1 Introduction

In this lecture, we formally introduce Linear PCPs (LPCPs), and then show how one can compile any LPCP into a PCP. This will complete the proof that \(\text{NP} \subseteq \text{PCP}[\text{poly}(n),O(1)] \) from last lecture.

2 Linear PCPs

We repeat the definition of a PCP in order to compare it with that of a LPCP.

Definition 1 A PCP for a language \(L \) is a probabilistic polynomial time verifier \(V \) such that:

1. **Completeness.** \(\forall x \in L, \exists \pi \in \{0,1\}^l \text{ such that } \Pr[V^\pi(x)] = 1 \geq c \)
2. **Soundness.** \(\forall x \notin L, \forall \pi \in \{0,1\}^l, \text{ it holds that } \Pr[V^\pi(x)] = 1 \leq s \)

We say that \(L \in \text{PCP}_{c,s}[r,q,l] \) if the above holds with \(V \) tossing \(r \) random coins and making \(q \) queries.

We now turn to LPCPs, which are the same as PCPs except that that the verifier has oracle access to a linear function rather than a string.

Definition 2 A LPCP for a language \(L \) is a probabilistic polynomial time verifier \(V \) such that:

1. **Completeness.** \(\forall x \in L, \exists \lambda \in \{0,1\}^l \text{ such that } \Pr[V^{\langle \lambda, \cdot \rangle}(x)] = 1 \geq c \)
2. **Soundness.** \(\forall x \notin L, \forall \lambda \in \{0,1\}^l, \text{ it holds that } \Pr[V^{\langle \lambda, \cdot \rangle}(x)] = 1 \leq s \)

We say that \(L \in \text{LPCP}_{c,s}[r,q,l] \) if the above holds with \(V \) tossing \(r \) random coins and making \(q \) queries.

Note here that, while \(\langle \lambda, \cdot \rangle \) is a linear function defined via \(l \) bits, the evaluation table of \(\langle \lambda, \cdot \rangle \) consists of \(2^l \) bits.

3 Compiling a Linear PCP into a PCP

We describe how any Linear PCP can be compiled into a (standard) PCP.
Idea 3 Let $\pi : [2^l] \to \{0, 1\}$ be an evaluation table of $\langle \lambda, \cdot \rangle$. Let $V_{PCP} = V_{LPCP}$.

This seems like a good idea at first. However, the prover may write $\tilde{\pi}$ that is not the evaluation table of any linear function. We clearly have no way to check if $\tilde{\pi}$ is the evaluation of a linear function in less than 2^l queries, as there could always be a mistake at the location that we did not query. That said, as we shall see, it will suffice to ensure that $\tilde{\pi}$ is close to the evaluation of a linear function, and this can be done with few queries.

Definition 4 We say that a function $f : \{0, 1\}^n \to \{0, 1\}$ is δ-far from LIN if for all linear functions $p \in \text{LIN}$, $\Delta(f, p) \geq \delta$. Likewise, we say that a function $f : \{0, 1\}^n \to \{0, 1\}$ is δ-close from LIN if there exists a linear function p such that $\Delta(f, p) \leq \delta$.

Theorem 5 There exists $O(1)$-query verifier V_{LIN} such that:

1. $\forall \pi \in \text{LIN}, \Pr[V_{\text{LIN}}^\pi = 1] = 1$
2. $\forall \pi$ such that $\Delta(\pi, \text{LIN}) > \frac{1}{10}, \Pr[V_{\text{LIN}}^\pi = 1] \leq \frac{1}{2}$

We will hold off the proof for Theorem 5 until Section 4.

Now we can define V_{PCP}^π as follows:

1. Run V_{LIN}^π. If the function is not linear, reject.
2. Run $V_{\langle \tilde{\lambda}, \cdot \rangle}^{\langle \lambda, \cdot \rangle}$, where $\langle \tilde{\lambda}, \cdot \rangle$ is π treated as a linear function.

The proof of completeness is trivial. We now prove soundness. Suppose that $x \in L$ and $\tilde{\lambda}$ is a function from $[2^l] \to \{0, 1\}$. There are two cases. Suppose that $\tilde{\lambda}$ is $\frac{1}{10}$ far from LIN. This implies that V_{LIN} accepts $\tilde{\lambda}$ as linear with probability at most $\frac{1}{2}$, and V_{LPCP} by definition accepts with probability at most s. The second case is when $\tilde{\lambda}$ is $\frac{1}{10}$-close from LIN. Let λ be the closest linear function to $\tilde{\lambda}$. Assuming that the distribution of the queries is uniformly random, we see that

$$\Pr[V_{PCP}^{\lambda} \text{accepts}] \leq \Pr[V_{LPCP}^{\langle \lambda, \cdot \rangle} \text{accepts}] + \Pr[\exists \text{a query that is noise}]$$

$$\leq s + q \cdot \frac{1}{10}$$

Of course in most cases, the distribution of the queries is not uniformly random. We can use self-correction in order to bring down the upper-bound shown in the last expression, and to address the issue of the bias of the queries. This is explained below.

Idea 6 For all $a \in \{0, 1\}^l$, pick random $r \in \{0, 1\}^l$ and return $\pi(r) + \pi(r + a)$. Using the union bound, we see that

$$\Pr[\langle \lambda, a \rangle \neq \pi(r) + \pi(r + a)] \leq \frac{2}{10}$$

Using Chernoff bounds, we see that doing this process $O(\log q)$ times will result in an error at most $O(\frac{1}{q})$. Of course, we can bring down the error further as we wish by having more queries.

We have shown that indeed Theorem 1 holds with:
4 A Linearity Test

The compiler from LPCP to PCP that we have described assumed the existence of a linearity test, as stated in Theorem 5. We now prove this theorem by presenting and analyzing the linearity test of Blum, Luby, and Rubinfeld [BLR93]; we follow lecture notes by Moshkovitz [Mos10].

4.1 Preliminaries

Before we introduce the actual test, we first go over some definitions.

Definition 7 A function $f : \{0,1\}^n \rightarrow \{0,1\}$ is linear if for all $x, y \in \{0,1\}^n$, $f(x+y) = f(x) + f(y)$.

4.2 The Actual Test

Suppose we are given a (potentially linear) function $f : \{0,1\}^n \rightarrow \{0,1\}$. Choose points $x, y \in \{0,1\}^n$ independently and uniformly at random, and test if $f(x) + f(y) = f(x+y)$ over \mathbb{F}_2. It is easy to see that this is a 3-query verifier. The proof of completeness is trivial, since if f is linear, then by definition of linearity, this test will pass with probability 1. The soundness theorem is as follows:

Theorem 8 $\Pr[\text{BLR test rejects } f] \geq \min\left(\frac{2}{3}, \frac{\Delta(f, \text{LIN})}{2}\right)$

The subsequent section gives a proof of soundness for the BLR test.

4.3 Proof of Soundness

We use the idea of majority correction. If a function f is linear in a binary field, we have that $f(x) = f(y) + f(x+y)$. We can think of each of the 2^n possible values of y as a vote on the value of $f(x)$. Since $f(x)$ is equal to either 0 or 1, we see that either 0 or 1 received the majority of votes from the y values. More formally, we define g_f (which is dependent on f) as follows:

$$g_f(x) = \begin{cases} 1 & \text{if } \Pr_y[f(y) + f(x-y) = 1] \geq \frac{1}{2} \\ 0 & \text{otherwise.} \end{cases}$$

We also define $P_x = \Pr_y[g_f(x) = f(y) + f(x-y)]$. Note that by definition of g_f, $P_x \geq \frac{1}{2}$. In order to prove soundness, we first prove some claims.
Claim 9 \(\Pr[BLR\ rejects\ f] \geq \frac{1}{2} \cdot \Delta(f, g) \)

Proof: We have that:

\[
\Pr[\text{rejection}] = \Pr[g(x) \neq f(x)] \cdot \Pr[\text{rejection}\mid g(x) \neq f(x)] + \Pr[g(x) = f(x)] \cdot \Pr[\text{rejection}\mid g(x) = f(x)]
\]

Since we are interested in a lower bound, we ignore the second term. Note that \(\Pr[g(x) \neq f(x)] = \Delta(f, g) \) by definition. We see that if \(g(x) \neq f(x) \), then \(f(x) = (y) + f(x - y) \) for \(1 - P_x \leq \frac{1}{2} \) of the possible values for \(y \). Since we are in \(\mathbb{F}_2 \), addition and subtraction are the same and so the equation \(f(x) = f(y) + f(x - y) \) is the same as the BLR test, \(f(x + y) = f(x) + f(y) \). \(\square \)

Claim 10 If \(\Pr[BLR\ rejects\ f] < \frac{2}{3} \), then for all \(x \) we have \(P_x > \frac{2}{3} \).

Proof: Fix \(x \). We define

\[
A_x = \Pr_{y,z}[f(y) + f(x + y) = f(z) + f(x + z)]
\]

We can compute \(A_x \) in two different ways. We see that

\[
A_x = \Pr_{y,z}[f(y) + f(x + y) = g(x) \land f(z) + f(x + z) = g(x)]
\]

\[+ \Pr_{y,z}[f(y) + f(x + y) \neq g(x) \land f(z) + f(x + z) \neq g(x)]
\]

\[= P_x^2 + (1 - P_x)^2
\]

We can also use the BLR rejection probability to bound \(A_x \). Since we are working over a binary field, we can rewrite the equation \(f(y) + f(x + y) = f(z) + f(x + z) \) as \(f(y) + f(z) = f(x + y) + f(x + z) \). We see that by linearity, \(\Pr[f(y) + f(z) = f(y + z)] = 1 - \Pr[BLR\ rejects\ f] > \frac{2}{3} \). As \(y \) and \(z \) are independent and uniformly sampled, we can apply the same reasoning to the case of \(x + y \) and \(x + z \). Thus we can say that \(f(x + y) + f(y + z) = f((x + y) + (x + z)) = f(y + z) \) with probability greater than \(\frac{2}{3} \). Thus the probability of both these events happening (which is \(A_x \)) is greater than \(\frac{5}{9} \). Solving the quadratic:

\[P_x^2 + (1 - P_x)^2 > \frac{5}{9}
\]

gives \([0, \frac{1}{3}) \cup (\frac{2}{3}, 1]\) as solutions. As \(P_x \geq \frac{1}{2} \), we see that \(P_x > \frac{2}{3} \). \(\square \)

Claim 11 If \(\Pr[BLR\ rejects\ f] < \frac{2}{3} \), then \(g_f \) is linear.

Proof: Using the previous claim, we see that \(P_x > \frac{2}{3} \). Fix \(x \) and \(y \) and choose \(z \) uniformly and random. Then \(g(x) = f(z) + f(x + z) \) with probability larger than \(\frac{2}{3} \). Using the same argument, we see that \(\Pr[g(y) = f(z) + f(y + z)] > \frac{2}{3} \) and \(\Pr[g(x + y) = f(z) + f(x + z + y)] > \frac{2}{3} \). Substituting \((x + z) \) in place of \(z \), we have that \(\Pr[g_f(x + y) = f(z + x) + f(z + y)] > \frac{2}{3} \). Thus, there exists a \(z_0 \) such that:

\[
g_f(x) = f(z_0) + f(x + z_0)
\]
\[
g_f(y) = f(z_0) + f(y + z_0)
\]
\[
g_f(x + y) = f(x + y + z_0)
\]

all hold. This shows that

\[
g_f(x) + g_f(y) = g_f(x + y)
\]
So we see that g_f is linear.

Using the previous claims we now can prove soundness for the BLR test. There are two cases: either $\Pr[\text{rejection}] \geq \frac{2}{5}$, or g is linear and so

$$\Pr[\text{rejection}] \geq \frac{1}{2} \cdot \Delta(f, g) \geq \frac{1}{2} \Delta(f, \text{LIN})$$

This is exactly what the soundness theorem claims.

References
