Death, Taxes and Failing Chips

Chandu Visweswariah
IBM Thomas J. Watson Research Center
Yorktown Heights, NY
TAU ’02

with thanks to my colleagues and collaborators at IBM Fishkill,
IBM Burlington, IBM Yorktown
and TU/Eindhoven
Outline

• “The era of probabilistic design”
• Three aspects of the problem
 – modeling
 – methodology
 – analysis + synthesis
• Characteristics of a good statistical timer
• Our analysis efforts
Catastrophic vs. parametric

Chip behavior in the face of environmental and manufacturing variations

Catastrophic yield loss
- Critical area
- Voronoi diagrams
- Redundant via insertion
- Wire bending/spacing

Parametric or “circuit-limited” yield loss
- Statistical timing
- Yield prediction
- Design centering
- Design for manufacturability

Digital ASICs
Bounded vs. probabilistic analysis

Varying temperature, mean = 25, sigma = 25

[Data courtesy K. Kalafala]
Bounded vs. probabilistic analysis

[Data courtesy K. Kalafala]
Bounded vs. probabilistic analysis

[Data courtesy K. Kalafala]
Bounded vs. probabilistic analysis

Yield vs. Slack

© C. Visweswariah, 2002, do not use without permission
The era of probabilistic design

[T. Karnik, S. Borkar, V. De, ICCAD 2002]
Statistical timer

- Netlist + assertions
- Delay and slew models
- Statistics of the sources of variability
- Dependence on sources of variability

1. Yield curve
2. Diagnostics
The full picture

Modeling

Methodology

Analysis
Methodology

- Process models
- Transistor models
- Gate delay models
- Static timing

- Statistical process models
- Statistical transistor models
- Statistical gate delay models
- Statistical static timing
Methodology issues

<table>
<thead>
<tr>
<th>ASIC</th>
<th>Microprocessor</th>
</tr>
</thead>
<tbody>
<tr>
<td>No at-speed test, often no AC test</td>
<td>Sorted</td>
</tr>
<tr>
<td>Large, flat</td>
<td>Hierarchical</td>
</tr>
<tr>
<td>Library-based</td>
<td>Custom circuits and library-based</td>
</tr>
<tr>
<td>Focus on worst-case timing</td>
<td>Focus on nominal (and best case!) timing</td>
</tr>
</tbody>
</table>
Definition of yield

• Risk management
 – with PSROs (Performance-Sensitive Ring Oscillators) and appropriate sign-off criteria
 – at multiple levels
 – with/without AC or at-speed test

• Environmental vs. manufacturing variations
 – require 100% yield in environmental window
 – guaranteed 100% yield in the manufacturing window is overkill
Other methodology implications

• Number of timing runs is excessive
 – early and late mode
 – LCD (Linear Combination of Delay) or “interval delay” to model ACLV
 – CPPR (Common Path Pessimism Removal)
 – NBTI (Negative Bias Temperature Instability)
 – BEOL variations
 – coupling noise

Opportunity!
Design methods

• Examples:
 – adaptive body bias
 – mixing of logic families
Modeling

- What are the sources of variation that really matter?
 - mathematical vs. empirical answers
- What are the means, deviations and correlations of the sources of variation?
- What is the dependence of the delay and slew of each edge of the timing graph to each source of variation? Is this computed during the library characterization?
- What about custom circuits?
Analysis wish list
Number 1: path sharing
Number 2: clock correlation
Number 2: clock correlation

• Importance of correlations
 – consider a circuit with 50K latches, each with a setup and hold test, each of which has a 99.99% probability of being met
 – if all tests are perfectly correlated, yield=99.99%
 – if all tests are perfectly independent, yield is 0.005%
 – the truth is closer to the perfectly correlated case!
Number 3: global correlation
Number 3: global correlation
Number 4: bounded vs. statistical

- Bounded
 - input vectors
 - environmental variables
 - PLL jitter

- Statistical
 - manufacturing parameters
 - coupling noise?

- Should be easy to switch between columns

- Large vs. small number of random variables
Number 5: slew/load dependence
Number 6: deterministic vs. random ACV

[From M. Orshansky, L. Milor, P. Chen, K. Keutzer, C. Hu, ICCAD 2000]
Number 7: the tail matters!

- Avoid pessimism
- Capture correlations
Numbers 8 and 9

• Number 8
 – fit well with rest of existing methodology
 – reduce number of timing runs required

• Number 9
 – provide diagnostics
Number 10: flexibility

<table>
<thead>
<tr>
<th>Quick and dirty</th>
<th>Slow and accurate</th>
</tr>
</thead>
<tbody>
<tr>
<td>For optimization</td>
<td>For sign-off</td>
</tr>
<tr>
<td>Incremental</td>
<td>Not incremental</td>
</tr>
<tr>
<td>Usually block-based,</td>
<td></td>
</tr>
<tr>
<td>performance-space</td>
<td>Usually path-based,</td>
</tr>
<tr>
<td>methods</td>
<td>parameter-space methods</td>
</tr>
</tbody>
</table>
Performance-space vs. parameter-space

Feasible region

JPDF of global parameters
Our analysis efforts

- Three slides deleted
- See DAC ’03 submission for details
- Example: reduced run time from 68 hours for repeated EinsTimer runs on a 200K gate ASIC to about 15 minutes
Conclusions

• Brave old world of probabilistic design
• Statistical considerations must influence all stages of design
• Comprehensive solution required encompassing methodology, modeling, analysis, synthesis, test, design methods
• The computation will not prove to be the hard part; if nothing else, Monte Carlo with intelligent sampling will come to the rescue