
An Integrated Technology Mapping Environment

 Alan Mishchenko Satrajit Chatterjee Robert Brayton Maciej Ciesielski

 Department of EECS Department of ECE
 University of California, Berkeley University of Massachusetts, Amherst
 {alanmi, satrajit, brayton}@eecs.berkeley.edu ciesiel@ecs.umass.edu

Abstract

This paper describes a flexible and efficient environment for
technology mapping featuring a common set of algorithms for
both standard cells and LUT-based FPGAs. The algorithms and
data structures can be customized for various objectives and
constraints, such as delay optimization, area recovery, and power
and placement improvement under delay and area constraints.
Experimental results show superior results for both standard cells
and FPGAs when compared with state-of-the-art mappers.

1 Introduction
Most approaches to technology mapping for both standard cells

and LUT-based FPGAs focus on delay and area optimization. A
typical mapping scenario is to find the optimal delay possible for
the given logic structure of the subject graph mapped using the
given library [5][18][17], followed by heuristic approaches to area
recovery [15][6][4][13]. The mappings produced are not
optimized for power, may lead to congested placements, and often
require extensive fanout optimization by buffering, gate
duplication, and gate sizing.

Several approaches have been proposed to alleviate these
problems by performing incremental changes to the mapped
netlist. For example, remapping for improved placement has been
considered in [3][26][16][24]. A difficulty with these approaches
is that optimization for objectives other than delay and area is
deferred to a resynthesis stage when the complete set of choices
explored during mapping is no longer available. As a result,
resynthesis has to rediscover a subset of these choices, which
leads to long runtimes and suboptimal quality.

The contributions of this paper are three-fold.
1. We developed an integrated set of algorithms and data

structures, which with minor changes can perform mapping
while optimizing for various objectives, minimizing area
after delay-optimal mapping, and improving power and
placement by minimizing switching activity and wirelength.
We use load-independent delay model for the standard cell
mapping, while showing that the final results still show
advantage when a load-dependent model is used to evaluate
them. Furthermore, we propose a way of incorporating load-
dependent information into the iterative optimization
performed after the initial load-independent mapping.

2. The environment is applicable for FPGAs as well as standard
cells. This allows for uniform treatment of both types of
mapping and leads to a cross-fertilization of these research
areas. For instance, the combination of mapping and retiming

developed for FPGAs [20][8] is applicable to standard cell
mapping while preserving the optimality claims: the final
mapping found is the best one in terms of delay over all
possible mappings and retiming of the original circuit.

3. We show several specific improvements over state-of-the-art
mappers. These are presented in four case studies:
3.1. The first shows multi-objective optimization for power

under delay and area constraints using estimates of
switching activity which is incrementally updated in the
process of mapping.

3.2. The second shows multi-objective optimization for
placeability under delay and area constraints using
estimates of wirelength incrementally updated during
the mapping.

3.3. The third looks at new method for area recovery under
delay constraints combining two heuristics, area flow
and exact area at a node. These are shown to be equally
applicable to both standard cell and FPGA mapping,
leading to area recovery comparable to, or better than,
the best published results, e.g. our mapper equals
DAOmap in delay while using 7% fewer LUTs.

3.4. The last study illustrates how the simplified delay
assumptions currently used can be extended to more
accurate delay models. As an example, we show how to
extend to the SIS load-dependent delay model. As one
point of comparison, we produce results with the same
area and 39% less delay compared to SIS using the
same delay model.

In general, the new environment has been shown to be efficient,
both in terms of results and run-time (improving on optimization
quality over state-of-the-art mappers while using a fraction of the
compute time).

A software prototype of the technology mapping environment
has been implemented and is being extended and fine-tuned. For
example, the currently used models to compute some metrics are
simple and will be replaced by more accurate ones. Thus, the
wirelength computation, done assuming the placement of cells or
LUTs in rows by their topologic level in the netlist, will be
replaced by an incremental placer.

The paper is organized as follows. Section 2 describes
background on technology mapping. Section 3 describes the
algorithms and data structures constituting the proposed
technology mapping environment. Section 4 describes the
principles and procedures of multi-objective optimization. Section
5 presents the case studies dealing with mapping for power,
placeability, area recovery for standard cells and FPGAs, and
load-dependent delay models. Section 6 concludes the paper and
outlines future work.

2 Background
A network is a directed acyclic graph, in which each node is

represented by a single-output completely specified Boolean
function. The external inputs to the network are called primary
inputs (PIs) and the external outputs are called primary outputs
(POs). The nodes providing immediate inputs to a given node are
called its fanins. The nodes driven by the output of a given node
are called its fanouts. The maximum fanout-free cone (MFFC) of
a node is the set of nodes in the transitive fanin cone of a node,
which fanout only to other nodes in the MFFC.

The combinational network used as an input for mapping is
called the subject graph. The subject graph is derived by applying
algebraic decomposition, as described in [21], to the technology-
independent netlist resulting in a network of two-input ANDs and
inverters called an And-Inv Graph (AIG). The notions of the
subject graph and the AIG are used interchangeably. In this work,
we consider only combinational networks. If the network is
sequential it is cut at the latch boundary and the resulting
combinational network is considered for mapping.

Technology mapping consists of expressing the functionality of
the network using a combination of gates from the library [11].
Each gate in the library implements a completely specified
Boolean function of a limited number of inputs. Besides the
functionality, a gate in the library is characterized by technology-
dependent parameters, such as pin-to-pin delays, gate size,
maximum load, etc.

In this work, we study technology mapping from a functional
point of view using a simple delay model, which takes into
account pin-to-pin delays for rising and falling phases while
assuming that the delay is independent of the load. The primary
advantage of this model (used commonly in a gain-based flow) is
that it allows quick evaluation of a large number of topologies and
thereby enables the efficient mapping environment that is
described in Section 3. Of course, the final performance of the
circuit is not captured by this simple model, but as we show in our
experiments in Section 5.4, making decisions based on this simple
model can still lead to better final performance than making
decisions based on a more accurate model, but looking at fewer
topologies.

The above discussion notwithstanding, we plan to extend the
mapper to make some of the later decisions (in subsequent
mapping passes) using more accurate delay models. This would
further improve the quality of results.

When technology mapping is performed for FPGAs, it is
assumed that a gate (a k-input look-up table or LUT) can
implement any function up to k inputs. LUTs of different sizes
and delays can also be used by the mapper. In this work, LUTs
are assumed to have no more than 6 inputs. This is motivated by
the fact that exhaustively computing cuts for more than 6 inputs is
not practical. However, in on-going research not presented here,
we consider an extension of mapping for LUTs of any size (i.e.
10) with constraints on the set of functions that can be
implemented.

A cut for node n in the Boolean network is a set of nodes C,
such that every path from the PIs to node n passes through at least
one node in C. Node n is called the root of the cut. Nodes in C are
called the leaves of the cut. The computation of all the cuts of size
up to six for all nodes in the network can be performed efficiently
by traversing the network in the topological order from the PIs to
the POs [7].

Each cut is characterized using a completely specified Boolean
function of its root in terms of the leaves [12][21]. The truth table
of this function, conveniently represented as a 32-bit or 64-bit bit-

string, is used to establish the connection between a cut, and the
gates implementing it. The gates are hashed by their truth tables
and, for each cut one constant-time look-up is performed,
returning the pointer to the set of gates with the same
functionality. This process is called matching. In the software
implementation, the connection between gates and cuts is made,
up to the phase-assignment, which increases the mapping quality,
but this detail is not important for the material discussed in the
rest of this paper.

A match of a cut is a gate that can implement the cut. A match
of a node is a match of some cut rooted at this node. The best
match of a node is the match, selected to map the node to
optimize some optimization criterion, such as delay, area, or
wirelength.

3 Technology mapping environment
The overall flow of technology mapping discussed in this paper

is shown in Figure 1. The input to mapping is the network, the
gate library, and the delay constraints. Typically, the network has
been optimized before mapping by technology-independent
synthesis [1]. The library is pre-processed to compute the truth
tables for each gate and the gates are hashed by their truth tables.
The delay constraints include the PI arrival times and the PO
required times. If the delay constraints are not given, the arrival
times of the PIs are set to 0, and the required times of the POs are
set to the minimum delay achieved by technology mapping of the
circuit with the given logic structure. (In practice this is done by
setting the required times to 0.)

 TechnologyMapping(network N, library L, delay constraints D)

{
 Step 1: G = TransformNetworkIntoAIG(N);
 Step 2: ComputeCutsAndMatches(G, L);
 Step 3: mapping M1 = MappingForMinDelay(G, L);
 if (delay constraint D is infeasible for M1)
 return FAIL;
 Step 4: ComputeRequiredTimes(G, M1);
 mapping M2 = OptimizationPass1(G, M1, D);

 ComputeRequiredTimes(G, M2);
 mapping M3 = OptimizationPass2(G, M2, D);
 …
 Step 5: TransformToMappedNetwork(G, Mk);
}

Figure 1. Pseudo-code of the technology mapping flow.

Technology mapping begins by deriving an AIG subject graph
G in Step 1. In Step 2 the AIG nodes are annotated with their
matches. Step 3 assigns the best match for each node while trying
to achieve the minimum delay at the node. If there is a tie, the
match leading to the smallest area, is taken. If the delay
constraints are infeasible, the mapper returns FAIL. In the
subsequent steps, the required times of the POs are set according
to the delay constraints. These required times at the POs are never
violated in the course of the following transformations.

At the beginning of each optimization pass in Step 4, the
required times of the internal nodes are recomputed. This is
necessary since with every optimization pass, the mapping
changes (to better meet the optimization criterion), and
consequently, the internal required times change (in order to
maintain the fixed PO required times.) The required times for the
internal nodes are used to bound the search for possible re-
mappings during the optimization pass.

On termination, the best mapping is returned in Step 5. This
best mapping starts at the POs and continues recursively to the
leaves of the cuts used for the best matches until the PIs are met.
Note that although in the algorithm of Figure 1 the best matches
are assigned for each AIG node, not all of the AIG nodes are used
in the mapping, only those which correspond to the outputs of the
gates used by the best matches. If an internal node is not used in
the current mapping, its required time is set to +∞ in Step 4.

The common technology mapping algorithms and data
structures of the environment described in this paper consist of the
subject graph G derived in Step 1, a set of matches assigned in
Step 2, the arrival times computed in Step 3 and the required
times repeatedly computed in Step 4.

The flexibility of the environment comes from the fact that all
matches are available during each optimization pass. Although
only one match is selected as best at a node according to the
current cost function, all matches are stored for future use. In
practice, the number of matches of an internal node ranges from
10 to 1000, which gives substantial freedom to modify the
selected mapping as the cost function changes.

The mapping environment gains in optimality if the number of
matches stored at each node is increased. This can be achieved by
using supergates and choice nodes [20][21]. Both approaches
reduce structural bias by adding decompositions to the subject
graph that were not present in the original netlist. Supergates
enumerate gate combinations of limited logic depth (as a
preprocessing step on the gate library) while choice nodes
accumulate functionally-equivalent structurally-different logic
cones that occur during separate synthesis steps.

4 Multi-objective optimization
This section discusses the adaptation of the optimization

performed in Step 4 of the technology mapping flow of Figure 1
for various optimization criteria.

4.1 Optimization pass
Optimization is performed in separate passes over the mapped

network. The pseudo-code of the generic optimization pass is
shown in Figure 2. The AIG nodes of the subject graph are visited
in topological order from PIs to POs. At each node, all matches
are considered, and the current cost function is evaluated for each
match. The match with the best cost is found and assigned as the
best match at the node.

OptimizationPass(subject graph N, cost function F)
{
 match mBest;

 for each AIG node n of the subject graph N from PIs to POs
 {
 mBest = NULL;
 for each match m of node n

 {
 if (CompareMatchesF(m, mBest, n) > 0)

 mBest = m;
 }

 set mBest as the best match at node n;
 }
}

Figure 2. Pseudocode of the optimization pass.

During optimization, the nodes in the transitive fanin cone of
the given node are already mapped, so their arrival times are
known. However, the fanouts are known only for the previous

iteration. These fanouts are used to estimate some parameters,
such as load, with the understanding that they may change in the
current iteration (see Section 5.4). One way of partially
overcoming the fanout bias, is to compute a linear combination of
fanout counts in two consecutive iterations, as suggested in [19].
On termination, the procedure in Figure 2 assigns the best
matches at each node using the current cost function while delay
constraints are taken into account.

The number of optimization passes performed depends on how
quickly convergence is reached. The speed of convergence
depends on the cost function and the circuit. Since estimation of
some parameters (such as fanouts) is not accurate, the cumulative
improvement in the given cost function, which is used to measure
the convergence, is not monotonic. For example, in area flow
minimization, we often observe that, after several iterations, the
total area flow of the mapped network starts oscillating around
some value. Typically the magnitude of oscillation is round 1% of
the total amount of the area flow. In general, we found that, for
most of the parameters, one optimization pass is enough, while
some of them may require two or three passes.

A typical cost function uses several metrics with various
constraints, such as delay and area, or area and wirelength.
Typical constraints are the required times at a node and a limit on
the load of each gate type. In a given cost function, several
metrics can be grouped according to some priority. A primary
metric evaluates the quality of a match while lesser metrics are
used as tie breakers.

Figure 3 shows a typical cost function, which uses area flow as
the primary metric and arrival times as a secondary metric. (Area
flow is formally defined below in Section 4.2.) It assumes that
match m1 is the current best match at the node, while match m2 is
a new candidate. It returns -1 if m1 is strictly better than m2, 1 if
m2 is strictly better than m1, and 0 if both matches are equal when
compared using these metrics.

int CompareMatches(match m1, match m2, node n)
{
 // using the required time as a constraint
 if (ArrivalTime(m2) > RequiredTime(n))
 return -1;
 // comparing area flows
 if (AreaFlow(m1) < AreaFlow(m2))
 return -1;
 if (AreaFlow(m1) > AreaFlow(m2))
 return 1;
 // a tie; comparing the arrival times
 if (ArrivalTime(m1) < ArrivalTime(m2))
 return -1;
 if (ArrivalTime(m1) > ArrivalTime(m2))
 return 1;
 return 0;
}

Figure 3. A cost function to compare two matches.

There are two approaches to optimize for multiple objectives:
• combining several metrics into one cost function (as shown

in Figure 2 for area flow and arrival times) and performing
one or more optimization passes with this single function;

• repeating the optimization passes with different cost
functions corresponding to each objective.

Experimentation is needed to determine which approach is best
for a specific optimization type. For example, we observed that
area recovery is best performed with one pass of area flow
minimization (see Figure 3), followed by one pass of exact area

minimization where area flow in Figure 3 is replaced by the area
of the MFFC of gates used to implement the match. Area
recovery is described in more detail in Section 5.3.

4.2 Metrics
An optimization objective comes with a metric, which indicates

(perhaps roughly) how well the current netlist meets the objective.
For example, dynamic power may be measured by the amount of
switching activity at the inputs and outputs of the gates under
random simulation. Although random simulation only
approximates power dissipation, it is fast. A good metric should
be a compromise between speed and accuracy. The presented
mapping environment can be used with arbitrary metrics, as long
as computation and updating procedures are provided to evaluate
and incrementally update the metric when the mapping changes.

Delay and area of a mapped circuit are well-known metrics for
evaluating the mapping quality.

Area flow [19] (effective area [7]) is a useful extension of the
notion of area. It can be computed in one pass over the network
from the PIs to the POs. Area flow for the PIs is set to 0. Area
flow at a node n is: AF(n) = [Area(n) + Σi AF(Leafi(n))]/
NumFanouts(n), where Area(n) is the area of the best match at n,
Leafi(n) is the i-th leaf of the cut of the best match at n, and
NumFanouts(n) is the number of fanouts of n.

If nodes are processed from the PIs to the POs, updating area
flow is similar to computing it. The advantage of area flow over
area of the cone is that area flow gives a more global view of the
mapping. Area flow estimates the amount of sharing between the
logic cones without the need to re-traverse the cones.

Switching activity under random simulation is computed using a
simulation vector s stored at each node of the subject graph. We
assume that the probability of the output of a gate switching is
Prob(s) = 2 * Nzeros(s) * Nones(s) / Nbits(s)2, where Nzeros(s),
Nones(s), and Nbits(s) are the numbers of zeros, ones, and bits,
respectively, in the simulation vector s of the gate.

Wirelength is a commonly used metric to evaluate the quality of
placement. Minimizing the sum of lengths of all wires during
technology mapping is a heuristic for improving the final
placement of the design, even if the placement information from
the mapping is not used by the final placer.

5 Case-studies
The methods discussed in the following four case studies were

implemented in a stand-alone ASIC/FPGA mapper, tested in the
MVSIS environment [22]. The runtimes (except Case 3) are
measured on a 1.6GHz computer with 1Gb RAM under Windows
XP. The first two cases illustrate the flexibility of the environment
in using different metrics. The third case shows its superiority (in
area/delay mode) in both standard cell and FPGA mapping
compared to state-of-the-art methods, while the fourth case
illustrates how the delay model can be adapted to a load-
dependent delay model.

5.1 Power-aware mapping
In this section, we show how mapper can be used to reduce the

dynamic power as measured using switching activity under
random simulation. Switching activity is measured before
mapping begins by propagating random simulation patterns
through the subject graph and recording the switching probability
at each AIG node. Switching activity of the network is computed
as the sum of the probabilities of switching of all the signals
including the PIs.

In this study, we first map the circuit in the baseline mode
(mapping for minimum delay followed by heuristic area
recovery). Then, we perform one optimization pass, which
greedily selects the best match at each node to reduce switching
activity.

The cost function computes the total of the switching activities
of the gates in the MFFC of each match. The match that satisfies
the required times and minimizes the switching activity is selected
at each node. The area of the MFFC is used as a tie-breaker in
prioritizing matches. As a result of this optimization, the total
switching activity is reduced but the area can increase. This is
because, in the process of remapping, larger gates can be selected.
These gates typically subsume AIG nodes that switch often,
resulting in an overall reduction of switching activity.

More accurate metrics to measure power dissipation in a
mapped circuit can take gate capacitance and leakage into
account. Another interesting possibility is to use the notion of
“switching flow”, which is similar to that of area flow. Switching
flow may have a complementary strength compared to the exact
switching activity of the MFFC used in this experiment.

Experimental results

Table 1 gives the statistics for a selection of benchmarks from
the MCNC, ITC’99, and PicoJava benchmark sets. The
benchmarks are chosen randomly among those having large size.
The benchmarks for the experiments were pre-optimized by
mvsis.rugged script in the MVSIS environment [22]. The standard
cell library used was mcnc.genlib from the SIS distribution [25].
The gate delays were assumed to be load-independent.

The first column contains the benchmark name. The next three
columns contain the number of inputs, outputs, and latches. The
column “FF lits” gives the number of literals in the factored forms
of the nodes after optimization with mvsis.rugged. The last two
columns contain the number of nodes and levels in the AIG
derived by balancing the factored forms of the nodes. This AIG is
used as the subject graph in all the experiments reported below.

Table 1. Statistics for the benchmarks used.

Name Ins Outs Latches FF lits AIG
nodes

AIG
levels

b14 32 54 245 8343 5641 110
b17 37 97 1415 37636 28891 148
c1355 41 32 0 604 423 20
c3540 50 22 0 1345 970 41
c6288 32 32 0 3651 2135 133
des 256 245 0 3849 3252 16
i10 257 224 0 2556 1963 45
pj1 1769 1063 0 17710 14221 70
pj2 690 429 0 3300 2982 21

Table 2 reports the results of power minimization for the

benchmarks. The second column contains the delay derived by
minimum-delay mapping. This delay is used as a constraint for
both area optimization in the baseline mapping mode and power
optimization. The next three columns report area, power, and
runtime of the baseline mapping, which performed area
optimization without trying to reduce power. The last three
columns contain the same parameters after running one round of
power optimization for the mapping derived in the baseline mode.

Table 2. Reduction in switching activity during mapping.

Baseline mapping Power optimization Name Delay
Area Power T, s Area Power T, s

b14 74.90 12676 1874 1.7 13209 1715 1.8
b17 103.80 55508 6116 6.1 60163 5428 6.5
c1355 17.30 1398 219 0.2 1386 206 0.3
c3540 33.50 2183 296 0.2 2276 268 0.4
c6288 83.10 7499 1108 1.2 7124 958 1.3
des 13.60 6420 668 0.6 7008 608 0.7
i10 36.20 4095 520 0.6 4256 476 0.6
pj1 41.80 27094 4025 2.8 28497 3738 2.8
pj2 15.90 5118 925 0.3 5626 877 0.4
Ratio 1.00 1.00 1.00 1.04 0.91 1.24

Table 2 shows that power optimization results in a 9% reduction

in the switching activity, a 4% increase in area and a 24%
increase in runtime. (Delay remains unchanged.)

5.2 Placement-aware mapping
In this study, we demonstrate the use of wirelength as a metric

for optimization.
We used the following simplistic way of deriving the placement

information. Before mapping, the levelized subject graph is
placed by assigning each AIG node a row equal to its logic level
(starting from the PIs) and a column equal to its place in the row,
derived by a DFS traversal (starting from the POs). In this
traversal, each AIG node is added to its row after all the
previously visited nodes have been added. The rows are balanced
to create a placement symmetric with respect to the vertical axis,
as shown in Figure 4. The width and the height of each AIG node
are set to 1.

Figure 4. Illustration of the placement model.

The placement of the AIG nodes does not change during
mapping. The placement of each gate is determined by the
placement of the AIG node representing its root. The wirelength
of a match is computed as the sum of the lengths of all wires
connecting the gates in the MFFC of the match. The length of one
wire is measured as the semi-perimeter of the bounding box of the
two-terminal net originating at the output of a fanin gate and
terminating at the input of a fanout gate. The wirelength of a
match is used in the cost function similar to how area flow is used
in Figure 3.

Figure 4 illustrates the proposed simple placement for the AIG
with 8 logic levels (numbered 0 through 7). The PO of the AIG is
on top. The PIs are at the bottom. Each cell of the placement
corresponds to one node of the AIG. The wirelength of match a is
the sum of the lengths of all wires in the MFFC of a. In this
example, the MFFC includes the gate rooted at node a and the
gate rooted at node d. The gates rooted at nodes b, c, e, and f are
the leaves of the MFFC. The wirelength of the gate at a is dist(ab)
+ dist(ac) + dist(ad) = (dist(ab)x + dist(ab)y) + (dist(ac)x +

dist(ac)y) + (dist(ad)x + dist(ad)y) = (1+4) + (4+2) + (2+1) = 14.
The wirelength of the gate at d is 5. Therefore, the wirelength of
match a is 19.

Experimental results

Table 3 shows the results of wirelength reduction after one
optimization pass performed on top of the baseline mapping. The
experimental setting is the same as in the previous experiment,
except that wirelength, instead of the switching activity, is the
primary parameter in the cost function used for optimization. The
notations in Table 3 are the same as in Table 2, except that instead
of measuring the switching activity, the wirelength is measured.

Table 3. Reduction in wirelength during mapping.

Baseline mapping Wirelen optimization Name Delay
Area Wirelen T,s Area Wirelen T,s

b14 74.90 12676 655478 1.7 13289 589641 1.9
b17 103.80 55508 6570636 6.1 58260 5843631 6.7
c1355 17.30 1398 13282 0.2 1429 12878 0.2
c3540 33.50 2183 39176 0.2 2288 36297 0.2
c6288 83.10 7499 172404 1.2 7513 141939 1.3
des 13.60 6420 471372 0.6 6634 451189 0.7
i10 36.20 4095 123604 0.6 4157 114192 0.7
pj1 41.80 27094 4034882 2.8 28145 3680862 3.1
pj2 15.90 5118 384638 0.3 5317 359665 0.3
Ratio 1.00 1.00 1.00 1.03 0.92 1.08

Table 4 shows the corresponding numbers for technology

mapping with supergates [20]. In this case, it is assumed that the
gates inside one supergate are placed close to each other. In the
approximate computation, the increase is wirelength due to the
wires connecting the gates inside a supergate are ignored because
the wires between the supergates are on average 50x longer than
the size of the supergate using the given placement model. Note
that the delays, areas, and runtimes reported in Table 4 differ from
those in Tables 2 and 3. This is because supergates lead to
improvements in delay at the price of increased runtime.

Table 4. Reduction in wirelength when using supergates.

Supergate mapping Wirelen optimization Name Delay
Area Wirelen T,s Area Wirelen T,s

b14 47.80 12666 582524 8.8 15198 478876 13.8
b17 65.40 54108 6097610 31.9 63460 4978561 49.9
c1355 14.70 1366 10798 0.6 1388 10273 0.9
c3540 25.50 2756 44556 1.1 2944 39186 1.7
c6288 63.70 9336 174895 5.1 9517 135210 7.7
des 12.20 7487 540267 2.7 7939 422711 4.3
i10 25.20 4433 124902 1.9 4848 114202 2.8
pj1 28.00 28946 4021123 13.6 32038 3462869 21.7
pj2 12.80 5673 398874 1.6 6230 353871 2.4
Ratio 1.00 1.00 1.00 1.09 0.85 1.54

The conclusion from Tables 3 and 4 is that the wirelength can

be reduced by 8% after baseline mapping and by 15% after
mapping with supergates, at the cost of 3% and 9% increase in
area and some increase in runtime. The use of supergates leads to
a more substantial reduction because of the additional structural
freedom exploited by the mapper. We expect that the use of
choice nodes [20] will lead to even larger reductions.

It should be noted that, due to the simplistic placement model,
these measurements are very approximate and may not lead to the
same improvements after an accurate placement. Future

columns

rows

0 1 2 3

3

0
1
2

4
5

-1

b

a
d

c

POs

PIs

6
7

e
f

experiments will include the use of a standard cell placer for
assessing wirelength gains from the simplistic model. Another
experiment will include the use of an incremental placer during
the mapping phase.

5.3 Area recovery for standard cells and FPGAs
Exact area minimization during technology mapping for DAGs

is NP-hard [10] and therefore not tractable for large circuits.
However, various heuristics for approximate area minimization
during mapping [14][13][19][27][4][6] have shown good results.

In this study, we use a combination of two known heuristics,
that perform well in practice and when combined with the other
algorithms in our mapping environment provide superior results
compared to state-of-the-art mappers. We demonstrate this for
both standard cell and FPGA mapping using the same basic
algorithm.

The first heuristic optimizes the area flow of a network mapped
first for optimum delay. At each node, the match that optimizes
area flow is selected, provided that it does not violate the required
time. (The exact cost function is shown in Figure 3.) The second
heuristic looks at the area to be gained by locally updating the
best match at a node. In this case, the area cost of a match is equal
to the sum of areas of all gates in the MFFC of the match, i.e. the
gates to be removed from (added to) the mapping if the match is
not used (is used).

The advantage of using these two heuristics in this particular
order is that they are complementary; area flow has a global view
(selecting logic cones with more shared logic) while the exact
area at a node has a local view.

Experimental results

In this experiment, the mapping flow, outlined in Figure 1, is
applied to both standard cell and LUT-based FPGA mappings.

Standard cells

Table 5 contains the mapping results for standard cells. Some
of the smaller benchmarks have been excluded from the set while
a larger one (s15850) was included. The circuits were pre-
optimized by mvsis.rugged. The first column lists the benchmark
name. The next two columns show the results of a delay-optimal
mapping in SIS using a load-independent library mcnc.genlib.

Table 5. Comparison of the two area-recovery heuristics for
standard cell mapping.

SIS New mapping with area recovery Name
Delay Area Delay Area 1 2 1+2 T, s

b14 133.7 12701 47.8 12702 .55 .55 .61 9.5
b17 174.5 56273 65.4 54338 .53 .49 .58 39.6
des 21.9 5769 12.2 7545 .25 .21 .28 2.8
i10 58.2 3815 25.2 4448 .46 .47 .53 1.9
pj1 66.3 27073 28.0 28978 .45 .48 .53 14.9
s15850 47.5 6000 27.8 6429 .43 .43 .47 1.8
Average .45 .44 .50
Ratio 1.00 1.00 0.46 1.10

Columns 4 and 5 show the results of the new technology
mapping with area recovery using supergates [21], which are used
to increase structural flexibility exploited in technology mapping.
The area and delay numbers are those achieved by the mapper
with both area flow and exact area heuristics.

The next three columns try to isolate the benefits of each
heuristic. The column labeled “1” shows the area reduction

achieved over the first pass of the mapper (i.e. the delay optimal
pass) by applying only the area flow heuristic. Likewise, the
column labeled “2” shows the area reduction achieved by
applying only the exact area heuristic.

The column labeled “1+2” shows the reduction when area flow
optimization is followed by exact area optimization. These
numbers correspond to the absolute numbers reported in column
5. Thus for the pj1 benchmark, after the first delay-optimal
mapping pass, the area is 61655 (not shown in table). If only area
flow is used for recovery, the area is 33910 (reduction of 0.45); if
only exact area is used the area is 32060 (reduction of 0.48), and
if both are used, the area is 28978 (reduction of 0.53).

The area and delay measurements in Table 5 show that the new
mapper, on average, reduces delay more than two times,
compared to SIS while the area increases by only 10%. The
results clearly show that using a combination of the two heuristics
works better than applying each one independently.

The area can be further improved by optimizing phase
assignment at the gate boundaries and sweeping equivalent gates
in the mapped circuit.

FPGAs

A similar dynamic of area recovery using the proposed
combination of two heuristics is observed in mapping for FPGAs.

Table 6 compares the mapping results using DAOmap [4] and
the proposed flow in baseline mode implemented in MVSIS. Both
tools were run on a 4 CPU 3.00GHz computer with 510Mb RAM
under Linux. The benchmarks were pre-optimized in SIS using
script.algebraic followed by decomposition into two-input gates
using command dmig implemented in the RASP package [9]. To
ensure identical starting logic structures, the same pre-optimized
benchmark files used in [4]1 were used in this experiment.

Table 6. Comparison with DaoMap.

DaoMap[4] MVSIS
Example Depth LUTs Time, s Depth LUTs Time, s
alu4 6 1065 0.5 6 994 0.3
apex2 7 1352 0.6 7 1202 0.4
apex4 6 931 0.7 6 892 0.3
Bigkey 3 1245 0.6 3 797 0.4
Clma 13 5425 5.9 13 4429 1.7
Des 5 965 0.8 5 1020 0.5
Diffeq 10 817 0.6 10 854 0.4
Dsip 3 686 0.5 3 686 0.3
Elliptic 12 1965 2.0 12 2015 0.8
ex1010 7 3564 4.0 7 3265 1.1
ex5p 6 778 1.0 6 744 0.3
Frisc 16 1999 1.9 15 2011 0.9
misex3 6 980 0.8 6 955 0.3
Pdc 7 3222 4.6 8 2919 1.2
s298 13 1258 2.4 13 825 0.3
s38417 9 3815 3.8 9 3852 1.6
s38584 7 2987 27.0 7 2843 1.3
Seq 6 1188 0.8 6 1109 0.3
Spla 7 2734 4.0 7 2529 1.0
Tseng 10 706 0.6 10 758 0.3
Ratio 1.00 1.00 1.00 1.00 0.93 0.42

1 Three sequential benchmarks from this set (clma, s38417, and s38584)
could not be entered into MVSIS due to a limitation of the BLIF parser.
These benchmarks were preprocessed by SIS to remove the latches. The
resulting logic cones were used for both DAOmap and MVSIS.

Columns 2 and 5 give the number of logic levels of LUTs after
technology mapping. These are equal in all but two cases. This
supports the fact that both mappers perform delay-optimal
mapping for the given logic structure. Differences may be
explained by minor variations in manipulating the subject graph,
such as AIG rebalancing performed by MVSIS.

Columns 3 and 6 show the number of LUTs after technology
mapping. The difference between the results produced by the two
mappers reflects the fact that they use different area recovery
heuristics and possibly, that MVSIS performs area recovery in a
topological order, while DAOmap uses a reverse topological
order.

Columns 4 and 7 report the runtimes in seconds. These include
the time needed to construct the subject graph and perform
technology mapping with area recovery but not the time needed to
read the input BLIF file. For smaller benchmarks, the differences
in runtimes might be explained by the improvements to the basic
data structures implemented in MVSIS. The increased runtime
advantages of MVSIS on larger benchmarks may be due to better
scalability and filtering heuristics employed by the MVSIS
mapper.

In summary, Table 6 demonstrates that the proposed technology
mapping environment is applicable to FPGA mapping. In fact, the
FPGA mapping engine implemented in our environment is
superior to a state-of-the-art FPGA mapper with 7% less LUTs
using less than half the runtime on average.

5.4 Mapping using a load-dependent delay model
This case study was designed to demonstrate that the mappings

computed in the proposed environment, which currently uses a
simple load-independent delay model, largely preserve their
quality when the delay is evaluated using a load-dependent delay
model.

The load-dependent delay model of SIS was adopted. This
assumes that the delay D of each pin p of a gate g is computed as
follows: D(p) = Dind(p) + Cp * NFans(g), where Dind(p) is a load-
independent delay of the pin, Cp is a constant, and NFans(g) is the
number of fanouts of gate g. The genlib gate libraries included in
the distribution of SIS use this model.

Experimental Results

In this experiment, summarized in Table 7, we consider a
randomly selected subset of large benchmarks. The benchmarks
are pre-optimized using script mvsis.rugged and mapped using
three different methods: (1) SIS, (2) MVSIS in the baseline mode,
and (3) MVSIS with supergates. In all cases, we report the
resulting area and delay as measured by the SIS command
print_map_stats and print_delay using the gate library
mcnc.genlib from the standard SIS distribution.

Table 7. SIS mapping vs. new mapping algorithms for load-
dependent delay model.

The average ratios of improvements of the MVSIS mapper
versus the SIS mapper are shown in the bottom row of the table.
The (load-independent) MVSIS mapper in baseline mode
produces 7% smaller area and 32% shorter delay, compared to
SIS, even when the final delay is measured using the load-
dependent delay model. For mapping with supergates, the MVSIS
mapper produced, on average, 1% worse area and 39% better
delay.

It should be emphasized that the load-independent mapping
result was only evaluated with the load-dependent delay model,
while SIS used this model during the mapping process also.
However, we propose an iteration process, where the load from
the previous iteration is used to approximate the load of the
current iteration. The initial iteration would use the load-
independent delay model. Iteration should improve the delays
considerably.

We believe that using a simple delay model at the beginning of
the mapping process quickly finds a starting point, which is
beneficial for iterative improvement by the transformations
targeting a complex delay model, e.g. use of 2D tables to specify
delays and slews for pin-to-pin rising/falling signals. In future
work, we will explore the potential of the iterative process when
applied to such accurate delay models.

6 Conclusions and future work
We described an integrated environment for technology

mapping and demonstrated its flexibility by using different
optimization criteria such as power optimization, placement-
awareness, and efficient area recovery. Although some of the
metrics used in these studies were simplistic, we believe they
reflect general tendencies and show the potential of developing
more accurate metrics for optimization in the new environment.

Future work will include integrating industrial delay models in
standard cell mapping, extending FPGA mapping to apply to
large input LUTs, performing placement-aware mapping using a
realistic placer, and generalizing the mapping flow to work for
sequential circuits as discussed in [23].

Acknowledgement
 This research was supported in part by NSF contract,

CCR-0312676, by the MARCO Focus Center for Circuit System
Solution under contract 2003-CT-888 and by the California Micro
program with our industrial sponsors, Fujitsu, Intel, Magma, and
Synplicity.

The authors are grateful to Jason Cong and Deming Chen for
providing the set of pre-optimized benchmarks used in [4], which
allowed for a comparison with DAOmap reported in Table 6.

References
[1] R. Brayton, G. Hachtel, A. Sangiovanni-Vincentelli, “Multilevel

logic synthesis”, Proc. IEEE, Vol. 78, Feb.1990, pp. 264–300.
[2] R. K. Brayton and C. McMullen, “The decomposition and

factorization of Boolean expressions,” Proc. ISCAS ‘82, pp. 29-54.
[3] C.-W. Chang, C.-K. Cheng, P. Suaris, M. Marek-Sadowska, “Fast

post-placement wiring using easily detectable functional
symmetries”, Proc. DAC ‘00, pp. 286-289.

[4] D. Chen, J. Cong. “DAOmap: A depth-optimal area optimization
mapping algorithm for FPGA designs”. Proc. ICCAD ’04, pp. 752-
757.

[5] J. Cong and Y. Ding, “FlowMap: An optimal technology mapping
algorithm for delay optimization in lookup-table based FPGA
designs”, IEEE Trans. CAD, Vol.13(1), Jan. 1994, pp. 1-12.

SIS Baseline Supergates
Example Area Delay Area Delay Area Delay
b14 13988 259.0 10503 148.7 10791 118.0
b17 64089 321.1 48444 238.3 48836 170.7
c1355 812 41.1 1233 31.5 1119 35.3
c3540 2283 84.2 1885 58.7 2420 55.4
c6288 6104 253.0 6075 141.3 7540 116.2
pj1 30713 146.1 24295 96.3 26377 87.0
pj2 5548 95.0 4847 71.3 5483 71.4
Ratio 1.00 1.00 0.93 0.68 1.01 0.61

[6] J. Cong, Y. Ding, “On area/delay trade-off in LUT-based FPGA
technology mapping”, IEEE Trans. VLSI, Vol. 2(2), June 1994, pp.
137-148.

[7] J. Cong, C. Wu and Y. Ding, “Cut ranking and pruning: Enabling a
general and efficient FPGA mapping solution,” Proc. FPGA `99, pp.
29-36.

[8] J. Cong and C. Wu, “Optimal FPGA mapping and retiming with
efficient initial state computation”, IEEE Trans. CAD, vol. 18(11),
Nov. 1999, pp. 1595-1607.

[9] J. Cong et al, RASP: FPGA/CPLD Technology Mapping and
Synthesis Package.
http://ballade.cs.ucla.edu/software_release/rasp/htdocs/

[10] A. Farrahi and M. Sarrafzadeh, “Complexity of lookup-table
minimization problem for FPGA technology mapping”, IEEE Trans.
CAD, vol. 13 (11), 1994, pp. 1319-1332.

[11] S. Hassoun and T. Sasao, eds., Logic synthesis and verification,
Kluwer 2002, Chapter 5, “Technology mapping”, pp. 115-140.

[12] U. Hinsberger and R. Kolla, “Boolean matching for large libraries,”
Proc. DAC `98, pp 206-211.

[13] D.-J. Jongeneel, R. Otten, Y. Watanabe, R. K. Brayton, “Area and
search space control for technology mapping,” Proc. DAC ’00, pp.
86-91.

[14] C.-C. Kao, Y.-T. Lai, “An efficient algorithm for finding minimum-
area FPGA technology mapping". ACM TODAES, vol. 10(1), Jan.
2005, pp. 168-186.

[15] K. Keutzer, “DAGON: Technology binding and local optimizations
by DAG matching”, Proc. DAC ’87, pp. 617-623.

[16] V. N. Kravets and P. Kudva, “Implicit enumeration of structural
changes in circuit optimization”, Proc. DAC ’04, pp. 438-441.

[17] Y. Kukimoto, R. K. Brayton, P. Sawkar, “Delay-optimal technology
mapping by DAG covering”, Proc. DAC ’98, pp. 348-351.

[18] E. Lehman, Y. Watanabe, J. Grodstein, and H. Harkness, “Logic
decomposition during technology mapping,” IEEE Trans. CAD, vol.
16(8), 1997, pp. 813-833.

[19] V. Manohara-rajah, S. D. Brown, Z. G. Vranesic, “Heuristics for area
minimization in LUT-based FPGA technology mapping”, Proc.
IWLS ’04, pp. 14-21.

[20] A. Mishchenko, X. Wang, T. Kam, “A new enhanced constructive
decomposition and mapping algorithm”, Proc. DAC ‘03, pp.143-
147..

[21] S. Chatterjee, A. Mishchenko, R. Brayton, X. Wang, and T. Kam,
“Reducing structural bias in technology mapping”, Proc. IWLS ‘05.

[22] MVSIS Group. MVSIS: Multi-Valued Logic Synthesis System. UC
Berkeley. http://www-cad.eecs.berkeley.edu/mvsis/

[23] P. Pan and C.-C. Lin, “A new retiming-based technology mapping
algorithm for LUT-based FPGAs”, Proc. FPGA ’98, pp. 35-42.

[24] M. Pedram and N. Bhat. “Layout driven technology mapping,” Proc.
DAC ‘91, pp. 99-105.

[25] E. Sentovich, et al. “SIS: A system for sequential circuit synthesis”,
Tech. Rep. UCB/ERI, M92/41, ERL, Dept. of EECS, Univ. of
California, Berkeley, 1992.

[26] R. S. Shelar and S. S. Sapatnekar, "A predictive distributed
congestion and its application to technology mapping," Proc. ISPD
’04, pp. 210 - 217.

[27] M. Teslenko, E. Dubrova, “Hermes: LUT FPGA technology
mapping algorithm for area minimization with optimum depth”,
Proc. ICCAD ’04, pp. 748-751.

