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Abstract

Process variation has become a significant concern for static tim-

ing analysis. In this paper, we present a new method for path-based

statistical timing analysis. We first propose a method for modeling

inter- and intra-die device length variations. Based on this model, we

then present an efficient method for computing the total path delay

probability distribution using a combination of device length enu-

meration for inter-die variation and an analytical approach for intra-

die variation. We also propose a simple and effective model of spa-

tial correlation of intra-die device length variation. The analysis is

then extended to include spatial correlation. We test the proposed

methods on paths from an industrial high-performance microproces-

sor and present comparisons with traditional path analysis which

does not distinguish between inter- and intra-die variations. The

characteristics of the device length distributions were obtained from

measured data of 8 test chips with a total of 17688 device length

measurements. Spatial correlation data was also obtained from these

measurements. We demonstrate the accuracy of the proposed

approach by comparing our results with Monte-Carlo simulation.

Categories and Subject Descriptors
B.8.2 [Performance and Reliability]: Performance analysis

General Terms
Algorithms, performance, reliability

1  Introduction

Static timing analysis has become the primary method for perfor-

mance verification of high performance designs. Static timing analy-

sis has the advantage that it does not require input vectors and has a

run time that is linear with the size of the circuit. A number of meth-

ods have been proposed to increase the accuracy of static timing

analysis through improved delay models and analysis techniques. In

recent technologies, the variability of circuit delay due to process

variations has become a significant concern. As process geometries

continue to shrink, the ability to control critical device parameters is

becoming increasingly difficult, and significant variations in device-

length, doping concentrations, and oxide thicknesses have resulted.
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These process variations pose a significant problem for timing

yield prediction and require that static timing analysis models the

circuit delay not as a deterministic value, but as a random variable.

Process variations can be classified as systematic or random

where systematic variation are deterministic in nature and are caused

by the structure of a particular gate and its topological environment.

For instance, wire thicknesses will polish differently during CPM

depending on the density of the surrounding routing. Also, poly gate

width has a deterministic dependence on the spacing of neighboring

poly lines due to limitations of the lithography and the application of

OPC methods. Random variations are unpredictable in nature and

include random variations in the device length, discreet doping fluc-

tuations, and oxide thickness variations. Analysis of the impact of

deterministic variations on circuit delay is relatively straightforward,

given accurate models of their dependence on physical topologies

and the needed layout information at the time of analysis. Methods

have been proposed to include deterministic device length variations

[1] and interconnect variations [2] in the analysis of circuit perfor-

mance. However, often the necessary models and layout information

for incorporating deterministic variations in delay computation are

not available and hence, deterministic variations are treated as ran-

dom variations.

Process variations can be further classified as inter-die variation

and intra-die variations. Intra-die variations are variations in device

features that are present within a single chip, meaning that a device

feature varies between different locations on the same die. Often,

intra-chip variations exhibit spatial correlations, where devices that

are close to each other have a higher probability of being alike than

devices that are placed far apart. Intra-die variation also exhibit

structural correlations, meaning that devices that are structurally

similar have an increased likelihood of having similar device fea-

tures, for instance, devices oriented in the same direction tend to be

more alike. Inter-chip variation are variations that occur from one

die to the next, meaning that the same device on a chip has different

features among different die of one wafer, from wafer to wafer, and

from wafer lot to wafer lot. With increased process scaling, intra-

chip variations are becoming a more dominant portion of the overall

variability of device features, meaning that devices on the same die

can no longer be treated as identical copies of the same device.

In this paper, we are concerned with the impact of random inter-

and intra-die variations on circuit performance. Traditionally, these

process variations have been modeled using case analysis, where a

set of worst-case and best-case device features are constructed based

on the 3-sigma points of their distributions. Deterministic timing

analysis is then performed for each case of device features. A signif-

icant draw back of case based timing analysis is that inter- and intra-

die variations cannot be distinguished since each device has identical

(best-case or worst-case) features during the analysis. In practice,

device features vary among the devices on a chip and the likelihood
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that all devices have a worst-case feature is extremely small. Case

analysis is therefore pessimistic since on an actual die, devices with

worse delay are compensated for by other devices on the same die

that have better delay. The impact of intra-die variations on path

delay will vary from path to path, due to differing number of gates in

a path and their spatial locations. Case based timing analysis may

therefore identify incorrect critical paths, thereby resulting in incor-

rect circuit optimization. With continued process scaling, intra-die

variations are becoming a dominant portion of the overall process

variation and traditional timing analysis approach will, therefore,

become too restrictive for aggressive circuit design.

With increasing awareness of process variation, a number of tech-

niques have been developed which model random delay variations

and perform statistical timing analysis. These can be classified into

full-chip analysis and path-based analysis approaches. Full-chip

analysis models the delay of a circuit as a random variable and

endeavors to compute its probability distribution [3-7]. This task is

complicated by the reconvergence between circuit paths, giving rise

to correlations of path delays. Since the underlying problem has an

exponential complexity, the proposed methods are heuristic in nature

and have a very high worst-case computational complexity. Also,

they are based on very simple delay models, where the dependence

of gate delay due to slope variation at the input of the gate and load

variation at the output of the gate is not modeled. From both a run

time and accuracy perspective, full chip statistical timing analysis is

therefore not yet practical for industrial designs.

In a path based approach, deterministic timing analysis is first

performed and the top n critical paths are enumerated, where n is a

sufficiently large number to ensure that all paths that have a signifi-

cant probability of being critical on a manufactured die are included.

For instance, if the delay variability is expected to be 10% of nomi-

nal, all paths that have a deterministic delay within 10% of the

worst-case circuit delay must be included. The delay of each path is

then statistically analyzed resulting in the probability distribution of

each path delay. The 3-sigma delay (or any other desired confidence

point) is then computed for each path and is compared against the

required circuit performance. This approach avoids the issue of path

reconvergence thereby simplifying the problem and allowing for the

use of more accurate models. Path-based statistical timing analysis

provides statistical information on a path-by-path basis. It accounts

for intra-die process variations and hence eliminates the pessimism

in deterministic timing analysis based on case files. It also provides a

more accurate measure of which paths are critical under process

variability, allowing more correct optimization of the circuit.

In [8], a path based statistical timing analysis approach was pro-

posed. However, this approach does not include the load dependence

of the gate delay due to variability of fanout gates and does not

address spatial correlations of intra-die variability. In this paper, we

therefore propose a new path-based approach to statistical timing

analysis. We accurately model variations of gate delay due to varia-

tions of the input slope and output loads resulting from variations of

fanin and fanout stages in the path. We propose a model where

inter- and intra-die variations are modeled as two separate compo-

nents and propose efficiently methods to compute path delay vari-

ability due to either source and as well as their combine their effect.

We also propose a new model for intra-die correlations that models

the impact of spatial separation of gates in a circuit path. We demon-

strate how the proposed analysis can be extended to efficiently

include this spatial correlation model.

The proposed model and analysis method was applied to device

length variations in this paper, although extensions to other device

parameters is straightforward. To obtain intra-die device length vari-

ations and their spatial correlation, we examined an extensive set of

device length measurements from an industrial 0.18um process. To

compute the intra-die path delay component of process variability,

we first compute the sensitivity of gate delay, output slope, and input

load with respect to the input slope, output load and device length.

Using these sensitivities we then express the path delay variation as

an analytical expression of the device length variation, allowing for

very efficient analysis of intra-die variability, including an accurate

model for spatial correlation. Since the inter-die component of path

delay variability is dependent on a single random variable, we can

compute it efficiently though enumeration of its probability distribu-

tion. We then compute the joint path delay distribution through con-

volution of inter- and intra-die delay distribution components to

obtain the distribution of the total delay variability.

The proposed model assumptions are validated through monte

carlo simulation and show that the proposed approach yields very

accurate results. The most computational intensive part of the analy-

sis is the initial computation of sensitivities. Since these sensitivities

are precomputed once and do not need to be re-computed during the

analysis of individual paths, the proposed approach is very efficient.

We present results on critical paths from an industrial high perfor-

mance microprocessor and show that the proposed statistical analy-

sis can significantly improve the accuracy of performance analysis.

Furthermore, we demonstrate the importance of including spatial

correlation information in the analysis, showing that ignoring such

correlations may result in an under estimation of the computed vari-

ability.

The remainder of this paper is organized as follows. Section 2 dis-

cusses the delay model assumptions and properties. Section 3 pre-

sents the proposed approach for computing the path delay

distribution under inter- and intra-die device length variability. Sec-

tion 4 presents our model and analysis method for spatial correlation

of intra-die variations. Section 5 contains experimental results and in

Section 6 we draw our conclusions.

2  Statistical Timing Analysis Model

We first consider process variation due to inter- and intra-die vari-

ation, while ignoring spatial correlations. Extensions of the model to

include spatial correlation are presented in Section 4. We propose

the following model, where the device length Ltotal,i of device i is the

algebraic sum of a inter-die device length Linter and intra-die device

length variation, Lintra,i:

, (EQ 1)

where Linter and Lintra,i are random variables with normal distribu-

tions. All devices on a die share one variable Linter for the inter-die

component of their total device length, which represents the mean of

the gate of a particular die. For the intra-die component of device

length, each device has an separate independent random variable

Lintra,i, where all random variables Lintra,i have identical proba-

bility distributions. Both the total variation Ltotal and the inter-die

variation Linter have a mean which is equal to the nominal value of

the device length. The intra-die variations Lintra,i have a mean of

zero. We assume that all three random variables Ltotal, Linter, and

Lintra have a normal distribution, which is a common assumption

since device length is a physical quantity. It is important to notice,

however, that the gate delays do not have normal distributions since

the delay of a gate is a non-linear function of the device length.

∆

Ltotal i, Linter ∆Lintra i,+=

∆

∆ ∆

∆

∆
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In this paper, we compute the two components Linter and Lintra
as follows. The total device length variation Ltotal is typically well

characterized during process development and the mean and sigma

of Ltotal is available from the spice parameter file. The statistical

parameters of Linter and Lintra are typically not directly measured

during process development. Therefore, we analyzed device length

measurements from test die on 8 manufactured wafers. Each test die

consisted of 378 test structures covering 63 different test sites with 6

different structures per test site for a total of 17688 device length

measurements. We computed the intra die standard deviation for

each type of structure on each die and set the standard deviation of

Lintra equal their average. Since Lintra represents a device length

deviation from the chip mean, Lintra has a mean of zero. Given the

distributions of Ltotal and Lintra, the standard deviation of the inter-

die variation is computed from the following equation:

(EQ 2)

3  Inter- and Intra-die Analysis Method

We have modeled the total device length as the sum of two inde-

pendent random variables. Our objective is to obtain the distribution

of the path delay Dp resulting from the variation of the total device

length of the individual gates in the path,

(EQ 3)

where Di is the delay of gate i as a function of its device length and

the sum is taken over all gates of a path. The path delay Dp is a ran-

dom variable. However, computing its distribution is difficult since

Di is a non-linear function that cannot be accurately expressed in

closed form. One method for computing the distribution of Dp is

through Monte-Carlo simulation. However, since each iteration of

Monte Carlo involves spice simulation of the entire circuit path, this

approach will have unacceptable run time. We therefore make the

following simplifying assumption:

Di(Linter + Lintra,i) = Di(Linter) + Di( Lintra,i), (EQ 4)

where Di(Lintra,i) is the change of gate delay due to a small change

in device length. In other words, the gate delay of the sum of inter-

and intra-die device lengths is approximated by the sum of the delay

of the inter- and intra-die variations. Note that Di is assumed to be

independent of Linter which is an approximation that is valid if Lin-

tra,i is small compared to Linter. The assumption of EQ4 allows us to

compute Di(Linter) and Di( Lintra,i) independently and then com-

bine them to obtain the total path delay distribution Dp, as follows:

, (EQ 5)

We discuss the computation of the two components

and in the follow-

ing two Sections.

3.1   Inter-die variability analysis

To compute the delay due to inter-die variation we need to com-

pute , as function of the inter-die device

length. Since all gate delays Di(Linter) in Dp,inter share a single ran-

dom variable, it can be efficiently computed through enumeration of

the distribution of the Linter. We enumerate different possibilities

from the worst case to the best case process corners, and compute

the path delay Dp,inter for each case. The distribution of Dp,inter is

then computed by considering the probability of the selected device

length from Linter and its resulting path delay for each enumeration.

In our experiments, discretization of Linter into 20 device lengths was

sufficient to obtain a high level of accuracy. This requires simulating

each path 20 times, which is a relatively low cost for computing

Dp,inter.

3.2  Intra-die variability analysis

The path delay variation due to intra-die device length variation

is a function of multiple independent ran-

dom variables. Therefore, the number of simulations required for

computing Dp,intra through enumeration is mn, where m is the num-

ber discretizations of Lintra,i and n is the number of gates in the

path. Even for paths consisting of a few gates, this approach is there-

fore computationally infeasible. We therefore make the second sim-

plifying assumption, namely that Di( Lintra,i) can be

approximated linearly as follows:

, (EQ 6)

for small values of Lintra,i, where the sensitivity of the delay with

respect to device length is computed at the nominal device

length. The simplification of EQ6 allows us to compute the change

of path delay Dp,intra due to intra-die device length variation analyti-

cally and efficiently using precomputed delay sensitivities. When

computing Dp,intra the dependence of the delay of gate i on gate

input load of its fanout gate i+1 must be considered, which is a func-

tion of the device length Lintra,i+1. Similarly, the delay of gate i is

dependent on its input slope, which is a function of all device lengths

Lintra,j, where gate j < i precedes gate i in the path. We therefore

extend the linear assumption of EQ6 to the change of a gate delay

and output slope due to input slope and output load and formulate

the computation of Dp,intra as follows.

The change in path delay Dp,intra is the sum of the individual gate

delay changes Di, where each of the gate delay changes and their

corresponding output slope changes are a function of the change in

output slope of the preceding gate ( Si-1), the change in input load

of the succeeding gate ( Cli+1), and the intra-die device length:

(EQ 7)

(EQ 8)

The change in delay, slope and input capacitance of a single gate is

approximated as a sum of products of the sensitivities and the

change in the parameter values:

(EQ 9)

(EQ 10)

(EQ 11)

∆

∆

∆ ∆

∆

∆

σ2
Ltotal σ2

Linter σ
2

Lintra+=

Dp Di Linter ∆Lintra i,+( )
i

∑=

∆ ∆ ∆

∆

∆

∆

∆ ∆

Dp Di Linter( ) ∆Di ∆Lintra i,( )
i

∑+
i

∑=

Dp inter, Di Linter( )
i

∑= Dp intra, ∆Di ∆Lintra i,( )
i

∑=

Dp inter, Di Linter( )
i

∑=

Dp intra, ∆Di ∆Lintra i,( )
i

∑=

∆

∆ ∆

∆Di ∆Lintra i,( )
Lintra i,∂

∂Di ∆Lintra i,×=

Lintra i,∂
∂Di

∆

∆

∆

∆

∆

∆Di f ∆Cli 1+ ∆Si 1– ∆Lintra i,, ,( )=

∆Si f ∆Cli 1+ ∆Si 1– ∆Lintra i,, ,( )=

∆Di Si 1–∂
∂Di ∆Si 1–×

Li∂
∂Di ∆Lintra i,×

Cli 1+∂
∂Di ∆Cli 1+×+ +=

∆Si Si 1–∂
∂Si ∆Si 1–×

Li∂
∂Si ∆Lintra i,×

Cli 1+∂
∂Si ∆Cli 1+×+ +=

∆Cli Li∂
∂Cli ∆Lintra i,×=
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The seven basic sensitivities of delay and slope with respect to input

slope, output load and device length and the sensitivity of gate input

load with respect to device length are precomputed for each gate

over a range of output load and input slope conditions. In this paper,

we computed the sensitivities numerically, although methods for

directly computing these sensitivities during circuit simulation are

also possible. These basic sensitivities are then stored in tables and

are then accessed during the computation of Dp,intra for a particular

path using linear interpolation of the stored values in the table.

We then substitute EQ11 in EQ10 and EQ10 in EQ9 to obtain an

expression of Di as a function of basic sensitivities and intra-die

device length variations. Note that Di is a function of all intra-die

device lengths j, where , due to the recursive dependence of

Si on Si-1. The change in delay of gate i therefore depends on the

intra-die device length of the gate itself, the succeeding gate and all

preceding gates and is expressed as a linear function of these intra-

die device lengths. The delay change coefficients of this function are

efficiently computed for all gates in the path using a single traversal

of the path using the basic seven sensitivities. We then collect all

coefficients of gate delays with respect to each intra-die device

length and express the total change in path delay Dp,intra as follows:

, (EQ 12)

where Ki is the coefficient of total path delay change due to intra-die

device length Li at gate i.Given the mean and the standard devi-

ation for intra-die device length Li with normal distribution and

the coefficients Ki, we can compute mean and standard deviation of

the probability distribution for Dp,intra directly using the following

standard equations:

(EQ 13)

(EQ 14)

Given precharacterized sensitivities, the final computation of the dis-

tribution of Dp,intra is performed very efficiently and requires only a

single traversal of the path. To validate the accuracy of the proposed

approach, we compare the distribution of Dp,intra computed through

the proposed analytical approach with that obtained through Monte

Carlo simulation in Section 5.

3.3  Combined analysis and comparison to
traditional approach

After computing the two components of path delay variation,

Dp,inter(Linter) and Dp,intra( Lintra,i) (EQ4), we compute distribution

of the total path delay Dp. Since Linter and Lintra,i are independent

random variables, this involves the convolution of the two distribu-

tions. However, since Dp,inter is not normal, the convolution can not

be preformed analytically and must be performed numerically. This

is performed by discretizing the two distributions and then taking

their convolution numerically. The total path delay distribution is

again validated using Monte Carlo simulation in Section 5.

We also compute the path delay distribution when we treat the

total variation as inter-die variation and the intra-die variation as

zero, . We again use enumer-

ation of the distribution of Linter to obtain the path delay distribution.

We refer to this delay distribution as the traditional delay distribu-

tion, since traditionally all variations are treated as inter-die varia-

tions and computed using case analysis. We compare the delay

distribution obtained with the proposed approach to the traditional

delay distribution in Section 5.

4  Model and Analysis of Spatial Correlations

We propose a new model for spatial correlation of intra-die device

length variation. We first divide the area of the die into regions using

a multi-level quad-tree partitioning, as shown in Figure 1. For each

level l, the die area is partitioned into 2l-by-2l squares, where the first

or top level 0 has a single region for the entire die and the last or bot-

tom level k has 4k regions. We then associate an independent random

variable Ll,r with each region (l, r) to represent a component of the

total intra-die device length variation. The variation of a gate i is

then composed of a sum of intra-die device length components

Ll,r, where level l ranges from 0 to k and the region r at a particular

level is the region that intersects with the position of gate i on the

die. For the gate in region 2,1 in Figure 1, the components of intra-

die device length variation would be L0,1, L1,1 and L2,1. The

intra-die device length components are defined such that the sum of

all random variables Ll,r associated with a gate is equal to Lin-

tra,i:

(EQ 15)

Gates that lie within close proximity of each other will have many

common intra-die device length components resulting in a strong

intra-die length correlation. Gates that lie far apart on a die share few

common components and therefore have weaker correlation. Figure

1 shows an example of a die with 3 levels of partitioning resulting in

16 region at the bottom level. Since the number of regions at the bot-

tom level grows as 4k it is possible to obtain a fine partitioning of the

die with only a moderate number of levels. Note also that length

∆

∆

j i 1+≤
∆ ∆

Dp intra, Ki ∆Li×( )
i

∑=

∆ µi

σi ∆

µDp intra,
Ki µi×

i
∑=

σDp intra,

2
Ki

2 σi
2×( )

i
∑=

∆

∆

σLinter
σLtotal

= σ∆Lintra
0=

Figure 1. Spatial correlations
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L0,1 associated with the region of at the top level of the hierarchy is

equivalent to the inter-die device length Linter since it is shared by all

gates on the die.

We can control how quickly the spatial correlation diminishes as

the separation between two gates increases by correctly allocating

the total intra-die device length variation among the different levels.

If the total intra-die variance is largely allocated to the bottom levels,

and the regions at top levels have only a small variance, there is less

sharing of device length variation between gates that are far apart

and the spatial correlation will diminish quickly. The results will

yield results that are close to uncorrelated intra-die analysis. On the

other hand, if the total intra-die variance is predominantly allocated

to the regions at the top levels of the hierarchy, then even gates that

are widely spaced apart will still have significant correlation. This

will yield results that are close to the traditional approach where all

gates are perfectly correlated and the intra-die device length varia-

tion is zero. The proposed model is therefore flexible and can be eas-

ily fit to measured device length data. Also, it is straightforward to

extend the model to include topological and structural correlations,

such as gate orientation.

We illustrate the spatial correlation model for the three gates

shown in Figure 1 in regions (2,1), (2,4) and (2,15). The intra-die

device length variation of these gates is the sum of device length

variation components associated with regions that the gate lies in

leading to the following equations:

(EQ 16)

(EQ 17)

(EQ 18)

We can observe from the intra-die device length equations that gates

1 and 2 are strongly correlated, as they share the common variables

L1,1 and L0,1. On the other hand, gates 1 and 3 are more weakly

correlated as they share only the common variable L0,1. The

change in delay due to intra-die device length variation for these

gates can be expressed as the product their intra-die device length

components with their respective coefficients of the total path delay

change. Using equation EQ12, we get the following equations:

(EQ 19)

(EQ 20)

(EQ 21)

Summing up the in EQ19 through EQ21, we get the change in

the path delay Dp,intra due to spatially correlated intra-die device

length variation as follows:

(EQ 22)

We then compute the path delay distribution in the same way as the

intra-die variability analysis using equations EQ13 and EQ14.

5  Experimental Results

We apply our approach to critical paths extracted from an indus-

trial, high performance design. The Spice simulations were per-

formed using a process with 0.18micron nominal device length. The

standard deviation used for intra-die variability was based on mea-

surements from a test chip and was 4.41% of the nominal device

length. The total variability had a standard deviation of 6.6% of

nominal. The standard deviation of inter-die device length was com-

puted using EQ2 and was 4.907%. Normal distributions were used

for all variations.

The proposed Inter- and Intra-die analysis methods were imple-

mented as well as the traditional approach. Also, Intra-die analysis

with spatial correlations was implemented using a 6 level hierarchy.

The variance of the intra-die variability components at each level

were obtained from test chip measurements.

In Figure 2, we show a plot of the path delay probability density

function of path p2 for both the traditional approach and our pro-

posed method considering intra- and inter-die device length varia-

tions. The means of both these distributions are aligned at 2493.1 ps.

The distribution obtained by our approach is more narrow than the

traditional approach, indicating less variability and a smaller stan-

dard deviation. The 3-sigma delay point with our approach is also

smaller than that obtained with the traditional approach, which

means that the path delay distribution is less pessimistic with our

approach.

Figure 3 shows the same comparison, but instead of a probability

density function, we have plotted the cumulative distribution func-

tions (cdf) of both the approaches. A cdf at any time point, shows the

probability of an event occurring at or before that time point. The

figure shows a significant difference between the approaches at the

99% point.

In Table 1, we show the path characteristics such as the number of

gates, the mean delay of the path, the standard deviation and 3-sigma

points of the path delay distribution using our approach and the tra-

ditional approach. The percentage reduction in the standard devia-

∆

∆Lintra 1, ∆L2 1, ∆L1 1, ∆L0 1,+ +=

∆Lintra 2, ∆L2 4, ∆L1 1, ∆L0 1,+ +=

∆Lintra 3, ∆L2 15, ∆L1 4, ∆L0 1,+ +=

∆ ∆

∆

∆D1 K1 ∆L2 1, ∆L1 1, ∆L0 1,+ +( )=

∆D2 K2 ∆L2 4, ∆L1 1, ∆L0 1,+ +( )=

∆D3 K3 ∆L2 15, ∆L1 4, ∆L0 1,+ +( )=

∆Dis

Dp intra, K1 ∆L2 1,( ) K2 ∆L2 4,( ) K3 ∆L2 15,( ) K1 K2+( )∆L1 1,+ + +=

K3 ∆L1 4,( ) K1 K2 K3+ +( )∆L0 1,+ +
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Figure 2. Comparison of probability density function for traditional
approach and proposed approach
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Figure 3. Cumulative distribution function for traditional and
proposed approaches
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tion and 3-sigma delay points obtained with our approach are shown

in Table 1. The variability using the proposed approach is reduced by

27.2% on average, compared to the traditional analysis. The percent-

age reduction in the 3-sigma delay points is 4.46% on average.

In Figure 4, we show the comparison between the results obtained

using our proposed analytical approach and Monte Carlo simulation

for intra-die delay variability analysis of path p2. The plot shows a

close match between the analytical approach and the Monte Carlo

simulation. In Figure 5 we compare the total path delay probability

distribution for the two approaches for path p2. The mean and sigma

of the distribution using Monte-Carlo simulation were 2487ps and

107ps which is matched closely by the mean and sigma obtained

using our analytical approach, which were 2493ps and 112ps.

In Table 2, we show the results of the intra-die variability analysis

using spatial correlations. The uncorrelated standard deviation val-

ues are for the intra-die path delay distribution without any spatial

correlation. We then show the sigma values for the intra-die path

delay with correlations, calculated using our model for spatial corre-

lation. The variability is increased on average by 80.7% when spatial

correlation is considered, compared to uncorrelated analysis. We

then show the 3-sigma delay values for the total path delay distribu-

tion, and report the percentage reduction with spatially correlated

analysis over the traditional analysis which was 3.88% on average.

6  Conclusions

In conclusion, we have presented a new method for computing the

delay distribution of critical paths that considers inter- and intra-die

variations. We propose a model for inter- and intra-die device length

variation and show how the delay distribution can be efficiently

computed using delay sensitivities. We also propose a new model for

spatial correlations that can accurately capture the effect of intra-die

spatial correlations. The methods were tested on paths from a high

performance microprocessor. Monte Carlo simulation was used to

demonstrate the high accuracy of the proposed approach.
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Table 1. Results of proposed approach and traditional approach

critical

paths

No.

of

gates

mean

delay

(ps)

standard deviation (ps) 3sigma delay (ps)

traditional

approach

Our

approach
%red

traditional

approach

Our

approach
%red

p1 14 2188.3 139 103 26% 2605.7 2498.0 4.1%

p2 12 2493.1 152 112 26% 2950.5 2830.1 4.1%

p3 25 4449.3 276 199 28% 5276.7 5046.0 4.4%

p4 32 3935.6 283 203 28% 4785.8 4546.3 5.0%

p5 23 4177.1 276 199 28% 5004.3 4774.5 4.6%

p6 43 3922.0 266 191 28% 4721.9 4494.6 4.8%

p7 20 3895.9 237 172 27% 4606.8 4412.3 4.2%
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Figure 4. Comparison of Monte Carlo simulation and analytical
approach for intra-die delay variability

Figure 5. Comparison of Monte Carlo simulation and analytical
approach for total delay variability
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Table 2. Path delay distribution with different spatial
correlations

Critical

paths

sigma for

Dp,intra (ps)

(uncorrelated)

sigma for

Dp,intra (ps)

(correlated)

%increase

in sigma

3 sigma-pt with

our approach

(correlated) (ps)

Correlated

% red

p1 43.5 68.5 57.4% 2519.7 3.3%

p2 45.1 73.1 62.1% 2853.0 3.3%

p3 60.0 114.6 91.0% 5068.8 3.9%

p4 56.8 109.6 93.0% 4568.8 4.5%

p5 60.9 115.8 90.0% 4797.2 4.1%

p6 48.4 89.8 85.5% 4515.1 4.4%

p7 55.4 103.1 86.1% 4437.1 3.7%
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