Problem 1

Assume that f is a length preserving one-way function, i.e., for every $x \in \{0,1\}^*$ it holds that $|f(x)| = |x|$. For each of the following functions g, prove that g is a one-way function, or provide a counterexample to demonstrate that it is not.

A: $g(x) = f(f(x))$
B: $g(x) = f(\bar{x})$
C: $g(x) = f(x) \oplus x$
D: $g(x, y) = f(x \oplus y)$
E: $g(x) = f(x) \parallel f(\bar{x})$

(Above \bar{x} denotes the bitwise complement of x and \parallel denotes concatenation, e.g., $1011 \parallel 1011 = 10110100$.)

Problem 2

Prove that if one-way functions exist then $P \neq NP$.

Problem 3

Let p be a prime and let g and h be (not necessarily distinct) generators of \mathbb{Z}_p^*. Prove or disprove the following statements:

A: $\{x \leftarrow \mathbb{Z}_p^* : g^x \mod p\} = \{x \leftarrow \mathbb{Z}_p^* : y \leftarrow \mathbb{Z}_p^* : g^{xy} \mod p\}$
B: $\{x \leftarrow \mathbb{Z}_p^* : g^x \mod p\} = \{x \leftarrow \mathbb{Z}_p^* : h^x \mod p\}$
C: $\{x \leftarrow \mathbb{Z}_p^* : g^x \mod p\} = \{x \leftarrow \mathbb{Z}_p^* : x^g \mod p\}$
D: $\{x \leftarrow \mathbb{Z}_p^* : x^g \mod p\} = \{x \leftarrow \mathbb{Z}_p^* : x^{gh} \mod p\}$

(Recall that $\{x \leftarrow \mathbb{Z}_p^* : g^x \mod p\}$ is a probability distribution. You are being asked to prove or disprove the statement that two probability distributions are identical.)

Problem 4

Suppose that you have a polynomial-time algorithm A that solves the Discrete Logarithm Problem in a special case. Namely on inputs p, g, and $g^x \mod p$, the algorithm A outputs x if p is a prime, g is a generator of \mathbb{Z}_p^* and $g^x \mod p$ is prime.

Show that there exists a probabilistic polynomial-time algorithm B that solves any instance of the Discrete Logarithm Problem.
Problem 5

In this problem, we study how to efficiently sample generators modulo a prime.

Let \(p \) be a prime. The group \(\mathbb{Z}_p^* \) can be shown to be cyclic of order \(p - 1 \); in fact, while proving this, one also obtains the fact that the number of elements of order \(p - 1 \) in \(\mathbb{Z}_p^* \) (i.e., the number of generators in \(\mathbb{Z}_p^* \)) is equal to \(\phi(p - 1) \). Since \(\phi(n) = \Theta(n/\log \log n) \), the quantity \(\phi(p - 1)/p - 1 \) is non-negligible. In particular, by choosing an element \(g \) of \(\mathbb{Z}_p^* \) at random, the probability that \(g \) is a generator of \(\mathbb{Z}_p^* \) is non-negligible. However, given an element \(g \) in \(\mathbb{Z}_p^* \), how can we decide if it is a generator or not?

Describe a polynomial-time algorithm that, on input an element \(g \in \mathbb{Z}_p^* \), an odd prime \(p \), and the factorization of \(p - 1 \), decides whether \(g \) is a generator of \(\mathbb{Z}_p^* \).

(Note: Efficiently sampling generators modulo a prime is sometimes needed in practice, such as in Elgamal’s public-key cryptosystem. But, how does one obtain the factorization of \(p - 1 \)? Usually, one generates the prime \(p \) along with the factorization of \(p - 1 \). For example, in Elgamal’s public-key cryptosystem a prime \(p \) is chosen to have the form \(p = 2q + 1 \) for some prime \(q \), so that \(p - 1 = 2q \); a prime of this form is called a safe prime.)

Problem 6

Give a strategy to distinguish between \((g^x, g^y, g^{xy}) \mod p \) and \((g^x, g^y, g^r) \mod p \) with non-negligible advantage, where \(x, y, r \) are chosen at random such that \(1 \leq x, y, r \leq p - 1 \), and \(g \) is a generator of \(\mathbb{Z}_p^* \).