global, and get as input the whole
transcript DC = (G, code, data). However, our
goal is to realize PCD in a dynamic setting, where
future computations have not happened yet (and
might even be unknown) and past computations
have been long forgotten, so that compliance must
indeed be decided locally. Therefore, we choose
a local compliance predicate, which only gets as
input the information that is locally available at a
vertex, i.e., the program of the vertex together with
its inputs and (alleged) outputs.

4.2 Definition of PCD Systems
We proceed to define proof-carrying data sys-

tems, starting with their structure and an informal
description of their properties.

4.2.1 Structure of PCD systems
A PCD system consists of a triple of machines,

(GPCD, PPCD, VPCD), that works as follows:

• The PCD oracle generator GPCD: for a secu-
rity parameter κ, GPCD(1κ) outputs the descrip-
tion of a probabilistic10 stateless oracle O, to-
gether with O’s verification key vk.

• The PCD prover PPCD: Let vk be a verifica-
tion key, let C be a compliance predicate, and
let prg be a program with (alleged) output zout

and two inputs zin1 and zin2 with correspond-
ing proof strings πin1 and πin2 (see Figure 6).
Then POPCD(vk,C, zout, prg, zin1 , πin1 , zin2 , πin2)
outputs a proof string πout for the claim that zout

10The oracle can be derandomized; see Section 3.6.

prg

vk
zin1

zin2

πin2

πin1

πout

zout

πout ← PO
PCD(vk,C, zout, prg, zin1 , πin1 , zin2 , πin2)

verification
key

compliance
predicate

C

Sunday, November 15, 2009

Figure 6: Computation of the new proof string
πout for the output data zout using the PCD prover
PO

PCD(vk,C, zout, prg, zin1 , πin1 , zin2 , πin2).

is an output consistent with a C-compliant tran-
script.11

• The PCD verifier VPCD: for a verification key
vk, a compliance predicate C, an output zout,
and a proof string πout, VPCD(vk,C, zout, πout)
accepts if πout convinces him that zout is an out-
put consistent with a C-compliant transcript.

Using these algorithms, a distributed compu-
tation transcript is dynamically compiled into an
augmented distributed computation transcript by
adding a proof string to each edge (see Figure 5).
The process of generating proof strings is defined
inductively, by having each (internal) vertex v in
DC usePPCD to produce a new proof string πout for
its output zout (given its inputs, their inductively
generated proof strings, its program, and output).

More precisely, focusing on a particular edge
(u, v) ∈ E, we recursively define the process of
computing proof strings in DC up to (u, v); this

11Without loss of generality, we restrict our attention to tran-
scripts for which programs have exactly two inputs and one out-
put.

16

process generates an augmented transcript of DC
up to (u, v). Let DC′ = DC|(u,v) be the transcript
of DC up to (u, v), and proof ′ : E′ → {0, 1}∗ an-
other label on the edges of DC′ that carries proof
strings (in addition to the label data′ that carries
the data). Initially, proof strings on the outgo-
ing edges of sources are set to ⊥. Then, taking
each non-source non-sink vertex w ∈ V ′ in some
topological order,12 letwin1 ,win2 be the two parents
of w, and let wout be its the single child in DC′.
Let zin1 = data(win1 , w), πin1 = proof ′(win1 , w),
zin2 = data(win2 , w), πin2 = proof ′(win2 , w),
prg = code(w), and zout = data(w,wout). Then,
recursively compute

πout ← POPCD(vk,C, zout, prg, zin1 , πin1 , zin2 , πin2),

and define πout ≡ proof ′(w,wout). The final out-
put z of DC′ = DC|(u,v) has the proof string
z = proof(u, v).

4.2.2 Properties of PCD (intuitive)
The triple (GPCD, PPCD, VPCD) must satisfy

three properties. Analogously to APHA systems,
the first two bound the complexity of proving
and verifying, and the third is a strong proof-of-
knowledge property (which, in particular, implies
soundness). These are adapted to the context of
distributed computation transcripts.

First, proof strings generated by the prover
should be efficiently verifiable by the verifier:
VPCD halts in time that is polynomial in the secu-
rity parameter κ, the size of the description of C,
the length of z, and the logarithm of the time it
took to generate π. (Our parameters are even bet-
ter; see the analysis in Section 4.2.3.)

Second, the prover should be able to prove true
statements using a reasonable amount of time.
Whenever it is indeed the case that a transcript DC
is C-compliant, if the above recursive process is
used to generate a proof string π for the data z
on some edge, then (z, π) are indeed accepted by
VPCD. Moreover, the above recursive process runs
in time that is polynomial in the security parameter
κ, the size of the description of C and the time it
took to to verify C-compliance at every node.

12Formally, since G is acyclic, we are oblivious to the choice
of temporal order. In reality the proof strings are computed
on-the-fly according to the temporal order by which the data
messages are generated; by causality, this order is topological.

Third, soundness means that given a compliance
predicate C and an output string z that is not con-
sistent with any C-compliant transcript, no cheat-
ing prover circuit P̃ of size poly(κ) can generate a
convincing proof string π for z (except with non-
negligible probability, over the randomness of the
oracle and its verification key).

In order to preserve security for distributed com-
putation that uses cryptographic functionality that
is only computationally secure, we actually require
a stronger property: proof of knowledge. A proof
string π augmenting a piece of data z attests to the
following. For any (possibly cheating) prover cir-
cuit P̃ of size poly(κ), there exists a knowledge
extractor EPCD circuit such that, for any output
string z, if P̃ produces a sufficiently convincing
proof string π for z, then EPCD can extract from
P̃ a C-compliant transcript DC that has final out-
put z. Also, |EPCD| is polynomial in |P̃ | and the
security parameter κ.13

4.2.3 Properties of PCD (formal)

We proceed to capture the above intuition more
formally. First, because provers and verifiers are
concatenated in a recursive structure, in order to
precisely quantify their complexity we need to de-
fine a recursive function over the transcript DC.

The recursive function that characterizes the
complexity is as follows:

Definition 5 (Recursive Time up to an Edge). Let
p be a positive polynomial, κ a security parame-
ter, C a compliance predicate, and DC a transcript.
Given (u, v) ∈ E, we define the recursive time of
DC|(u,v), denoted Tp(κ,C,DC|(u,v)), where Tp is
recursively defined as follows:

• If u is a source vertex,

Tp
(
κ,C,DC|(u,v)

) ≡ p(κ+ |〈C〉|) .
13Our construction attains a stronger definition, where a fixed

knowledge extractor can extract from any convincing prover
by observing only its output and its interaction with the oracle
(analogously to the APHA list extraction property). We use the
above weaker definition for convenience of presentation.

17

• Otherwise,

Tp
(
κ,C,DC|(u,v)

) ≡
timeC

(
data(in(u)), code(u), data(out(u))

)
+

∑
u′∈parents(u)

p
(
κ+ |〈C〉|+ |data(u′, u)|+

log
(
Tp
(
κ,C, data(u′, u),DC|(u′,u)

)))
.

The essential property of this recursive func-
tion is that the cost of past computation de-
cays as an iterated logarithm at every aggregation
step, and thus converges very quickly. Hence,
the time it takes to generate a proof πout is
essentially polynomial in the time it takes to
merely locally check compliance, i.e., to compute
C((zin1 , zin2), prg, (zout)); and verification time is
logarithmic in that.

We can now state the definition of PCD systems.

Definition 6 (PCD System). A proof-carrying
data system with security parameter κ is a triple of
polynomial-time machines (GPCD, PPCD, VPCD),
where GPCD is probabilistic, PPCD is determinis-
tic with oracle access, and VPCD is deterministic,
that satisfies the following conditions:
• Efficient verification: There exists a positive

polynomial p such that for every κ ∈ N,
(O, vk) ∈ GPCD(1κ), compliance predicate C,
transcript DC, edge (u, v) ∈ E with label z =
data(u, v), and proof string π,

timeVPCD
(vk,C, z, π) ≤

p
(
κ+ |〈C〉|+ |z|+ log Tp

(
κ,C,DC|(u,v)

))
.

In particular, the proof string is short: |π| ≤
p
(
κ+ |〈C〉|+ |z|+ log Tp

(
κ,C,DC|(u,v)

))
.

• Completeness via a relatively-efficient prover:
Let A be the process of computing proof strings
in DC up to (u, v), described above. For every
κ ∈ N, compliance predicate C, C-compliant
transcript DC, and edge (u, v) ∈ E with label
z = data(u, v),

Pr
[
VPCD(vk,C, z, π) = 1

∣∣∣
(O, vk)← GPCD(1κ) ;

π ← AO(vk,C,DC|(u,v))
]

= 1

(where the probability is taken over the internal
randomness of GPCD and O).
Furthermore, there exists a positive polynomial
p such that for every κ ∈ N, (O, vk) ∈
GPCD(1κ), C-compliant computation DC, and
edge (v, w) ∈ E with label z = data(v, w),

timeAO (vk,C,DC|(u,v)) ≤
p
(
κ+ |〈C〉|+ |z|+ Tp

(
κ,C,DC|(u,v)

))
.

• Proof-of-knowledge property: Let κ ∈ N. For
every (possibly cheating) prover circuit P̃ of
size poly(κ), there exists a knowledge extractor
circuit EPCD of size poly(κ) such that, for every
polynomial p, compliance predicate C, output
string z ∈ {0, 1}∗, and for sufficiently large κ:
if P̃ convinces VPCD to accept z with non-
negligible probability,

Pr
[
VPCD(vk,C, z, π) = 1

∣∣∣
(O, vk)← GPCD(1κ) ;

π ← P̃O(vk,C, z)
]
>

1
p(κ)

(where the probability is taken over the inter-
nal randomness of GPCD and O), then EPCD

extracts a C-compliant distributed computation
transcript DC consistent with the final output z
(i.e., z = data(u, v) and (u, v) is the unique in-
coming edge to the unique sink vertex v) with
almost the same probability:

Pr
[
DC is C-compliant ∧ u, v ∈ V ∧

DC = DC|(u,v) ∧ z = data(u, v)
∣∣∣

(O, vk)← GPCD(1κ) ;

DC← EOPCD(vk,C, z)
]
>

1
p(κ)

− µ(κ)

(where the probability is taken over the internal
randomness of GPCD and O), for some negligi-
ble function µ.

4.3 Construction of a PCD System
We show the following:

Theorem 4.1 (PCD from APHA). PCD systems
can be built from APHA systems (using the same
oracle).

18

Combining this with Corollary 3.2, we deduce
the existence of PCD systems under mild standard
assumptions:

Corollary 4.2 (Existence of PCD systems). As-
suming the existence of collision-resistant hashing
schemes, there exist PCD systems whose oracle is
signed-input-and-randomness.

Given any APHA system (GAPHA, PAPHA,
VAPHA), such as those of Section 3, we construct
a PCD system (GPCD, PPCD, VPCD) as follows.

The oracle generator is the same (i.e., GPCD =
GAPHA). The PCD prover and verifier will invoke
those of APHA on specially crafted statements
“(MPCD, x, t) ∈ SU”, where MPCD is a fixed PCD
machine (depending only on the compliance predi-
cate C and the verification key vk) which specifies
how to aggregate proof strings, check C locally
and generate the new proof string.

Specifically, MPCD gets as input a string
x = (zout, dout), where zout is the alleged out-
put of the current vertex and dout is the num-
ber of past aggregations, and a witness w =
(prg, zin1 , πin1 , zin2 , πin2) containing the program
prg of the current vertex, together with its inputs
and their corresponding proof strings. The PCD
machine will accept only if
1. it verifies, by invoking VAPHA, that the proof

strings of the inputs are valid, and
2. C((zin1 , zin2), prg, (zout)) = 1, i.e.,

C-compliance holds.
For the “base case” dout = 1, MPCD does not
have previous proof strings to verify, so it will
only check that C-compliance holds. Formally, the
PCD machine is defined as follows:

Algorithm 6 (PCD Machine). Fix κ ∈ N and let
(O, vk) ∈ GPCD(1κ). Let C be a compliance
predicate C, zout the (alleged) output of a pro-
gram prg with inputs zin1 and zin2 , and πin1 and
πin2 proof strings. Define x ≡ (zout, dout) and
w ≡ (prg, zin1 , πin1 , zin2 , πin2). The PCD machine
with respect to C and vk, denoted M vk,C

PCD , is de-
fined as follows: M vk,C

PCD , on input (x,w), does the
following:
1. Base case. If πin1 =⊥, verify that dout = 1 and

C(⊥,⊥, zin1) = 1, otherwise reject.
2. Recursive case. If πin1 6=⊥, parse πin1 as

(π′in1
, din1 , tin1), and do the following:

(a) Verify that dout > din1 > 0.

(b) Define yin1 ≡ (M vk,C
PCD , (zin1 , din1), tin1).

(c) Verify that VAPHA(vk, yin1 , π
′
in1

) = 1, oth-
erwise reject.

3. Repeat steps 1 and 2 for zin2 and πin2 .
4. Accept iff C((zin1 , zin2), prg, (zout)) accepts.

The PCD prover and verifier are then con-
structed as follows.

Algorithm 7 (PPCD). Fix κ ∈ N and let
(O, vk) ∈ GPCD(1κ). Let C be a compliance
predicate, zout the (alleged) output of a program
prg with inputs zin1 and zin2 (and corresponding
proof strings πin1 and πin2). The PCD prover
POPCD(vk,C, zout, prg, zin1 , πin1 , zin2 , πin2) does the
following:
1. If πin1 =⊥, run C(⊥,⊥, zin1) and let tin1 be the

time C takes to halt. Otherwise, parse πin1 as
(π′in1

, din1 , tin1).
2. If πin2 =⊥, run C(⊥,⊥, zin2) and let tin2 be the

time C takes to halt. Otherwise, parse πin2 as
(π′in2

, din2 , tin2).
3. Run C((zin1 , zin2), u, (zout)) and let tC be the

time C takes to halt.
4. Define t ≡ tC + tin1 + tin2 ,
dout ≡ max{din1 , din2}+ 1,
y ≡ (M vk,C

PCD , (zout, dout), t) and
w ≡ (prg, zin1 , πin1 , zin2 , πin2).

5. Compute π′ ← POAPHA(vk, y, w).
6. Define π ≡ (π′, d, t).
7. Output π.

Algorithm 8 (VPCD). Fix κ ∈ N and let (O, vk) ∈
GPCD(1κ). Let C be a compliance predicate, z
an output string, and π a proof string. The PCD
verifier VPCD(vk,C, z, π) does the following:
1. If π =⊥, output C(⊥,⊥, z).
2. If π = (π′, d, t), define y ≡ (M vk,C

PCD , (z, d), t),
and output VAPHA(vk, y, π′).

4.4 Correctness of the PCD Construction
To complete the proof of Theorem 4.1, there re-

mains to show that the above construction is in-
deed a PCD system. Efficient verifiability, as well
as completeness via a relatively-efficient prover,
follow easily from the construction.

In the following, we sketch the proof of the PCD
proof-of-knowledge property. For further details
see the full version of this paper [21].

The PCD knowledge extractor EPCD for a

19

(cheating) prover P̃ , on input (vk,C, z) and with
oracle access to O, does the following.

1. Run P̃O(vk,C, z) to get its output (z, π)
and to record its oracle queries and answers,
〈P̃ (vk,C, z), O〉.

2. Apply the APHA list extractor LE to the
recorded interaction

〈
P̃ (vk), O

〉
, to extract a

list, extlist, of triples (yi, πi, wi).
3. Apply an offline reconstruction procedure

which outputs a transcript of the “past” dis-
tributed computation by looking only at extlist
and (z, π) (see below).

All our work thus far was aimed at making such
offline reconstruction possible. The fact that the
transcript can be reconstructed from a single in-
vocation of P̃ is essential: had we used a recursive
approach requiring multiple invocations, we would
have experienced an exponential blowup as aggre-
gated proofs are recursively extracted.

Offline reconstruction procedure. The procedure
performs a depth-first traversal of the implicit his-
tory represented by extlist, starting from the root
implied by (z, π). It maintains the following data
structures:
• An augmented distributed computation tran-

script ADC, initially containing just the output
edge.

• An exploration stack, denoted expstack, con-
taining the set of edges of G that we have dis-
covered but not yet explored.

At a high level, the procedure operates iteratively
as follows. At every iteration, we pop the next
edge e to explore from expstack. Then, we check
ADC to see what is the APHA instance and proof
string pair (ye, πe) on the edge e, and look for
a corresponding triple of the form (ye, πe, wi) in
the extracted list extlist. (From the APHA list-
extraction property, this succeeds, and moreover
wi is a valid witness with all but negligible prob-
ability.) If we have already seen the instance-
witness pair (ye, wi) on some edge edge e′, we
grow the graph of ADC by making the (hitherto un-
known) source vertex of e the same as the source of
e′. Otherwise, we grow ADC by making the source
of e a new vertex v. If wi is a witness that uses the
base case of the PCD machine, then v is a source
vertex and we are done for his iteration. Otherwise
v is a new internal vertex, and we add the edges

leading to its (yet unknown) parents to expstack.
The labels on ADC are updated accordingly.

5 Applications and Design Patterns
Proof-carrying data is a flexible and powerful

framework that can be applied to security goals
in many problem domains. Below are a some ex-
amples of domains where we envision applicabil-
ity. We stress that this is intended as a glimpse of
things to come; full realizations, and evaluation of
concrete practicality, exceed the present scope.

Distributed theorem proving. Proof-carrying
data can be interpreted as a new result in the theory
of proofs: “distributed theorem proving” is feasi-
ble. It was previously known, via probabilistically-
checkable proofs [5] and CS proofs [53], that one
can be convinced of a theorem much quicker than
by inspecting the theorem’s proof. However, con-
sider a theorem whose proof is built on various
(possibly nested) lemmas proved by different peo-
ple. In order to quickly convince a verifier of the
theorem’s truth, in previous techniques we would
have to obtain and concatenate the original (long)
proofs of all the lemmas, and only then then use
(for example) CS proofs to compress them. Our re-
sults imply that compressed proofs for the lemmas
can be directly used to obtain a compressed proof
of the reliant theorem, and moreover the latter’s
length is (essentially) independent of the length of
the lemmas’ proofs.

Multilevel security. As mentioned in Section 1.1,
PCD may be used for information flow control.
For example, consider enforcing multilevel secu-
rity [2, Chap. 8.6] in a room full of data-processing
machines. We want to publish outputs labeled
“non-secret”, but are concerned that they may have
been tainted by “secret” information (e.g., due to
bugs, via software side channel attacks [15] or per-
haps via literal eavesdropping [49][4][67]).

Suppose every “non-secret” input entering the
system is digitally signed as such, by some classi-
fier, under a verification key vkns. Suppose more-
over (for simplicity) that the scheduling of which-
program-to-apply-on-what-data is fully specified
in advance. Then we can define the compliance
predicate C as verifying that, in the distributed
computation transcript, the output of every ver-
tex is either properly signed under vkns, or is the

20

result of correctly executing some program prg
on the vertex’s inputs and this is indeed the pre-
scribed program according to the schedule. Then,
every C-compliant distributed computation tran-
script consists of applying the scheduled programs
to “non-secret” inputs. Thus, its final output is in-
dependent of secret inputs.

The PCD system augments every message in
the system with a proof string that attests this C-
compliance. Eventually a censor at the system
perimeter inspects the final output by verifying
its associated proof, and lets out only properly-
verified messages (as in Figure 2). Because ver-
ification is concerned with properties of the output
per se, security is unaffected by anomalies (faults
and leakage) in the preceding computation.

Bug attacks and IT supply chain. Faults can
be devastating to security [11]. However, hard-
ware and software components are often produced
in far-away lands from parts of uncertain origin.
This IT supply chain issue forms risks to users and
organizations [1][12][45][64]. Using PCD, one
can achieve fault isolation and accountability at the
level of system components, e.g., chips or software
modules, by having each component augment ev-
ery output with a proof that its computation, in-
cluding all history it relied on, were correct.

Simulations and MMO. Consider a simula-
tion such as massively multiplayer online (MMO)
worlds. These typically entail certain invariants
(“laws of physics”), together with inputs chosen at
human users’ discretion. A common security goal
is to ensure that a particular player does not cheat
(e.g., by modifying the game code). Today, this is
typically enforced by a centralized server, which is
unscalable. Attempts at secure peer-to-peer archi-
tectures have seen very limited success [61][33].
PCD offers a potential solution approach when the
underlying information flow has sufficient locality
(as is it the case for most simulations): start with a
naive (insecure) peer-to-peer system, and enforce
the invariants by augmenting every message with
a proof of the requisite properties.

Financial systems. As a special case of the above,
one can think of financial systems as a “game”
where parties perform local transactions subject to
certain rules. For example, in any transaction, the
total amount of money held by the parties must not
increase unless the government is involved. We

conjecture that interesting financial settings can be
thus captured and allowed to proceed in a secure
distributed fashion. Potentially, this may capture
financial processes that are much richer than the
consumer-vendor relations of traditional e-cash.

Distributed dynamic program analysis. Con-
sider, for example, taint propagation — a popular
dynamic program analysis technique which tracks
propagation of information inside programs. Cur-
rent systems (e.g., [59]) cannot securely span mu-
tually untrusting platforms. Since tainting rules
are easily expressed by a compliance predicate that
observes the computation of the program, PCD can
maintain tainting across a distributed computation.

Distributed type safety. Language-based type-
safety mechanisms have tremendous expressive
power, but are targeted at the case where the under-
lying execution platform can be trusted to enforce
type rules. Thus, they typically cannot be applied
across distributed systems consisting of multiple
mutually-untrusting execution platforms. This bar-
rier can be surmounted by using PCD to augment
typed values passing between systems with proofs
for the correctness of the type.

Generalizing: design patterns. The PCD ap-
proach allows a system designer to “program in”
the security requirement into a compliance predi-
cate, and have it “magically” enforced by the PCD
system. As gleaned from the above examples, this
programming can be nontrivial and requires vari-
ous tricks. This is somewhat similar to the world
of software engineering, and indeed we can bor-
row some meta-techniques from that world. In
particular, design patterns [32] are a very useful
method for capturing common problems and so-
lution techniques in a loosely-structured way. A
number of such design patterns are already evi-
dent in the above examples (e.g., using signatures
to designate parties or properties). We envision,
and are exploring, a library of such patterns to aid
system designers.

6 Conclusions and Open Problems
We envision proof-carrying data as a framework

for achieving security properties in a nonconven-
tional way, which circumvents many difficulties
with current approaches. In PCD, faults and leak-
age are acknowledged as an expected occurrence,

21

and rendered inconsequential by reasoning about
properties of data which are independent of the
preceding computation. The system designer pre-
scribes the desired properties of the computation’s
output; proofs of these properties are attached to
the data flowing through the system, and are mutu-
ally verified by the system’s components.

This work shows explicit constructions of proof-
carrying data, under standard assumptions, in the
model where parties have black-box access to
some functionality (e.g., a simple hardware token).
The problem of weakening this requirement, or
formally proving that it is (in some sense) neces-
sary, remains open. A PCD system with the addi-
tional property of zero-knowledge [37][34, Chap.
4] would be useful in many applications. Of partic-
ular interest is surmounting the current inefficiency
of the underlying argument systems and obtaining
a fully practical realization.

In this work we briefly touched upon potential
applications; this leaves many opportunities for
fleshing out the details, devising design patterns
and implementing real systems.

Acknowledgments
We are indebted to Ron Rivest for his insight

and support during this investigation. Scott Aaron-
son, Andrew Drucker and Paul Valiant provided
valuable pointers about the PCP vs. oracle diffi-
culty. Boaz Barak, Arnab Bhattacharyya and Or
Meir helped in the evaluation of argument systems
and the underlying PCPs. Stephen Chong, Greg
Morrisett and Jeff Vaughan shared their perspec-
tive on applications of PCD in type safety. We
thank Shafi Goldwasser, Frans Kaashoek, Nancy
Lynch, Silvio Micali, Nickolai Zeldovich and the
anonymous reviewers for valuable feedback.

This work was supported by NSF grant NSF-
CNS-0808907 and AFRL grant FA8750-08-1-
0088. Views and conclusions contained here are
those of the authors and should not be interpreted
as necessarily representing the official policies or
endorsements, either express or implied, of AFRL,
NSF, the U.S. Government or any of its agencies.

References
[1] Dakshi Agrawal, Selcuk Baktir, Deniz

Karakoyunlu, Pankaj Rohatgi, and Berk Sunar.

Trojan detection using IC fingerprinting. In
SP ’07: Proceedings of the 2007 IEEE Sympo-
sium on Security and Privacy, pages 296–310,
Washington, DC, USA, 2007. IEEE Computer
Society.

[2] Ross J. Anderson. Security Engineering: A Guide
to Building Dependable Distributed Systems. Wi-
ley Publishing, 2nd edition, 2008.

[3] Gregory R. Andrews and Richard P. Reitman. An
axiomatic approach to information flow in pro-
grams. ACM Transactions on Programming Lan-
guages and Systems, 2(1):56–76, 1980.

[4] Dmitri Asonov and Rakesh Agrawal. Keyboard
acoustic emanations. In SP ’04: Proceedings of the
2004 IEEE Symposium on Security and Privacy,
pages 3–11, Washington, DC, USA, 2004. IEEE
Computer Society.

[5] László Babai, Lance Fortnow, Leonid A. Levin,
and Mario Szegedy. Checking computations in
polylogarithmic time. In STOC ’91: Proceedings
of the 23rd Annual ACM Symposium on Theory of
Computing, pages 21–32, New York, NY, USA,
1991. ACM.

[6] Boaz Barak and Oded Goldreich. Universal argu-
ments and their applications. In CCC ’02: Pro-
ceedings of the 17th IEEE Annual Conference on
Computational Complexity, pages 194–203, Wash-
ington, DC, USA, 2002. IEEE Computer Society.

[7] Boaz Barak, Oded Goldreich, Russell Impagli-
azzo, Steven Rudich, Amit Sahai, Salil P. Vadhan,
and Ke Yang. On the (im)possibility of obfuscat-
ing programs. In CRYPTO ’01: Proceedings of the
21st Annual International Cryptology Conference
on Advances in Cryptology, pages 1–18, London,
UK, 2001. Springer-Verlag.

[8] Mira Belenkiy, Jan Camenisch, Melissa Chase,
Markulf Kohlweiss, Anna Lysyanskaya, and Ho-
vav Shacham. Randomizable proofs and del-
egatable anonymous credentials. In CRYPTO
’09: Proceedings of the 29th Annual International
Cryptology Conference on Advances in Cryptol-
ogy, pages 108–125, Berlin, Heidelberg, 2009.
Springer-Verlag.

[9] Michael Ben-Or, Shafi Goldwasser, and Avi
Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computa-
tion. In STOC ’88: Proceedings of the 20th Annual
ACM Symposium on Theory of Computing, pages
1–10, New York, NY, USA, 1988. ACM.

[10] Arnab Bhattacharyya. Implementing probabilis-
tically checkable proofs of proximity. Techni-
cal Report MIT-CSAIL-TR-2005-051, MIT, 2005.
Available at http://dspace.mit.edu/handle/1721.1/
30562.

22

http://dspace.mit.edu/handle/1721.1/30562
http://dspace.mit.edu/handle/1721.1/30562

[11] Eli Biham and Adi Shamir. Differential fault anal-
ysis of secret key cryptosystems. In CRYPTO
’97: Proceedings of the 17th Annual International
Cryptology Conference on Advances in Cryptol-
ogy, pages 513–525, London, UK, 1997. Springer-
Verlag.

[12] Eli Biham, Yaniv Carmeli, and Adi Shamir. Bug
attacks. In CRYPTO ’08: Proceedings of the 28th
Annual International Cryptology Conference on
Advances in Cryptology, pages 221–240, Berlin,
Heidelberg, 2008. Springer-Verlag.

[13] Dan Boneh, Emily Shen, and Brent Waters.
Strongly unforgeable signatures based on compu-
tational diffie-hellman. In PKC ’06: Proceedings
of the 9th International Workshop on Practice and
Theory in Public Key Cryptography, pages 229–
240, London, UK, 2006. Springer-Verlag.

[14] Gilles Brassard, David Chaum, and Claude
Crépeau. Minimum disclosure proofs of knowl-
edge. Journal of Computer and System Sciences,
37(2):156–189, 1988.

[15] David Brumley and Dan Boneh. Remote timing
attacks are practical. Computer Networks: The In-
ternational Journal of Computer and Telecommu-
nications Networking, 48(5):701–716, 2005.

[16] Ran Canetti and Marc Fischlin. Universally com-
posable commitments. In CRYPTO ’01: Proceed-
ings of the 21st Annual International Cryptology
Conference on Advances in Cryptology, pages 19–
40, London, UK, 2001. Springer-Verlag.

[17] Nishanth Chandran, Vipul Goyal, and Amit Sahai.
New constructions for UC secure computation us-
ing tamper-proof hardware. In EUROCRYPT ’08:
Proceedings of the 27th Annual International Con-
ference on Advances in Cryptology, pages 545–
562, Berlin, Heidelberg, 2008. Springer-Verlag.

[18] Richard Chang, Suresh Chari, Desh Ranjan, and
Pankaj Rohatgi. Relativization: a revisionistic
retrospective. Bulletin of the European Associ-
ation for Theoretical Computer Science, 47:144–
153, 1992.

[19] Melissa Chase and Anna Lysyanskaya. On signa-
tures of knowledge. In CRYPTO ’06: Proceedings
of the 26th Annual International Cryptology Con-
ference on Advances in Cryptology, pages 78–96,
London, UK, 2006. Springer-Verlag. Full version
available at http://eprint.iacr.org/2006/184.

[20] David Chaum, Claude Crépeau, and Ivan
Damgård. Multiparty unconditionally secure
protocols. In STOC ’88: Proceedings of the 20th
Annual ACM Symposium on Theory of Computing,
pages 11–19, New York, NY, USA, 1988. ACM.

[21] Alessandro Chiesa and Eran Tromer. Proof-
carrying data, 2009. Web site at http://projects.

csail.mit.edu/pcd.
[22] Byung-Gon Chun, Petros Maniatis, Scott Shenker,

and John Kubiatowicz. Attested append-only
memory: making adversaries stick to their word.
ACM SIGOPS Operating Systems Review, 41(6):
189–204, 2007.

[23] Christopher Colby, Peter Lee, and George C. Nec-
ula. A proof-carrying code architecture for java.
In CAV ’00: Proceedings of the 12th International
Conference on Computer Aided Verification, pages
557–560, London, UK, 2000. Springer-Verlag.

[24] Victor Costan, Luis F. Sarmenta, Marten Dijk, and
Srinivas Devadas. The trusted execution module:
Commodity general-purpose trusted computing. In
CARDIS ’08: Proceedings of the 8th IFIP WG
8.8/11.2 International Conference on Smart Card
Research and Advanced Applications, pages 133–
148, Berlin, Heidelberg, 2008. Springer-Verlag.

[25] Ivan Damgård, Jesper Buus Nielsen, and Daniel
Wichs. Universally composable multiparty com-
putation with partially isolated parties. In TCC
’09: Proceedings of the 6th Theory of Cryp-
tography Conference on Theory of Cryptogra-
phy, pages 315–331, Berlin, Heidelberg, 2009.
Springer-Verlag.

[26] Dorothy E. Denning. A lattice model of secure
information flow. Communications of the ACM,
19(5):236–243, 1976.

[27] Dorothy E. Denning and Peter J. Denning. Cer-
tification of programs for secure information
flow. Communications of the ACM, 20(7):504–
513, 1977.

[28] Bundesministerium der Justiz. Gesetz über
Rahmenbedingungen für elektronische Signa-
turen. Bundesgesetzblatt I 2001, 876, May 2001.
online at http://bundesrecht.juris.de/bundesrecht/
sigg 2001/inhalt.html.

[29] Amos Fiat and Adi Shamir. How to prove your-
self: practical solutions to identification and signa-
ture problems. In CRYPTO ’86: Proceedings of
the 6th Annual International Cryptology Confer-
ence on Advances in Cryptology, pages 186–194,
London, UK, 1987. Springer-Verlag.

[30] Marc Fischlin. Communication-efficient non-
interactive proofs of knowledge with online extrac-
tors. In CRYPTO ’05: Proceedings of the 25th
Annual International Cryptology Conference on
Advances in Cryptology, pages 152–168, London,
UK, 2005. Springer-Verlag.

[31] Lance Fortnow. The role of relativization in com-
plexity theory. Bulletin of the European Associ-
ation for Theoretical Computer Science, 52:229–
244, 1994.

[32] Erich Gamma, Richard Helm, Ralph Johnson,

23

http://eprint.iacr.org/2006/184
http://projects.csail.mit.edu/pcd
http://projects.csail.mit.edu/pcd
http://bundesrecht.juris.de/bundesrecht/sigg_2001/inhalt.html
http://bundesrecht.juris.de/bundesrecht/sigg_2001/inhalt.html

and John Vlissides. Design patterns: elements
of reusable object-oriented software. Addison-
Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1995.

[33] Chris GauthierDickey, Daniel Zappala, Virginia
Lo, and James Marr. Low latency and cheat-proof
event ordering for peer-to-peer games. In NOSS-
DAV ’04: Proceedings of the 14th International
Workshop on Network and Operating Systems Sup-
port for Digital Audio and Video, pages 134–139,
New York, NY, USA, 2004. ACM.

[34] Oded Goldreich. Foundations of Cryptography:
Volume 1, Basic Tools. Cambridge University
Press, New York, NY, USA, 2000.

[35] Oded Goldreich. Foundations of Cryptography:
Volume 2, Basic Applications. Cambridge Univer-
sity Press, New York, NY, USA, 2004.

[36] Oded Goldreich, Silvio Micali, and Avi Wigder-
son. How to play any mental game. In STOC
’87: Proceedings of the 19th Annual ACM Sym-
posium on Theory of Computing, pages 218–229,
New York, NY, USA, 1987. ACM.

[37] Shafi Goldwasser, Silvio Micali, and Charles
Rackoff. The knowledge complexity of interactive
proof systems. SIAM Journal on Computing, 18
(1):186–208, 1989.

[38] Shafi Goldwasser, Yael Tauman Kalai, and Guy N.
Rothblum. Delegating computation: interactive
proofs for muggles. In STOC ’08: Proceedings
of the 40th Annual ACM Symposium on Theory of
Computing, pages 113–122, New York, NY, USA,
2008. ACM.

[39] Dennis Hofheinz, Jörn Müller-Quade, and Do-
minique Unruh. Universally composable zero-
knowledge arguments and commitments from sig-
nature cards. In MoraviaCrypt ’05: Proceedings
of the 5th Central European Conference on Cryp-
tography, pages 93–103, 2005.

[40] Qiong Huang, Duncan S. Wong, and Yiming Zhao.
Generic transformation to strongly unforgeable
signatures. In ACNS ’07: Proceedings of the 5th
International Conference on Applied Cryptogra-
phy and Network Security, pages 1–17, Berlin,
Heidelberg, 2007. Springer-Verlag.

[41] Yuval Ishai, Eyal Kushilevitz, and Rafail Ostro-
vsky. Efficient arguments without short PCPs. In
CCC ’07: Proceedings of the Twenty-Second An-
nual IEEE Conference on Computational Com-
plexity, pages 278–291, Washington, DC, USA,
2007. IEEE Computer Society.

[42] Jonathan Katz. Universally composable multi-
party computation using tamper-proof hardware.
In EUROCRYPT ’07: Proceedings of the 26th
Annual International Conference on Advances in

Cryptology, pages 115–128, Berlin, Heidelberg,
2007. Springer-Verlag.

[43] Joe Kilian. Zero-knowledge with log-space veri-
fiers. In SFCS ’88: Proceedings of the 29th Annual
Symposium on Foundations of Computer Science,
pages 25–35, Washington, DC, USA, 1988. IEEE
Computer Society.

[44] Joe Kilian. A note on efficient zero-knowledge
proofs and arguments (extended abstract). In
STOC ’92: Proceedings of the 24th Annual ACM
Symposium on Theory of Computing, pages 723–
732, New York, NY, USA, 1992. ACM.

[45] Samuel T. King, Joseph Tucek, Anthony Cozzie,
Chris Grier, Weihang Jiang, and Yuanyuan Zhou.
Designing and implementing malicious hardware.
In LEET’08: Proceedings of the 1st USENIX
Workshop on Large-Scale Exploits and Emergent
Threats, pages 1–8, Berkeley, CA, USA, 2008.
USENIX Association.

[46] Vladimir Kiriansky, Derek Bruening, and
Saman P. Amarasinghe. Secure execution via
program shepherding. In Proceedings of the 11th
USENIX Security Symposium, pages 191–206,
Berkeley, CA, USA, 2002. USENIX Association.

[47] Maxwell Krohn, Alexander Yip, Micah Brodsky,
Natan Cliffer, M. Frans Kaashoek, Eddie Kohler,
and Robert Morris. Information flow control for
standard os abstractions. In SOSP ’07: Proceed-
ings of the 21st ACM SIGOPS Symposium on Op-
erating Systems Principles, pages 321–334, New
York, NY, USA, 2007. ACM.

[48] Butler W. Lampson. A note on the confinement
problem. Communications of the ACM, 16(10):
613–615, 1973.

[49] Michael LeMay and Jack Tan. Acoustic surveil-
lance of physically unmodified pcs. In SAM ’06:
Proceedings of the 2006 International Conference
on Security and Management, pages 328–334.
CSREA Press, 2006.

[50] Dave Levin, John R. Douceur, Jacob R. Lorch, and
Thomas Moscibroda. TrInc: small trusted hard-
ware for large distributed systems. In NSDI’09:
Proceedings of the 6th USENIX Symposium on
Networked Systems Design and Implementation,
pages 1–14, Berkeley, CA, USA, 2009. USENIX
Association.

[51] Jed Liu, Michael D. George, K. Vikram, Xin Qi,
Lucas Waye, and Andrew C. Myers. Fabric: a plat-
form for secure distributed computation and stor-
age. In SOSP ’09: Proceedings of the 22nd ACM
SIGOPS Symposium on Operating Systems Princi-
ples, pages 321–334, New York, NY, USA, 2009.
ACM.

[52] Nancy A. Lynch. Distributed Algorithms. Morgan

24

Kaufmann Publishers, San Mateo, CA, 1996.
[53] Silvio Micali. Computationally sound proofs.

SIAM Journal on Computing, 30(4):1253–1298,
2000.

[54] Tal Moran and Gil Segev. David and goliath
commitments: Uc computation for asymmetric
parties using tamper-proof hardware. In EURO-
CRYPT ’08: Proceedings of the 27th Annual In-
ternational Conference on Advances in Cryptol-
ogy, pages 527–544, Berlin, Heidelberg, 2008.
Springer-Verlag.

[55] Andrew C. Myers and Barbara Liskov. A de-
centralized model for information flow control.
In SOSP ’97: Proceedings of the 16th ACM
SIGOPS Symposium on Operating Systems Princi-
ples, pages 129–142, New York, NY, USA, 1997.
ACM.

[56] George C. Necula. Proof-carrying code. In POPL
’97: Proceedings of the 24th ACM SIGPLAN-
SIGACT Symposium on Principles of Program-
ming Languages, pages 106–119, New York, NY,
USA, 1997. ACM.

[57] George C. Necula and Peter Lee. Safe kernel ex-
tensions without run-time checking. ACM SIGOPS
Operating Systems Review, 30(SI):229–243, 1996.

[58] George C. Necula and Peter Lee. Safe, un-
trusted agents using proof-carrying code. In Mo-
bile Agents and Security, pages 61–91, London,
UK, 1998. Springer-Verlag.

[59] Nicholas Nethercote and Julian Seward. Valgrind:
a framework for heavyweight dynamic binary in-
strumentation. In PLDI ’07: Proceedings of the
2007 ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, pages
89–100, New York, NY, USA, 2007. ACM.

[60] Rafael Pass. On deniability in the common refer-
ence string and random oracle model. In CRYPTO
’03: Proceedings of the 23rd Annual International
Cryptology Conference on Advances in Cryptol-
ogy, pages 316–337, London, UK, 2003. Springer-
Verlag.

[61] Jeff Plummer. A flexible and expandable architec-
ture for computer games. Master’s thesis, Arizona
State University, 2004.

[62] Thomas Ristenpart, Eran Tromer, Hovav Shacham,
and Stefan Savage. Hey, you, get off of my cloud!
Exploring information leakage in third-party com-
pute clouds. In CCS ’09: Proceedings of the 16th
ACM Conference on Computer and Communica-
tions Security, pages 199–212, New York, NY,
USA, 2009. ACM.

[63] Guy N. Rothblum and Salil Vadhan. Are PCPs in-
herent in efficient arguments? In CCC ’09: Pro-
ceedings of the 24th IEEE Annual Conference on

Computational Complexity, pages 81–92, Wash-
ington, DC, USA, 2009. IEEE Computer Society.

[64] Jarrod A. Roy, Farinaz Koushanfar, and Igor L.
Markov. Circuit CAD tools as a security threat. In
HOST ’08: Proceedings of the 1st IEEE Interna-
tional Workshop on Hardware-Oriented Security
and Trust, pages 65–66, Washington, DC, USA,
2008. IEEE Computer Society.

[65] Alfredo De Santis and Moti Yung. Cryptograpic
applications of the non-interactive metaproof and
many-prover systems. In CRYPTO ’90: Pro-
ceedings of the 10th Annual International Cryptol-
ogy Conference on Advances in Cryptology, pages
366–377, London, UK, 1991. Springer-Verlag.

[66] G. Edward Suh, Jae W. Lee, David Zhang, and
Srinivas Devadas. Secure program execution via
dynamic information flow tracking. In ASPLOS
’04: Proceedings of the 11th International Con-
ference on Architectural Support for Programming
Languages and Operating Systems, pages 85–96,
New York, NY, USA, 2004. ACM.

[67] Eran Tromer and Adi Shamir. Acoustic crypt-
analysis, 2004. Eurocryt 2004 rump session; see
http://people.csail.mit.edu/tromer/acoustic.

[68] Paul Valiant. Incrementally verifiable computa-
tion or proofs of knowledge imply time/space effi-
ciency. In TCC ’08: Proceedings of the 5th Theory
of Cryptography Conference on Theory of Cryp-
tography, pages 1–18, Berlin, Heidelberg, 2008.
Springer-Verlag.

[69] Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie
Kohler, and David Mazières. Making information
flow explicit in HiStar. In OSDI ’06: Proceed-
ings of the 7th USENIX Symposium on Operating
Systems Design and Implementation, pages 19–19,
Berkeley, CA, USA, 2006. USENIX Association.

25

http://people.csail.mit.edu/tromer/acoustic

	Introduction
	Motivation and Goals
	Our Approach
	Model and Trust
	Our Results
	Previous Approaches
	Organization

	Preliminaries
	An Argument System for Hearsay
	Overview
	Difficulties and Our Solution
	Definition of APHA Systems
	Construction of an APHA System
	Correctness of the APHA Construction
	Realizability of an Assisted Prover

	Proof-Carrying Data Systems
	Compliance of Computation
	Definition of PCD Systems
	Structure of PCD systems
	Properties of PCD (intuitive)
	Properties of PCD (formal)

	Construction of a PCD System
	Correctness of the PCD Construction

	Applications and Design Patterns
	Conclusions and Open Problems

