Public Coins vs Private Coins

Randomness is essential for interactive proofs, and it comes in different forms.

Ex 1: In 2-message IP for GNI, the verifier's random bit b must be secret.

Ex 2: In poly(n)-message IP for TQBF, all verifier randomness is sent to the prover.

Today we study how these settings compare.

Def: A verifier V is **public-coin** if its every message is a freshly sampled uniform random string of a prescribed length. Otherwise, V is **private coin**.

Def: AM[K]/MA[K] are languages decidable via public-coin K-round interactive proofs where the verifier/prover moves first.

Lemma (trivial) $\forall K$, AM[K]/MA[K] \leq IP[K]

A surprising result:

Theorem: $\forall K$, IP[K] \leq AM[$K+1$]

Will not prove in class, but instead...
We will prove a special case: \textbf{theorem:} GNI \in AM[1]

Idea: look at graph isomorphism in a quantitative way

given \((G_0, a_0)\), define

\[S = \{ H \mid H \equiv G_0 \text{ or } H \equiv G_1 \} . \]

Observe that:

- can prove that \(H \in S \) by giving isomorphism to \(G_0 \) or \(G_1 \).
- \(G_0 \equiv G_1 \rightarrow |S| = n! \) \[\text{assuming that} \quad \text{can remove assumption by considering} \]
- \(G_0 \not\equiv G_1 \rightarrow |S| = 2 \cdot n! \) \[\text{\(\text{aut}(G_0) = \text{aut}(G_1) = \text{id} \)} \]

Hence, it suffices for the prover to convince the verifier that \(|S| = 2 \cdot n! \) but not \(|S| = n! \).

\textbf{Approach:}

1. recall pairwise independent hashing
2. set lower bound protocol
3. interactive proof
Pairwise Independent Hashing

A family of functions \(H_{m,l} = \{ h : \{0,1\}^m \rightarrow \{0,1\}^l \} \) is pairwise independent if

\[
\forall x, x' \in \{0,1\}^m, \forall y, y' \in \{0,1\}^l \quad \Pr_{h \in H_{m,l}}[h(x) = y \land h(x') = y'] = \frac{1}{2^l}.
\]

Example: random affine function

\[
H_{m,m} = \left\{ h_{a,b}(x) = ax + b \right\}_{a, b \in \mathbb{F}_2^m}
\]

Indeed:

\[
\Pr_{a, b}[h_{a,b}(x) = y] = \Pr_{a, b}[ax + b = y] = \Pr_{a, b}[a = \frac{y - y'}{x - x'}] = \frac{1}{2^m}.
\]

Actually we are interested in a family \(H_{m,l} \) with \(l < m \). So consider

\[
H_{m,l} = \left\{ h_{a,b}(x) = ax + b \mod 2^l \right\}_{a, b \in \mathbb{F}_2^m}
\]

The bit truncation does not affect pairwise independence: there are \(2^{m-l} \) choices of \(a \) s.t. \(a \cdot (x - x') \mod 2^l = (y - y') \) and for each such \(a \) there are \(2^{m-l} \) choices of \(b \) s.t. \(ax + b \mod 2^l = y \).

So we have an efficient pairwise independent family \(H_{m,l} \) for any \(m, l \) with lcm.
Set Lower Bound Protocol

Let $S \leq \Sigma_0 \cup \Sigma_1^n$ be such that $S \in \text{NP}$ (we can check that $x \in S$ with the help of a prover). We seek an interactive proof for the promise problem "YES is $|S| > B$, NO is $|S| \leq \frac{B}{2}$.

find $x \in S$ s.t. $h(x) = y$
find proof π for "$x \in S$"

\[P_S \]

\[V_S(B) \]
set $c \in \mathbb{N}$ s.t. $2^{c-2} \leq B \leq 2^{c-1}$
sample $h \leftarrow H_{m, c}$ and $y \in \{0, 1\}^c$
\[h(x) = y \text{ & } \pi \text{ certifies that } x \in S \]

Soundness: if $|S| < \frac{B}{2}$ then
\[\Pr_{h, y} [\exists x \in S : h(x) = y] \leq \sum_{x \in S} \Pr_{h, y} [h(x) = y] \leq \frac{|S|}{2^c} \leq \frac{1}{2} \cdot \frac{B}{2^c} \]

Completeness: if $|S| \geq B$ then
\[\Pr_{h, y} [\exists x \in S : h(x) = y] \geq \frac{3}{4} \cdot \frac{B}{2^c} \]

\[\text{gap is } \frac{1}{4} \cdot \frac{B}{2^c} \geq \frac{1}{16} \]

proof: WLOG $|S| = B$ (large helps). By inclusion-exclusion principle. For every $y \in \Sigma_0 \cup \Sigma_1^n$,
\[\Pr_{h} [\exists x \in S : h(x) = y] = \sum_{x \in S} \Pr_{h} [h(x) = y] - \frac{1}{2} \sum_{x \neq x'} \Pr_{h} [h(x) = y] = |S| \cdot \frac{1}{2^c} - \frac{1}{2} \cdot |S|^2 \cdot \frac{1}{2^{2c}} \]
\[= \frac{|S|}{2^c} \left(1 - \frac{|S|}{2^c} \right) = \frac{B}{2^c} \left(1 - \frac{B}{2^{c+1}} \right) \geq \frac{B}{2^c} \left(1 - \frac{B}{2^c} \right) = \frac{3}{4} \cdot \frac{B}{2^c} . \]
Public Coin Interactive Proof for GNI

Theorem: \(\text{GNI} \in \text{AM}[1] \)

We use the set lower bound protocol on \(S := \{H \in \{0,1\}^n \mid H \equiv \text{Go} \land H \equiv \text{G}_i \} \). \(S := \{(H,y) \mid \ldots\} \)

\[P(G_0, G_i) \]

\[\begin{array}{c}
\text{find } H \in S \text{ s.t. } h(H) = y \\
\text{and find iso } \phi: H \rightarrow G_b
\end{array} \]

\[\begin{array}{c}
V(G_0, G_i) \\
B := 2 \cdot n!, \quad m := n^2
\end{array} \]

set \(\ell \) s.t. \(2^\ell - 2 \leq B \leq 2^\ell - 1 \) \(\ell = \Theta(n \log n) \)

sample \(h \in H_{m,B} \) and \(y \in \{0,1\}^\ell \)

\[h(H) \equiv y \text{ and } (\phi(H) = G_0 \text{ or } \phi(H) = G_i) \]

Completeness: if \((G_0, G_i) \in \text{GNI}\) then \(|S| = 2 \cdot n! \) so

\[Pr[\text{honest prover convinces verifier}] = Pr[\exists H \in S : h(H) = y] \geq \frac{3}{4} \cdot \frac{B}{2^\ell}. \]

Soundness: if \((G_0, G_i) \notin \text{GNI}\) then \(|S| = n! \) so

\[Pr[\text{malicious prover convinces verifier}] = Pr[\exists H \in S : h(H) = y] \leq \frac{1}{2} \cdot \frac{B}{2^\ell}. \]
Perfect Completeness for Public Coins

The set lower bound protocol introduced a completeness error. This is not essential:

Theorem: If \(L \) has a \(k \)-round public-coin interactive proof then \(L \) has a \((k+1)\)-round public-coin interactive proof with perfect completeness.

For example, we get a 2-round public-coin IP for \(ext{QWI} \) with perfect completeness.

The ideas behind the theorem are related to Laustenmann's proof that \(\text{BPP} \subseteq \Sigma^p_2 \).

Suppose \(L \) is decidable by a probabilistic polynomial-time algorithm \(M \) with error bound \(\varepsilon \). By repetition (\& majority) we can assume that \(\varepsilon < \frac{1}{m} \). [\(m \) is \# random bits] Given \(x \), define \(A(x) = \{ \text{re} \in \{0,1\}^m : M(x; r) = 1 \} \).

If \(x \in L \) then \(|A(x)| \geq (1-\varepsilon)2^m \), and can show by probabilistic method that

\[\exists s^{(i)}_1, \ldots, s^{(i)}_m \in \{0,1\}^m \ \forall \text{re} \in \{0,1\}^m \ \exists i \in [m] \ s^{(i)}_i \oplus \text{re} \in A(x) \equiv \exists y \forall z \ \phi(x, y, z) = 1 \]

If \(x \notin L \) then \(|A(x)| \leq \varepsilon 2^m \), and can show by union bound that

\[\forall s^{(i)}_1, \ldots, s^{(i)}_m \in \{0,1\}^m \ \exists i \in [m] \ s^{(i)}_i \oplus \text{re} \in A(x) \equiv \forall y \exists z \ \bar{\phi}(x, y, z) \]
Theorem: If L has a k-round public-coin interactive proof then L has a $(k+1)$-round public-coin interactive proof with perfect completeness.

Proof:

Let (P,V) be a k-round public-coin IP for L. Let m be the number of random bits used by the verifier. We assume that the completeness and soundness errors are bounded by $\frac{1}{3} \cdot \frac{1}{m}$. [This is WLOG because we can parallel repeat & rule by majority.]

Given a malicious prover \tilde{P} and instance x, define

$$A(\tilde{P}, x) := \{ r \in \{0,1\}^m | \langle \tilde{P}, V(x; r) \rangle = 1 \}.$$

If $x \in L$ then $|A(P(x), x)| \geq (1-\varepsilon)2^m$.
If $x \not\in L$ then $|A(\tilde{P}, x)| \leq \varepsilon 2^m$.

Similarities with Laurmann's proof: $\exists / \exists \notin$ characterization of $x \in L / x \not\in L$.

Differences: the randomness shift must account for multiple rounds.
The new interactive proof for \(L \) is as follows:

\[
P^*(x)
\]

find \(s^{(0)},...,s^{(m)} \in \{0,1\}^m \) such that \(\forall i \in \{0,1\}^m \ \exists i \in [m] \ s^{(i)} \in A(P,x) \)

\[
[\text{for } i=1,...,m:\ a_j^{(i)} := P(x, s_j^{(i)} \oplus r_j, ..., s_{j-1}^{(i)} \oplus r_{j-1})]
\]

\[
\begin{array}{c}
\overset{s^{(0)},...,s^{(m)} \in \{0,1\}^m}{\downarrow} \\
\overset{\text{for } j=1,...,k:}{\downarrow} \\
\overset{a_j^{(i)} \rightarrow a_j^{(m)}}{\downarrow} \\
\overset{r_j}{\downarrow} \\
\overset{\text{for } i=1,...,m:}{\uparrow} \\
\overset{V(x, a_1^{(i)} a_2^{(i)} \ldots a_k^{(i)} ; s^{(i)} \oplus r) = 1}{\uparrow}
\end{array}
\]

Completeness: Suppose that \(x \in L \).
If \(P^* \) succeeds in finding "good" \(s^{(0)},...,s^{(m)} \) then \(P^* \) convinces \(V^* \) w.p. 1.

So we argue that there exist good \(s^{(0)},...,s^{(m)} \) via the probabilistic method:

\[
\Pr_{s^{(0)},...,s^{(m)}} \left[\exists r \in [0,1]^m \forall i \in [m] \ s^{(i)} \oplus r \in A(P,x) \right] = \sum_{r \in [0,1]^m} \Pr_{s^{(0)},...,s^{(m)}} \left[\forall i \in [m] \ s^{(i)} \oplus r \in A(P,x) \right]
\]

\[
= 2^m \cdot \Pr_{s^{(0)},...,s^{(m)}} \left[\forall i \in [m] \ s^{(i)} \in A(P,x) \right] \leq 2^m \cdot \frac{1}{2^m} = 2^m \cdot \left(\frac{1}{2^m} \right)^m < 1.
\]

The computation actually tells us that most choices of \(s^{(0)},...,s^{(m)} \) are good.
Soundness: Suppose that \(x \notin L \). We argue that the soundness error is at most \(\frac{1}{3} \).

For this it suffices to show that for a fixed \(i \in [m] \) the probability that a malicious prover wins the \(i \)-th execution is at most \(\varepsilon \leq \frac{1}{3} \frac{1}{m} \).

Fix a malicious prover \(\tilde{P} \), get \((s^{i_1}, \ldots, s^{i_m}) = \tilde{P}(1)\), and define:

\[
A(\tilde{P}, x, i) := \{ r \in \{0,1\}^m | V(x, \tilde{P}(r)_i, \tilde{P}(r, i)_{i_2, \ldots, i_m}; s^{i} \oplus r) = 1 \}.
\]

claim: \(|A(\tilde{P}, x, i)| \leq 3 \cdot 2^m \)

proof: Suppose \(|A(\tilde{P}, x, i)| > 3 \cdot 2^m \). We construct \(\tilde{P}_i \) that convinces \(V \) w.p. \(\geq \varepsilon \) (a contradiction).

First \(\tilde{P}_i \) runs \(\tilde{P} \) to get \(s^{i_2}, \ldots, s^{i_m} \in \{0,1\}^m \) and saves \(s^{(i)} \).

Then \(\forall j \in [K] \), having received verifier messages \(r_1, \ldots, r_{j-1} \), \(\tilde{P}_i \) computes its next message \(q_j \) as:

\[
\tilde{P}_i (r_1, \ldots, r_{j-1}) := \tilde{P}(r_1 \oplus s^{i_1}, \ldots, r_{j-1} \oplus s^{(i)}_{j-1}); i.
\]

We argue that \(r \in A(\tilde{P}, x, i) \leftrightarrow s^{(i)} \oplus r \in A(\tilde{P}_i, x) \), so \(|A(\tilde{P}_i, x)| = |A(\tilde{P}, x, i)| > 3 \cdot 2^m \) (contradiction).

\(r \in A(\tilde{P}, x, i) \leftrightarrow V(x, \tilde{P}(r)_i, \tilde{P}(r, i)_{i_2, \ldots, i_m}; s^{(i)} \oplus r) = 1 \)

\(\leftrightarrow V(x, \tilde{P}_i (s^{(i)} \oplus r_i), \tilde{P}_i (s^{(i)} \oplus r_i, s^{(i)} \oplus r_{i_2}); \ldots; s^{(i)} \oplus r) = 1 \leftrightarrow s^{(i)} \oplus r \in A(\tilde{P}_i, x) \).