
CS294: Probabilistically Checkable and Interactive Proofs January 31, 2017

Interactive Proofs with Bounded Communication/Randomness
Instructor: Alessandro Chiesa & Igor Shinkar Scribe: Peter Manohar

Suppose we restrict the number of bits sent by the prover to be only 1 bit. One might guess that
the set of languages that have a 1 bit IP is simple, say something like P. However, the IP for GNI is
a protocol where the prover only sends one bit, so clearly this is not the case. The set of languages
which have a 1 bit IP is not trivial. We would like to know the relation between the time complexity
of a language and the communication complexity of its IP. We will prove 4 statements about IP’s
with restricted communication complexity. All four theorems can be found in [GH98].

1 The Theorems

Theorem 1 Suppose L has an IP system where on input x, the verifier flips at most c = c(|x|) bits
and the number of bits sent between verifier and prover is at most c. Then L ∈ DTime(2O(c)poly(|x|)).

Theorem 2 Suppose L has an IP system where on input x the number of bits exchanged is at most
c. Then L ∈ BPTime(2O(c)poly(|x|)).

Theorem 3 Suppose L has a public coin IP system such that on input x, the number of bits sent
from the prover is at most c. Then L ∈ BPTime(2O(c log c)poly(|x|)). We’ll only prove that L ∈
BPTime(2O(c)cO(r)poly(|x|)), where r is the round complexity.

Theorem 4 If the IP is not public coin in theorem 3, then L ∈ BPTime(2c log cpoly(|x|))NP.

The Main Idea

We will make a tree for the proof system. For a fixed input x, the tree Tx is the tree where each
path in the tree is a transcript of the protocol. . The root of the tree is the root, and each edge
from the root are the possible messages that the verifier can send. All edges from level 1 to 2 are
the possible responses of the prover to the message sent by the verifier, etc. Each of the verifier’s
edges are have a label. the label is the message sent and the probability of that message being sent.
Each prover’s edge is just the message sent by the prover.

Definition 5 The value of the tree val(Tx) is the max probability of the verifier accepts, i.e. maxP Pr[V accepts].
The max is taken over all possible P .

We can compute val(Tx) recursively by assigning a value to each vertex in the tree. The value of the
root will be val(Tx). For each leaf, the value of the leaf is 0 if the verifier rejects on that transcript
and 1 if the verifier accepts. For vertices where the outgoing edges are prover edges, the value is
maxchildren c val(c). For vertices where the outgoing edges are verifier edges, val = Echildren c[val(c)].

Now we can prove the four theorems.

4-1

Proof of Theorem 1: For every input x, the size of the tree, |Tx|, is 2O(c). Therefore, we
can construct Tx and compute the value val(Tx) in 2O(c)poly(|x|) time. Since we know the val(Tx),
it is easy to distinguish between the cases when x ∈ L and x 6∈ L, as in the first case Pr[V accepts] ≥ 2

3
and in the second case Pr[V accepts] ≤ 1

3 . �

Proof of Theorem 2: Now, we can no longer construct the tree Tx, as it might be too large.
Instead, we approximate the tree. We sample m = 2O(c) random strings for the randomness of the
verifier, and look at the subtree Ax where we only consider verifier edges that correspond to these
random strings. Note that |Ax| ≤ m2c, so we can compute val(Ax) in time m2cpoly(|x|). We prove
the following claim, from which the theorem follows.

Claim 6 With high probability |val(Ax)− val(Tx)| < 0.01.

Proof: Let’s prove that for all provers, |valP (Ax)− valP (Tx)| < 0.01 with probability 1− 2−Ω(m).
Fix a prover P , and let X1, . . . , Xm be random variables where Xi is 1 if the verifier accepts while
interacting with P when the random string is the ith random string that we sampled. Note that
the "randomness" of these variables comes from the sampling of the random strings. These are
independent random variables, and each has mean valP (Tx). By applying a Chernoff bound, we
get that, Pr[|valP (Ax)− valP (Tx)| > 0.01] < 2−2·(0.1)2m. There are at most (2c)2

c

provers, as for
any prefix of the protocol (which is all of the bits sent between verifier and prover) there are 2c

combinations, and at most c more bits are sent. Therefore, the probability that there exists a prover
such that |valP (Ax)− valP (Tx)| > 0.01 is at most (by taking a union bound over all provers)

2−2·(0.1)2m · (2c)2
c

= 2−0.02m+c2c

< 0.01

since m = 2O(c). �
Since our estimate for val(Tx) is within 0.01 of the true value, we can easily distinguish between the
case when val(Tx) ≥ 0.67 and val(Tx) ≤ 0.33, so we are done. �

Proof of Theorem 3: The only restriction is now that number of bits sent by the prover,
and the IP must be public coin. Therefore, our bound on the number of provers no longer works
and so the previous proof fails when we take the union bound over all provers. We will again ap-
proximate Tx by a subtree Ax. For each vertex in Tx that is a verifier vertex, we’ll take s = O(c4)
random children (with replacement). For the prover vertices, we take all of the children. Now,
|Ax| ≤ 2csr = 2ccO(r), so we can compute val(Ax) in 2ccO(r)poly(|x|) time. So, we just need to show
that val(Ax) ≈ val(Tx).

Claim 7 Pr[|val(Ax)− val(Tx)| < 0.01] > 0.99

Proof: The main idea is to use hybrid trees. Define H0 = Tx, Hr+1 = Ax, and Hi is the tree
where we take the first 2i + 1 layers from Ax and the rest from Tx. For every i, we claim that
Pr[|val(Hi)− val(Hi+1)| > 0.1

r+1] <
0.01
r+1 . The number of vertices in Ax is at most 2csr, as there are

at most 2c prover vertices and sr verifier vertices. The claim follows by showing that (as in Theorem
2) the difference between val(Hi) and val(Hi+1) is the same as the difference between the expected
value of a random variable and the mean of s samples of the random variable, and then taking a
Chernoff bound to conclude. Details are in [GH98]. � �

Remark 8 Theorem 3 impiles that we cannot expect IPs for NP languages where the prover sends
only a few bits, at least in the public coin setting.

4-2

Proof of Theorem 4: Now, the IP is not public coin. The problem is that we can no longer
construct Ax, because we cannot sample the verifier’s next message just from the transcript of the
protocol as it may depend on some private coins already flipped by the verifier, but not present in
the transcript. This problem is solved by the NP oracle. The NP oracle is used to sample a random
pad for the verifier that is consistent with the current transcript of the protocol. Using this random
pad, we can then sample the verifier’s next message, and continue as in Theorem 3. �

2 Perfect Completeness for AM Protocols

We have already seen that GNI is in AM(2
3 ,

1
3). We wish to achieve perfect completeness.

Theorem 9 AM(2
3 ,

1
3) ⊂ AM(1, 12)

Proof: There are 3 steps to prove.

1. AM(2
3 ,

1
3) ⊂MAM(1, 14)

2. MA(1, 12) ⊂ AM(1, 12)

3. Use 2 to show that MAM ⊂ AMM = AM .

We will only show step 1, i.e. amplification. Suppose we have an AM protocol that tosses R coins.
We repeat the protocol t times in parallel to get an AM protocol with completeness 1−exp(−t) and
soundness exp(−t). We need to figure out a way to use the first Merlin to get perfect completeness.
If x ∈ L, we want the verifier to always be convinced. So far, the set of random strings where the
verifier convinced is 1− exp(−t) of all strings. Let r = tR. We use the first Merlin in the following
protocol.

Protocol: MAM

• Prover samples y1, . . . , yr ∈ {0, 1}r and sends them to the verifier.

• Verifier samples c ∈ {0, 1}r and sends c to the prover.

• The prover sends back a proof πc⊕yi
for each i ∈ {1, . . . , r}, and the verifier accepts if at least

one of the proofs passes.

Lemma 10 ∃y1, . . . , yr such that ∀c, ∃i such that verifier will accept the proof πc⊕yi
.

�

References

[GH98] Oded Goldreich and Johan Håstad, On the complexity of interactive proofs with bounded
communication, Information Processing Letters 67 (1998), no. 4, 205–214.

4-3

