1 Overview

In last lecture we discussed about the hardness amplification lemma for One-Way Function (OWF). In particular, we saw how to convert a weak one way function to a strong one. In this lecture we will look at the notion of an Universal OWF, hardcore predicates for OWF and discuss the Goldreich-Levin construction of a hardcore predicate for a One-Way Permutation (OWP).

2 Universal OWF

Universal OWF theorem constructs a specific OWF under the assumption that OWF exists. On a philosophical note, the theorem says that even if the candidate constructions of OWFs like RSA, Discrete Log etc are broken there exists a function which is one-way if $P \neq NP$. More formally,

Theorem 1 [Lev87] If one way functions exist then there exists a specific function f^* which is one way.

Proof: To prove this theorem, we will first show that if OWFs exist then there is a OWF which can be evaluated in time quadratic in its input length. Using this fact we will then construct a specific function which is one-way.

Lemma 2 If $\{f_k\}_k$ is a family of one-way functions then there exists another family of functions $\{g_k\}_k$ such that $\{g_k\}_k$ is one-way and for all $k \in \mathbb{N}$, g_k can be evaluated in time $(n_g(k))^2$.

Proof: The proof of this lemma uses a technique called as Padding which has has its roots in complexity theory. Let $f_k : \{0,1\}^{n(k)} \rightarrow \{0,1\}^{m(k)}$ be one-way. From the property of one-way functions (efficient evaluation) there exists a specific polynomial $p(\cdot)$ such that for all $k \in \mathbb{N}$, f_k can be evaluated in time $p(n(k))$. We now define a function $g_k : \{0,1\}^{p(n(k))} \rightarrow \{0,1\}^{m(k) + p(n(k)) - n(k)}$ such that $g_k(x||w) = f(x)||w$ where $|x| = n(k)$ and $|w| = p(n(k)) - n(k)$. We first claim that $\{g_k\}_k$ is one-way.

Claim 3 If f_k is one-way then so is g_k.

Proof: Assume for the sake of contradiction that g_k is not one-way. Then there exists an adversary A such that A inverts $g_k(x)$ for a random x in the domain of g_k with non-negligible probability. We will be using A to invert f_k.

\[\text{For the ease of notation we will be considering } f_k \text{ instead of the function family } \{f_k\}_k\]
I(y)

• Sample $w \leftarrow \{0, 1\}^{p(n(k)) - n(k)}$
• $x || w \leftarrow A(y || w, 1^{n(k)})$.
• Output x

It is easy to see that the I inverts y with the same probability as the inversion probability of A which is non-negligible from our assumption. This is a contradiction to the fact that f_k is one-way.

Now lets analyze the evaluation time of g_k. We can parse the input into $x || w$ in time $p(n(k))$. Evaluating f_k takes time $p(n(k))$ and hence the total time for evaluating g_k is bounded by $p(n(k))^2$.

Let’s now construct the universal OWF f^*. Let M_1, M_2, \ldots, be an enumeration of the Turing machines such that $M_i(|x|)$ runs in time $\text{poly}(i, |x|)$. Note that such an enumeration can be done by an uniform machine given the size of the alphabet. We define $f^*(x)$ as :

$$f^*(x) = M_1^{\leq |x|^2}(x)||M_2^{\leq |x|^2}(x)||\cdots||M_{|x|}^{\leq |x|^2}(x)$$

where $M_i^{\leq |x|^2}(x)$ denotes running the machine M_i on input x for at most $|x|^2$ steps. We first observe that f^* can be computed in time polynomial in the length of $|x|$. The enumeration of the machines takes time $O(|x|)$ as we are interested in $|x|$ machines and running each machine takes $|x|^2$ time. Hence, f^* can be computed in time $O(|x|^3)$. Now, we show that f^* is one-way. Since g_k can be computed by a poly-time machine there exists an index N such that M_N computes g_k. For all $|x| > N$, $f^*(x)$ computes $g_k(x)$ in the index N. Since g_k is one way, it is also easy to see that f^* is one-way.

3 Hardcore predicates

Let’s define the notion of a hardcore predicate for a one-way function.

Definition 4 $B_k : \{0, 1\}^{n(k)} \rightarrow \{0, 1\}$ is a hardcore predicate for a one-way function $f_k : \{0, 1\}^{n(k)} \rightarrow \{0, 1\}^{m(k)}$ if

• B_k is efficiently computable.
• It is “hard” to compute $B_k(x)$ given k and $f_k(x)$. Formally, for all non-uniform PPT adversaries A,

$$\Pr \left[b = B_k(x) \middle| x \leftarrow \{0, 1\}^{n(k)} , y \leftarrow f_k(x), b \leftarrow A(1^k, f_k(x)) \right] \leq 1/2 + \text{negl}(k)$$

\(^2\)An one tape Turing machine might take quadratic time to parse the input.
Pictorially we could represent the notion of one-way functions and hardcore bits as follows:

\[
\begin{array}{c}
x \\
\overleftrightarrow{\text{B}(x)} \\
f(x)
\end{array}
\]

Let's see if there exists a specific index \(i \in [n(k)]\) such that \(B_k(x) = x_i\) is hardcore for a one-way function.

Claim 5 There is a one-way function family \(\{g_k\}_k\) such that for all \(i \in [n(k)]\), \(B^i_k(x) = x_i\) is not hardcore for \(g_k\).

Proof: Let \(f_k : \{0,1\}^{n(k)} \rightarrow \{0,1\}^{m(k)}\) be a one-way function. Let's now construct a function family \(g_k : \{0,1\}^{n(k)+1+\log(n(k)+1)} \rightarrow \{0,1\}^{m(k)+1+\log(n(k)+1)}\) where

\[
g_k(z) = g_k(x||j) = f_k(x_{-j}||x_j||j)
\]

The explanation for the above equation is that \(g_k\) first parses the input into \(n(k) + 1\) bit \(x\) and \(\log(n(k) + 1)\) bit \(j\). It then applies \(f\) on all bits of \(x\) except \(j^{th}\) bit. That is, \(x_{-j} = x_1 \cdots x_j x_{j+1} \cdots x_{n(k)+1}\). It then outputs \(f(x_{-j})||x_j||j\).

It is easy to see that \(g_k\) can be computed in polynomial time and is one-way given that \(f\) is one way (It follows a similar argument as in Claim 3). We now show that for all \(i \in [n(k)]\), \(B^i_k(x) = x_i\) is not a hardcore predicate for \(g_k\). To prove this, we construct an adversary \(A_i\) which will predict \(B^i_k(x)\) with non-negligible advantage.

\[
A_i(Y) = A_i(y||x_j||j) = \begin{cases} x_j, & j = i \\ b \leftarrow \{0,1\}, & j \neq i \end{cases}
\]

We now claim that the \(Pr[b = B^i_k(x)]\) is \(\frac{1}{2} + \frac{1}{(2(n(k)+1))} \). This follows directly from the observation...
that $j = i$, happens with probability $\frac{1}{n(k)^{k+1}}$ since $j \in \{0, 1\}^{\log(n(k)+1)}$ and is sampled uniformly at random for the generating the challenge.

A natural question to ask is whether there exists a hardcore bit B_k for an one-way function f_k. It is still an open problem!

The next question we ask is given a one-way function f_k can we construct a one-way function g_k and predicate B_k such that B_k is hardcore for g_k. This is trivial to achieve. Consider $g_k(b||x) = 0||f_k(x)$ and $B_k(b||x) = b$. One can easily verify that the hardcore bit is information theoretically hidden.

Let's consider the following question.

Given a one-way permutation f_k, does there exists a one-way permutation g_k and a predicate B_k such that B_k is hardcore for g_k?

The answer to the above question was given by Goldreich and Levin in [GL89].

Theorem 6 [GL89] If f_k is a OWP then there exists a OWP g_k and a predicate B_k such that B_k is a hardcore predicate for g_k.

Proof: We will first construct a OWP g_k from a OWP f_k and then define the hardcore predicate for g_k.

Let $f : \{0, 1\}^n \rightarrow \{0, 1\}^n$ be a OWP. We define $g : \{0, 1\}^{2n} \rightarrow \{0, 1\}^{2n}$ as

$$g(x||r) = f(x)||r$$

It is easy to see that since f is a permutation so is g. The one-wayness of g follows from a similar argument as in Claim 3. Now lets define a predicate for g and then show that the predicate is indeed hardcore. The predicate we are going to consider is:

$$B(x||r) = <x, r> \mod 2$$

B can be computed efficiently (in polynomial time).

Lemma 7 $B(x||r)$ is hard to compute with non-negligible advantage greater than $1/2$ given $g(x||r)$

Proof: Lets assume for the sake of contradiction that $B(x||r)$ is can be computed with non-negligible advantage greater than $1/2$ given $g(x||r)$. Then there exists an adversary A and a polynomial $p(\cdot)$ such that for infinitely many k's:

$$\delta_A = Pr\left[b = <x, r> \mod 2 \mid \begin{array}{l} x, r \overset{\$}{\leftarrow} \{0, 1\}^n \\ y \leftarrow f(x) \\ b \leftarrow A(1^k, y||r) \end{array} \right] > 1/2 + 1/p(k)$$

We will now consider an inverter for f using A. We will motivate the intuition for the proof by considering the following scenarios.

3For the ease of notation we will be ignoring the subscript k in f_k, g_k and B_k
• **Warmup II:** \(\delta_A = 1 \): Let's define \(e^i \) to be a bit string of length \(n \) such that the \(i^{th} \) position has a 1 and the rest are 0. The inverter \(I(y) \) for \(f \) works as follows: for every \(i \in [n] \), compute \(b_i \leftarrow A(y||e^i) \) and finally output \(b_1 \cdots b_n \). Let's see why the Inverter works. Since \(\delta_A = 1 \), \(A \) is able to correctly output the hardcore bit for every \(x, r \). In particular, it should output the hardcore it for \(x, e_i \) for all \(i \in [n] \). Since \(<x, e_i > \mod 2 = x \), the Inverter is able to correctly output \(x \) such that \(f(x) = y \).

• **Warmup II:** \(\delta_A > 3/4 + 1/p(n) \). We first observe that we cannot use the same trick as before because we cannot bound the probability that \(A \) correctly outputs the hardcore bit for every \(e^i \). We will now make use of the fact that inner product is a bi-linear function. We observe that \(<x, e_i > = <x, r > \oplus <x, r \oplus e_i > \).

We say that \(x \in \{0,1\}^n \) is good if
\[
Pr_{r,A} [A(f(x)||r) = <x, r >] \geq \frac{3}{4} + \frac{1}{2p(n)}
\]
where the probability also includes the random coin tosses made by \(A \).

If \(x \) is good then, we would like to estimate the probability that

\[
Pr_{r,A} \left[A(f(x)||r) = <x, r > \wedge A(f(x)||r \oplus e_i) = <x, r \oplus e_i > \right] = 1 - Pr_{r,A} [A(f(x)||r) \neq <x, r > \vee A(f(x)||r \oplus e_i) \neq <x, r \oplus e_i >]
\]
\[
\geq 1 - \left(Pr_{r,A} [A(f(x)||r) \neq <x, r >] + Pr_{r,A} [A(f(x)||r \oplus e_i) \neq <x, r >] \right)
\]
\[
\geq 1 - \left(\frac{1}{4} - \frac{1}{2p(n)} \right) - \left(\frac{1}{4} - \frac{1}{2p(n)} \right)
\]
\[
= \left(\frac{1}{2} + \frac{1}{p(n)} \right)
\]

The first inequality follows from the previous equation as a result of union bound and the second inequality follows from the definition of \(x \) is good.

We are ready to describe the inverter \(I(y) \) that inverts the one-way challenge \(y \).

\[
I(y)
\]
\[
- \text{for } i = 1, \cdots , n
\]
\[
* \text{ for } j = 1 \cdots , m = poly(p(n))
\]
\[
* r \leftarrow \{0,1\}^n
\]
\[
* c_{i,j} \leftarrow A(y||r) \oplus A(y||r \oplus e_i)
\]
\[
* b_i \leftarrow Majority(c_{i1}, \cdots , c_{im})
\]
\[
- \text{Output } b_1 \cdots b_n
\]

By a simple application of Chernoff bound we get the success probability that \(I \) correctly computes \(b_i \) to be at least \(1 - \frac{1}{2^m} \). The probability that we don’t error in any of the \(i’s \) is at least \(1 - \frac{1}{2^m} \) from union bound.

We will now prove that the number of good \(x’ \)’s is at least \(\frac{2^n}{2p(n)} \). We will now show that this will complete the analysis for this case.
We have seen above that

$$Pr[I \text{ inverts } f(x)|x \text{ is good}] \geq 1 - \frac{1}{2^n}$$

$$Pr[I \text{ inverts } f(x)] \geq Pr[I \text{ inverts } f(x)|x \text{ is good}]Pr[x \text{ is good}]$$

$$\geq \left(1 - \frac{1}{2^n}\right)\frac{1}{2p(n)}$$

$$\geq \frac{1}{3p(n)}$$

which is non-negligible.

Claim 8
$$|\text{good}| \geq \frac{2^n}{2p(n)}$$

Proof: Assume for the sake of contradiction that $$|\text{good}| < \frac{2^n}{2p(n)}.$$

$$Pr[A(f(x)||r) = <x, r>] = Pr[A(f(x)||r) = <x, r> | x \text{ is not good}]Pr[x \text{ is not good}]$$

$$+ Pr[x \text{ is good}]Pr[A(f(x)||r) = <x, r> | x \text{ is good}]$$

$$\leq 3 \frac{1}{4} + 1 \frac{1}{2p(n)} + \frac{1}{2p(n)}$$

$$\leq \frac{3}{4} + \frac{1}{p(n)}$$

which is a contradiction to the assumption that $$\delta_A \geq 3/4 + 1/p(n).$$

- **Warmup III:** $$\delta_A \geq 1/2 + 1/(p(n))$$ and an additional assumption which we will describe later.

Like in the previous case, we will define $$x \in \{0, 1\}^n$$ to be **ok** if

$$Pr_{r,A}[A(f(x)||r) = <x, r>] \geq \frac{1}{2} + \frac{1}{2p(n)}$$

By an exact same argument as in Claim 8 we can prove that the number of **ok** $$x$$’s is at least $$\frac{2^n}{2p(n)}.$$

But now we cannot prove that $$A$$ will succeed in outputting the hardcore predicate for both $$f(x)||r$$ and $$f(x)||r + e_i$$ with non-negligible advantage greater than 1/2 if $$x \in \text{ok}.$$

Therefore, we will make an additional assumption that there exists an oracle $$\theta$$ which on input $$y$$ draws $$m$$ independent samples $$r_1, \cdots , r_m$$ uniformly from $$\{0, 1\}^n$$ and outputs $$(r_1, z_1), \cdots (r_m, z_m)$$ where for each $$i \in [m],$$ $$z_i = < f^{-1}(y), r_i >.$$

Now the inverter just has to query $$A$$ on input $$y||r_j \oplus e_i$$ for each $$j \in [m]$$ and take the majority.

The inverter $$I(Y)$$ works as follows:

<table>
<thead>
<tr>
<th>$$I(y)$$</th>
</tr>
</thead>
<tbody>
<tr>
<td>for $$i = 1, \cdots , n$$</td>
</tr>
<tr>
<td>* $$(r_1, z_1) \cdots (r_m, z_m) \leftarrow \theta(y)$$</td>
</tr>
<tr>
<td>* for $$j = 1 \cdots , m = poly(p(n))$$</td>
</tr>
<tr>
<td>* $$c_{i,j} \leftarrow z_j \oplus A(y</td>
</tr>
<tr>
<td>* $$b_i \leftarrow \text{Majority}(c_{i1}, \cdots , c_{im})$$</td>
</tr>
<tr>
<td>- Output $$b_1 \cdots b_n$$</td>
</tr>
</tbody>
</table>
The analysis of the success probability of I is similar to the above case.

- $\delta_A \geq 1/2 + 1/p(n)$ In this we relax the requirement that such a θ exists.

We first make the observation that for the majority of c_{ij}’s to be correct with probability $1 - \frac{1}{n.n}$ it is enough that all the r'_is are pairwise independent and not totally independent (by Chebychev’s tail bounds for pairwise independent variables). Now we will try to simulate the effect of θ.

\[
\theta(y)
\]

- Sample $r_1, \ldots, r_{\log m} \leftarrow \{0, 1\}^m$
- Sample $z_1, \ldots, z_{\log m} \leftarrow \{0, 1\}$
- For $S \subseteq [\log m]$
 * Compute $r_S = \oplus_{i \in S}(r_i)$
 * Compute $z_S = \oplus_{i \in S}(z_i)$

It is easy to observe that r_S’s are pairwise independent. The final observation is that $z_1, \ldots, z_{\log m}$ are all correct with probability $1/m$. By linearity of inner product with probability $1/m$ all the z_S’s are correct and hence $\theta(y)$ is correct with probability $1/m$. The analysis is similar to the above case but we also get a factor of $1/m$ in the success probability of I.

\[\Box\]

Thus, we can conclude from Lemma 7 and the observation that B is efficiently computable that B is a hardcore predicate for g.

\[\Box\]

References
