1 Introduction

In this lecture, we will discuss the definition and construction of one-way functions. In addition, we will define negligible functions and noticeable functions. We will also discuss/define (uniform and non-uniform) probabilistic polynomial time algorithms. We finish with the definitions of weak one-way functions and what it means for a function to generate hard problems for an NP relation.

1.1 Motivating One-Way Functions

We begin by finding a working definition for a function that we could use for cryptographic purposes. Our intuition tells us the following must be satisfied by this function:

1. The function must be easy to compute
2. The function must be hard to invert

From these two requirements, we can now motivate the following definition of a one-way function (probabilistic polynomial time and negligible/noticeable functions will all be defined later in this document):

Definition 1 A one-way function is a family of functions:

\[F = \{ f_k \}_{k \in \mathbb{N}} \quad f_k : \{0,1\}^{N(k)} \to \{0,1\}^{M(k)} \]

(where \(N, M\) are both polynomial in \(k\)) such that:

(i) \(\exists M \) such that \(\forall k \in \mathbb{N}, \forall x \in \{0,1\}^{N(k)}, M(1^k, x) = f_k(x) \) where \(M\) runs in polynomial time

(ii) For all probabilistic polynomial time machines \(A(1^k, y)\) for some \(k \in \mathbb{N}\) and \(y \in M(k)\), we define:

\[\delta_A(k) = \Pr \left[\hat{x} \in f^{-1}(y) \mid x \leftarrow \{0,1\}^{N(k)}, y \leftarrow f_k(x), \hat{x} \leftarrow A(1^k, y) \right] \]

where \(x \leftarrow \{0,1\}^{N(k)}\) means that \(x\) was sampled uniformly at random from the set \(\{0,1\}^{N(k)}\). Then we must have that:

\(\delta_A(k)\) is negligible in \(k\)

The natural number \(k\) is called the "security parameter".
Remark 2 One may wonder why in part (i) of the definition above that we chose \(f_k(x) = M(1^k, x) \) instead of \(f_k(x) = M(k, x) \) for some machine \(M \). The issue with selecting the latter definition is that we disallow possibly adversaries that can easily invert \(f_k \) computationally, but do not have sufficient time to print out the result.

Take, for example, \(f(x) = y \) where \(y \) means "the binary representation of the length of \(x \)". It only takes \(\log_2 |x| \) bits to represent \(y \), but printing a corresponding \(x \) when given \(y \) would take at least \(|x| \) steps (i.e. \(O(2^{|y|}) \) steps). Thus, for any adversarial machine, it is impossible to invert \(f_k \) if we choose \(f_k(x) = M(k, x) \) given that we want the inversion to run in polynomial time in \(k \). However, it is clear that (ignoring printing) there is a polynomial time algorithm that inverts \(f_k \), so we make the modifications noted above as not to limit the power of our adversary.

We have left out the definitions of probabilistic polynomial time and negligible in the above. We now go back and define these terms to make the above definition more precise.

1.2 Probabilistic Polynomial Time

Definition 3 The class uniform probabilistic polynomial time is given by the set of languages that are recognized by a turing machine \(A \) with the property:

\[
\exists c, n_0 \in \mathbb{N} \text{ such that } \forall n \geq n_0 \text{ the runtime of } A(z) \text{ for all } z \text{ of size } n \text{ is at most } |z|^c
\]

Definition 4 The class non-uniform probabilistic polynomial time is given by the set of languages recognized by a turing machine from a family of turing machines:

\[
A = \{A_1, A_2, \ldots \}
\]

with the property:

\[
\exists d \text{ such that } |A_k| \leq k^d \quad \exists c \text{ such that the running time of } A_{|z|}(z) \text{ is at most } |z|^c
\]

1.3 Negligible and Noticeable Functions

We can now go on to define both negligible (and the contrary notion, noticeable) functions.

Definition 5 A function \(\mu : \mathbb{N} \to [0, 1] \) is negligible if:

\[
\frac{1}{\mu} \text{ grows faster than every polynomial}
\]

(i.e. \(\forall c \in \mathbb{N}, \exists k_0 \text{ such that } \forall k \geq k_0, \mu(k) < k^{-c} \))

Definition 6 A function \(\mu : \mathbb{N} \to [0, 1] \) is noticeable if:

\[
\frac{1}{\mu} \text{ grows slower than some polynomial}
\]

(i.e. \(\exists c \in \mathbb{N}, \exists k_0 \text{ such that } \forall k \geq k_0, \mu(k) > k^{-c} \))

1-2
Remark 7 A function being non-negligible does not mean that it is noticeable! Similarly, a function being non-noticeable does not mean that it is negligible! There are functions that are neither negligible nor noticeable!
For example, \(2^{-k}\) may be negligible and not noticeable and \(k^{-1}\) may be noticeable and not negligible, but the function:
\[
f(k) = \begin{cases}
2^{-k} & \text{k even} \\
\k^{-1} & \text{k odd}
\end{cases}
\]
is neither.

Remark 8 Suppose that \(\mu, \mu'\) are negligible. Then \(\mu + \mu'\) is negligible.
(Prove this for yourself - remember that \(2k^{-c}(c+1) < k^{-c}\)).

Remark 9 Suppose that \(\mu\) is noticeable and \(\mu'\) is negligible. Then \(\mu - \mu'\) is noticeable.
(Prove this for yourself)

1.4 Candidates for One-Way Functions

Do we know that one-way functions exists? No!
If we did, then we know that \(P \neq NP\).

What about some candidates for one-way functions?
Related to the hardness of the subset-sum problem:
\[
f(x_1, x_2, ..., x_n, I) = (x_1, x_2, ..., x_n, \oplus_{i \in I} x_i)
\]
where \(x_i \in \{0, 1\} \) and \(I \subseteq [n]\).
Related to the hardness of factoring:
\[
f((x, y)) = x \cdot y
\]
where \((x, y)\) is the concatenation of the numbers \(x\) and \(y\).

1.5 Weak One-Way Functions

Let’s look at a weaker notion of one-way functions.

Definition 10 A function \(f\) is a \(\alpha\)– weak one-way function if:
\[
\delta_A(k) - \alpha(k) \text{ is negligible in } k
\]
where \(\delta_A(k)\) is identical to the one defined in Definition 1.

We will see next time that the existence of a \((1-k^{-c})\)-weak one-way functions imply strong one-way functions.
1.6 Generating Hard Problems

How can we relate NP problems to one-way functions? We recall the definition of an NP relation.

Definition 11 \(R \in NP \) if there exists a polynomial time machine \(M \) such that:

(i) \((x, w) \in R \iff M(x, w) = 1\)

(ii) \(\exists c \) such that \(M(z) \) that runs in \(|z|^c \)

Definition 12 We say that \(G \) generates hard problems for \(R \) if

\[
\Pr [(x, w') \in R \mid (x, w) \leftarrow G(1^k), w' \leftarrow A(1^k, x)] \text{ is negligible in } k
\]