Design for Manufacturability and Power Estimation

Lecture 25
Alessandra Nardi

Thanks to Prof. Jan Rabaey and Prof. K. Keutzer

Physical issues verification (DSM)

- Interconnects
- Signal Integrity
 - P/G integrity
 - Substrate coupling
 - Crosstalk
- Parasitic Extraction
- Reduced Order Modeling
- Manufacturability
- Power Estimation
Outline

• Design for Manufacturability
 – Yield
 • Parametric Yield
 • Defect-related yield
 – Statistical Design

• Power Estimation
 – Power consumption mechanisms
 – Different level of abstraction
 – Static or dynamic analysis

Physical issues verification (DSM) Manufacturability

• IC manufacturing process is affected by random disturbances
 – different silicon dioxide growth rates,
 mask misalignment, drift of fabrication equipment operation, etc….

• These disturbances are often uncontrollable and affect the circuit performance
 – How good is my chips performance?
 – How many of my chips will work?

• Yield: percentage of manufactured products that pass all performance specifications

• Yield loss mechanisms
 – Parametric yield (process variations)
 – Defect-related yield (defects)
Parametric Yield
Process variations

Process Variations – SPICE model

- Process variations are reflected into a statistical SPICE model
 - Usually only a few parameters have a statistical distribution (e.g. \{\Delta L, \Delta W, T_{OX}, V_{Th}, V_{TP}\}) and the others are set to a nominal value
 - The nominal SPICE model is obtained by setting the statistical parameters to their nominal value
Global Variations (Inter-die)

Process variations \Rightarrow Performance variations

Critical path delay of a 16-bit adder

All devices have the same set of model parameters value

Local Variations (Intra-die)

- Each device instance has a slightly different set of model parameter values (aka device mismatch)
- The performance of some analog circuits strongly depends on the degree of matching of device properties
- Digital circuits are in general more immune to mismatch, but clock distribution network is sensitive (clock skew)
Statistical Design

• Need to account for process variations during design phase

• Statistical design
 – Nominal design
 – Yield optimization
 – Design centering
Design for Manufacturability (DFM) Approaches

1) Worst-Case Approach: choose the SPICE model giving the worst possible behavior
 - Traditional choice is pessimistic and lead to circuit overdesign (neglects any kind of correlation)
 - Other techniques to choose the SPICE model values (accounting for correlation)

2) Probability Density Function Approach: keep track of the whole distribution
 - Expensive: need smart ways to do it

Defect-related Yield

Manufacturing process may introduce some defects in the layout

Defect-related Yield
Defect-layout relationship

- Yield in terms of area and design rules
 - Larger area \rightarrow lower yield
 - Smaller geometries \rightarrow higher sensitivity to defects
 \Rightarrow trade-off: yield loss must be expressed in terms of the defect size and layout characteristics rather than in terms of area alone

Defect-related Yield
Critical area

- Model relationship between defect characteristics (density and size distribution) and the probability of the defect
- The critical area, for a defect radius R, is defined as the area on the layout where, if the center of a defect is deposited a fault occurs:

Physical issues verification (DSM) Power Estimation

- Higher speed and shrinking geometries
 - Increased power consumption and heat dissipation
 - Higher packaging costs
 - Higher on-chip electric field
 - Decreased reliability

⇒ power dissipation of VLSI circuits becomes a critical concern

⇒ Accurate and efficient power estimation (and optimization) techniques are required

Low Power Challenges

- Multifaceted approach adopted:
 - Reducing chip capacitance through process scaling
 - Reducing voltage
 - Employing better architectural and circuit design techniques

From 2D to 3D optimization problem

Power and Synthesis Flow

- Behavioral
- RTL
- Gate
- Switch

Potential for Power Savings vs. Accuracy of Power Estimation

Design Abstraction Levels

- HDL
- Behavioral Synthesis
- RTL Synthesis
- Logic Optimization
- Transistor Optimization
- Place & Route

© 1997 Jan M. Rabaey
Power Consumption Mechanisms in CMOS

- **Static Consumption**
 - Small component (increasing importance for DSM)
 - Leakage diodes and transistors

- **Dynamic Consumption**
 - Due to load capacitance
 - Largest component
 - Due to direct-path currents

CMOS Power Consumption Mechanisms

Static consumption

- Ideally zero
- Due to:
 - Leakage current through reverse biased diode junction between source (or drain) and the substrate
 - Subthreshold current of the transistor

\[
P_{stat} = I_{leak} V_{DD}
\]
CMOS Power Consumption Mechanisms
Dynamic consumption – Load Capacitance

- Major component
- Energy/transition:
 \[P_{\text{dyn}} = C_L \cdot V_{\text{dd}}^2 \cdot f \]
 if the gate is switched on and off \(f \) times per second
- Note: it is not a function of gate size!

CMOS Power Consumption Mechanisms
Dynamic consumption – Switching activity

- Consider switching a CMOS gate for \(N \) clock cycles
 \[E_N = C_L \cdot V_{\text{dd}}^2 \cdot n(N) \]
 \(E_N \): the energy consumed for \(N \) clock cycles
 \(n(N) \): the number of 0->1 transition in \(N \) clock cycles

\[
P_{\text{avg}} = \lim_{N \to \infty} \frac{E_N}{N} \cdot f_{\text{clk}} = \left(\lim_{N \to \infty} \frac{n(N)}{N} \right) \cdot C_L \cdot V_{\text{dd}}^2 \cdot f_{\text{clk}}
\]

\[
\alpha_{0 \to 1} = \lim_{N \to \infty} \frac{n(N)}{N}
\]

\(\alpha_{0 \to 1} \) is called the switching activity
\(C_{\text{eff}} = \alpha_{0 \to 1} \cdot C_L \) is called the effective capacitance
CMOS Power Consumption Mechanisms
Dynamic consumption – Short Circuit current

• Ideally zero
• Not zero since rise and fall time \(t_r \) and \(t_f \) are not zero
• Power=Energy/transition:

\[
P_c = I_{\text{peak}} \cdot V_{DD} \cdot \left(\frac{t_r + t_f}{2} \right) \cdot f
\]
– if the gate is switched on and off \(f \) times per second
– \(I_{\text{peak}} \) determined by the saturation current of the devices
Power Estimation

Dynamic Analysis

• Simulation
 – requires representative simulation vectors
 • Derived by designer
 • Automatic (Monte Carlo)

• Transistor level (PowerMill)
 – Very accurate
 – Much faster than SPICE

• Gate level (Powergate, DesignPower)
 – Faster than transistor level
 – Still very accurate due to good modeling of power
dissipation at cell-level

Power Estimation

Static Analysis

• Propagation of switching probabilities
 – No input vectors needed
 – Much faster than simulation
 – Less accurate than simulation
 • Hard to model real delays
 • Glitches?
Power Estimation

Static Analysis – Probability Propagation

AND gate

sp(1) = sp1 * sp2

\[tp(0 \rightarrow 1) = sp \times (1 - sp) \]

Example

\[sp = 0.5 \times 0.5 = 0.25 \]

\[tp = 0.25 \times (1 - 0.25) = 0.1875 \]

Power Estimation

Static Analysis – Probability Propagation

<table>
<thead>
<tr>
<th></th>
<th>(P_{0 \rightarrow 1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>AND</td>
<td>((1 - P_A P_B)P_A P_B)</td>
</tr>
<tr>
<td>OR</td>
<td>((1 - P_A)(1 - P_B)(1 - (1 - P_A)(1 - P_B)))</td>
</tr>
<tr>
<td>EXOR</td>
<td>((1 - (P_A + P_B - 2P_A P_B))(P_A + P_B - 2P_A P_B))</td>
</tr>
</tbody>
</table>

Switching Activity for Static CMOS Gates

Switching Activity for Precharged Dynamic Gates

Ignores Temporal and Spatial Correlations

© 1997 Jan M. Rabaey
Power Estimation
Static Analysis – Probability Propagation: Problems

Problem: Reconvergent Fan-out:
Creates spatial correlation between signals

Becomes complex and untractable real fast

Power Optimization

• Supply voltage reduction
 – Most effective: quadratic improvement
 – Implies performance degradation
 – Use of multiple-V_{DD} (not below the sum of thresholds)
 – Increase of leakage current
• Effective capacitance reduction
 – Reduce physical capacitance
 – Reduce switching activity

• True at all levels of abstraction: trade-off between impact on the design and accuracy
Summary

- Design for Manufacturability
 - Yield
 - Parametric Yield
 - Defect-related yield
 - Statistical Design

- Power Estimation
 - Power consumption mechanisms
 - Different level of abstraction
 - Static or dynamic analysis

Class Review

- **Fundamentals of Circuit Simulation**
 - Formulation of circuit equations
 - Solution of linear equations
 - Solution of nonlinear equations
 - Solution of ordinary differential equations
 - Analog Circuits Simulation
 - Analog Hardware Description Languages

- **Digital Systems Verification**
 - Overview
 - Equivalence Checking
 - FastMOS simulation
 - Timing Analysis
 - Hardware Description Languages
 - System C

- **Physical Issues Verification**
 - Interconnects
 - Signal Integrity
 - Parasitic Extraction
 - Reduced Order Modeling
 - Manufacturability
 - Power Estimation