A New Model: Probabilistically Checkable Proofs

- \(\text{NP} \) represents proofs having a deterministic polynomial-time verifier

- \(\text{IP} \) represents proofs where the polynomial-time verifier has two new resources:
 1. randomness, and 2. interaction

Today we study a new model:

- \(\text{PCP} \) represents proofs where the polynomial-time verifier has two new resources:
 1. randomness, and 2. oracle access to proof
Definition of PCP

Let P be an all-powerful prover and V a ppt oracle algorithm. We say that (P,V) is a PCP system for a language L with completeness error ε_c and soundness error ε_s if the following holds:

1. **Completeness**: $\forall x \in L$, for $\pi = P(x)$, $\Pr_p[V^\pi(x;\rho) = 1] \geq 1 - \varepsilon_c$

2. **Soundness**: $\forall x \notin L \forall \pi \Pr_p[V^\pi(x;\rho) = 1] \leq \varepsilon_s$

We call Π a “PCP”, and can view it as a “robust encoding” of a witness, which admits verification without reading all its symbols.

For IPs, we care about: round complexity, communication complexity, ...

For PCPs, we have a somewhat different set of parameters:

- Σ: proof alphabet
- ℓ: proof length
- q: verifier query complexity
- r: verifier randomness complexity

[Typically queries to Π will be non-adaptive]
Some Special Cases

We wish to understand $\text{PCP}[\varepsilon_0, \varepsilon_5, \Sigma, L, g, r, \ldots]$ in different regimes.
Let's start with some special cases to warm up.
Suppose there is no proof ($q = 0$):

- $\text{PCP}[q = 0, r = 0] = P$ ← if there is no proof and no randomness then the verifier is just a polytime algorithm
- $\text{PCP}[q = 0, r = O(\log n)] = P$ ← logarithmically-many random bits don't help
- $\text{PCP}[q = 0, r = \text{poly}(n)] = \text{BPP}$ ← if there is randomness but no proof then the verifier is just a ppt algorithm

Suppose there is no randomness ($r = 0$):

- $\text{PCP}[q = \text{poly}(n), r = 0] = \text{NP}$ ← verifier can read in full a poly-size witness

We denote by PCP the complexity class with no restrictions beyond "V is ppt". This means that $q = \text{poly}(n)$, $r = \text{poly}(n)$ and allows for $L = \exp(n)$, $|\Sigma| = \exp(n)$.
Questions

- Which languages have PCPs (beyond NP & BPP)?
 - more than PSPACE

- Do PCPs have benefits for NP languages?
 - (E.g. query complexity sublinear in witness size)
 - yes

- Do PCPs have benefits for tractable languages?
 - (E.g. PCP verification faster than execution)
 - yes

- Are there 2K PCPs for NP languages?
 - yes

Many good news!

But the PCP model is weird (PCP verifier has oracle access to a large proof). How are PCPs useful?

1. lead to interactive arguments (and other crypto proofs) with strong efficiency features
2. lead to hardness & approximation results
Delegation of Computation via PCPs

In the next few lectures, we will work our way up to this result:

Theorem: Every language \(L \in \text{NTIME}(T) \) has a PCP where:
- proof length \(\ell = \text{poly}(T) \)
- query complexity \(q = \text{polylog}(T) \)
- prover time \(pt = \text{poly}(T) \)
- verifier time \(vt = \text{poly}(n, \log T) \)

![Diagram](image)

In this setup, a single reliable PC can monitor the operation of a herd of supercomputers working with possibly extremely powerful but unreliable software and untested hardware.

But how to use this "setup"?

Checking Computations in Polylogarithmic Time

László Babai\(^1\)
Univ. of Chicago\(^6\) and
Eötvös Univ., Budapest

Lance Fortnow\(^2\)
Dept. Comp. Sci.
Univ. of Chicago\(^6\)

Leonid A. Levin\(^3\)
Dept. Comp. Sci.
Boston University\(^4\)

Mario Szegedy\(^5\)
Dept. Comp. Sci.
Univ. of Chicago\(^6\)
A Crypto Interlude: From PCP to Interactive Arguments

Theorem (informal)

Suppose L has a PCP with prover time pt, verifier time vt, query complexity q. Then by using cryptography we can construct an interactive "proof" for L s.t.

- prover time $O(pt)$
- verifier time $O(vt)$
- communication $O(q)$.

If we apply this to PCPs in prior slide, we get a powerful result:

\[
\begin{array}{c}
\text{x} \in \Sigma^m \rightarrow \text{poly}(T)-\text{time} \\
\text{prover} \\
\text{we} \in \Sigma^T \rightarrow \text{poly}(n,\log T)-\text{time} \\
\text{verifier} \\
\rightarrow 0/1
\end{array}
\]

Proof attempt:

[does not contradict limitations of IPs with small communication!]

\[P(x,ω) \]

- produce PCP string: $Π := P_{\text{PCP}}(x,ω)$
- deduce query set Q in $V_{\text{PCP}}(x;ρ)$

\[V(x) \]

- sample PCP randomness $ρ$
- $V_{\text{PCP}}(x;ρ) \equiv 1$

Problem: prover can pick T based on Q.

[Also, where is the crypto??]
A Crypto Interlude: Kilian’s Protocol

Idea: commit to PCP string first then locally open locations & it

Def: A function family \(H_\lambda = \{ h_\lambda : \{0,1\}^* \rightarrow \{0,1\}^* \} \) is collision-resistant if

\[\forall \text{efficient adversary } A \quad P_\lambda \left[\tilde{\Delta}(h) \text{ outputs } x \neq y \text{ s.t. } h(x) = h(y) \right] \text{ is negligible in } \lambda. \]

The new protocol is as follows:

\(P(x,w) \)
- produce PCP string: \(\Pi := \Pi_{PCE}(x,w) \)
- commit to it: \(r^* = MT_h(\Pi) \)
- deduce query set \(Q \) in \(V_{PCE}(x,p) \)
- produce auth paths for each answer

\[\text{time} (P_{PCE}) + O(\lambda) \]

\(V(x) \)
- sample PCE randomness \(\rho \)
- \(\Pi_{\lambda, \rho, \text{auth}} \)
- \(V_{PCE}(x,p) = 1 \) \& check auth

\[\text{time} (V_{PCE}) + O(\lambda) (9 \log \lambda) \]

Security analysis involves cryptography and so we will not discuss it.
Upper Bound on PCPs

Theorem: $\text{PCP} \subseteq \text{NEXP}$

Lemma:
1. $\ell \leq 2^q$ for non-adaptive verifiers
2. $\ell \leq 2^q 121^q$ for adaptive verifiers

[In constructions, ℓ is usually smaller than these upper bounds]

Proof of (i): there are at most 2^q different query sets
Proof of (ii): each answer from the proof can lead to a different next query

Lemma: $\text{PCP} \left[\ell, r \right] \subseteq \text{NTIME} \left((2^q + \ell) \cdot \text{poly}(n) \right)$

Proof: Suppose (P, V) is a PCP system for L where the PCP verifier uses r random bits to query a proof of length ℓ. Consider this decider:

$$D(x, \pi) := \text{For every } \rho \in \{0,1\}^r \text{ compute } b_\rho := V^\pi(x, \rho) \text{ and output }$$

$$\frac{1}{\ell} \sum_{\rho} b_\rho 1_{2^\ell} \iff \sum_{\rho} b_\rho 1_{2^\ell} \geq 1 - 3c.$$

If $x \in L$ then $\exists \pi$ s.t. $D(x, \pi) = 1$. If $x \notin L$ then $\forall \pi D(x, \pi) = 0.$

dotted section

- Σ: proof alphabet
- ℓ: proof length
- q: verifier query complexity
- r: verifier randomness complexity
A Simple Inclusion: PSPACE

Theorem: $\text{PSPACE} \subseteq \text{PCP}$

Lemma: $\text{IP} \subseteq \text{PCP}$

Proof: Suppose that (P,V) is a public-coin IP for L. (Public coin comes with L.) Consider proofs in this format: $\Pi = (a_1, z_1, u \notin \exists a_2, z_2 \forall r_2 \ldots u \notin \exists a_n, z_n \forall r_n \ldots r_k)$. The PCP verifier samples r_1, \ldots, r_k and accepts if the IP verifier accepts:

$$V (x, a_1, a_2, \ldots, a_n, r_1, \ldots, r_k) = 1.$$

Completeness: Consider the honest proof $\Pi := (P(x), r_1, P(x), \ldots, P(x), r_k)$.

Soundness: Any proof in the above format corresponds to an "unrolled" IP proof.

In sum: $\text{PSPACE} \subseteq \text{PCP} \subseteq \text{NEXP}$. We will see that $\text{PCP} = \text{NEXP}$ by recycling techniques (arithmetization, sumcheck) and using new ones (low-degree testing). We will also see how to "scale down" to get PCPs for NP.