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Abstract 

This paper describes a flexible and efficient environment for 
technology mapping featuring a common set of algorithms for 
both standard cells and LUT-based FPGAs. The algorithms and 
data structures can be customized for various objectives and 
constraints, such as delay optimization, area recovery, and power 
and placement improvement under delay and area constraints. 
Experimental results show superior results for both standard cells 
and FPGAs when compared with state-of-the-art mappers.  

1 Introduction 
Most approaches to technology mapping for both standard cells 

and LUT-based FPGAs focus on delay and area optimization. A 
typical mapping scenario is to find the optimal delay possible for 
the given logic structure of the subject graph mapped using the 
given library [5][18][17], followed by heuristic approaches to area 
recovery [15][6][4][13]. The mappings produced are not 
optimized for power, may lead to congested placements, and often 
require extensive fanout optimization by buffering, gate 
duplication, and gate sizing.  

Several approaches have been proposed to alleviate these 
problems by performing incremental changes to the mapped 
netlist. For example, remapping for improved placement has been 
considered in [3][26][16][24]. A difficulty with these approaches 
is that optimization for objectives other than delay and area is 
deferred to a resynthesis stage when the complete set of choices 
explored during mapping is no longer available. As a result, 
resynthesis has to rediscover a subset of these choices, which 
leads to long runtimes and suboptimal quality. 

The contributions of this paper are three-fold.  
1. We developed an integrated set of algorithms and data 

structures, which with minor changes can perform mapping 
while optimizing for various objectives, minimizing area 
after delay-optimal mapping, and improving power and 
placement by minimizing switching activity and wirelength. 
We use load-independent delay model for the standard cell 
mapping, while showing that the final results still show 
advantage when a load-dependent model is used to evaluate 
them. Furthermore, we propose a way of incorporating load-
dependent information into the iterative optimization 
performed after the initial load-independent mapping. 

2. The environment is applicable for FPGAs as well as standard 
cells. This allows for uniform treatment of both types of 
mapping and leads to a cross-fertilization of these research 
areas. For instance, the combination of mapping and retiming 

developed for FPGAs [20][8] is applicable to standard cell 
mapping while preserving the optimality claims: the final 
mapping found is the best one in terms of delay over all 
possible mappings and retiming of the original circuit. 

3. We show several specific improvements over state-of-the-art 
mappers. These are presented in four case studies: 
3.1. The first shows multi-objective optimization for power 

under delay and area constraints using estimates of 
switching activity which is incrementally updated in the 
process of mapping. 

3.2. The second shows multi-objective optimization for 
placeability under delay and area constraints using 
estimates of wirelength incrementally updated during 
the mapping. 

3.3. The third looks at new method for area recovery under 
delay constraints combining two heuristics, area flow 
and exact area at a node. These are shown to be equally 
applicable to both standard cell and FPGA mapping, 
leading to area recovery comparable to, or better than, 
the best published results, e.g. our mapper equals 
DAOmap in delay while using 7% fewer LUTs.  

3.4. The last study illustrates how the simplified delay 
assumptions currently used can be extended to more 
accurate delay models. As an example, we show how to 
extend to the SIS load-dependent delay model. As one 
point of comparison, we produce results with the same 
area and 39% less delay compared to SIS using the 
same delay model.  

In general, the new environment has been shown to be efficient, 
both in terms of results and run-time (improving on optimization 
quality over state-of-the-art mappers while using a fraction of the 
compute time).   

A software prototype of the technology mapping environment 
has been implemented and is being extended and fine-tuned. For 
example, the currently used models to compute some metrics are 
simple and will be replaced by more accurate ones. Thus, the 
wirelength computation, done assuming the placement of cells or 
LUTs in rows by their topologic level in the netlist, will be 
replaced by an incremental placer. 

The paper is organized as follows. Section 2 describes 
background on technology mapping. Section 3 describes the 
algorithms and data structures constituting the proposed 
technology mapping environment. Section 4 describes the 
principles and procedures of multi-objective optimization. Section 
5 presents the case studies dealing with mapping for power, 
placeability, area recovery for standard cells and FPGAs, and 
load-dependent delay models. Section 6 concludes the paper and 
outlines future work. 



2 Background 
A network is a directed acyclic graph, in which each node is 

represented by a single-output completely specified Boolean 
function. The external inputs to the network are called primary 
inputs (PIs) and the external outputs are called primary outputs 
(POs). The nodes providing immediate inputs to a given node are 
called its fanins. The nodes driven by the output of a given node 
are called its fanouts. The maximum fanout-free cone (MFFC) of 
a node is the set of nodes in the transitive fanin cone of a node, 
which fanout only to other nodes in the MFFC. 

The combinational network used as an input for mapping is 
called the subject graph. The subject graph is derived by applying 
algebraic decomposition, as described in [21], to the technology-
independent netlist resulting in a network of two-input ANDs and 
inverters called an And-Inv Graph (AIG). The notions of the 
subject graph and the AIG are used interchangeably. In this work, 
we consider only combinational networks. If the network is 
sequential it is cut at the latch boundary and the resulting 
combinational network is considered for mapping. 

Technology mapping consists of expressing the functionality of 
the network using a combination of gates from the library [11]. 
Each gate in the library implements a completely specified 
Boolean function of a limited number of inputs. Besides the 
functionality, a gate in the library is characterized by technology-
dependent parameters, such as pin-to-pin delays, gate size, 
maximum load, etc.  

In this work, we study technology mapping from a functional 
point of view using a simple delay model, which takes into 
account pin-to-pin delays for rising and falling phases while 
assuming that the delay is independent of the load. The primary 
advantage of this model (used commonly in a gain-based flow) is 
that it allows quick evaluation of a large number of topologies and 
thereby enables the efficient mapping environment that is 
described in Section 3. Of course, the final performance of the 
circuit is not captured by this simple model, but as we show in our 
experiments in Section 5.4, making decisions based on this simple 
model can still lead to better final performance than making 
decisions based on a more accurate model, but looking at fewer 
topologies. 

The above discussion notwithstanding, we plan to extend the 
mapper to make some of the later decisions (in subsequent 
mapping passes) using more accurate delay models. This would 
further improve the quality of results. 

When technology mapping is performed for FPGAs, it is 
assumed that a gate (a k-input look-up table or LUT) can 
implement any function up to k inputs. LUTs of different sizes 
and delays can also be used by the mapper. In this work, LUTs 
are assumed to have no more than 6 inputs. This is motivated by 
the fact that exhaustively computing cuts for more than 6 inputs is 
not practical. However, in on-going research not presented here, 
we consider an extension of mapping for LUTs of any size (i.e. 
10) with constraints on the set of functions that can be 
implemented. 

A cut for node n in the Boolean network is a set of nodes C, 
such that every path from the PIs to node n passes through at least 
one node in C. Node n is called the root of the cut. Nodes in C are 
called the leaves of the cut. The computation of all the cuts of size 
up to six for all nodes in the network can be performed efficiently 
by traversing the network in the topological order from the PIs to 
the POs [7].  

Each cut is characterized using a completely specified Boolean 
function of its root in terms of the leaves [12][21]. The truth table 
of this function, conveniently represented as a 32-bit or 64-bit bit-

string, is used to establish the connection between a cut, and the 
gates implementing it. The gates are hashed by their truth tables 
and, for each cut one constant-time look-up is performed, 
returning the pointer to the set of gates with the same 
functionality. This process is called matching. In the software 
implementation, the connection between gates and cuts is made, 
up to the phase-assignment, which increases the mapping quality, 
but this detail is not important for the material discussed in the 
rest of this paper. 

A match of a cut is a gate that can implement the cut. A match 
of a node is a match of some cut rooted at this node. The best 
match of a node is the match, selected to map the node to 
optimize some optimization criterion, such as delay, area, or 
wirelength. 

3 Technology mapping environment 
The overall flow of technology mapping discussed in this paper 

is shown in Figure 1. The input to mapping is the network, the 
gate library, and the delay constraints. Typically, the network has 
been optimized before mapping by technology-independent 
synthesis [1]. The library is pre-processed to compute the truth 
tables for each gate and the gates are hashed by their truth tables. 
The delay constraints include the PI arrival times and the PO 
required times. If the delay constraints are not given, the arrival 
times of the PIs are set to 0, and the required times of the POs are 
set to the minimum delay achieved by technology mapping of the 
circuit with the given logic structure. (In practice this is done by 
setting the required times to 0.)  

 
   TechnologyMapping( network N, library L, delay constraints D) 

{ 
 Step 1: G = TransformNetworkIntoAIG( N ); 
 Step 2: ComputeCutsAndMatches( G, L ); 
 Step 3: mapping M1 = MappingForMinDelay( G, L ); 
             if ( delay constraint D is infeasible for M1 ) 
                       return FAIL; 
 Step 4: ComputeRequiredTimes( G, M1 );  
             mapping M2 = OptimizationPass1( G, M1, D ); 

            ComputeRequiredTimes( G, M2 ); 
             mapping M3 = OptimizationPass2( G, M2, D ); 
             … 
 Step 5: TransformToMappedNetwork( G, Mk ); 
} 

Figure 1. Pseudo-code of the technology mapping flow. 

Technology mapping begins by deriving an AIG subject graph 
G in Step 1. In Step 2 the AIG nodes are annotated with their 
matches. Step 3 assigns the best match for each node while trying 
to achieve the minimum delay at the node. If there is a tie, the 
match leading to the smallest area, is taken. If the delay 
constraints are infeasible, the mapper returns FAIL. In the 
subsequent steps, the required times of the POs are set according 
to the delay constraints. These required times at the POs are never 
violated in the course of the following transformations. 

At the beginning of each optimization pass in Step 4, the 
required times of the internal nodes are recomputed. This is 
necessary since with every optimization pass, the mapping 
changes (to better meet the optimization criterion), and 
consequently, the internal required times change (in order to 
maintain the fixed PO required times.) The required times for the 
internal nodes are used to bound the search for possible re-
mappings during the optimization pass.  



On termination, the best mapping is returned in Step 5. This 
best mapping starts at the POs and continues recursively to the 
leaves of the cuts used for the best matches until the PIs are met. 
Note that although in the algorithm of Figure 1 the best matches 
are assigned for each AIG node, not all of the AIG nodes are used 
in the mapping, only those which correspond to the outputs of the 
gates used by the best matches. If an internal node is not used in 
the current mapping, its required time is set to +∞ in Step 4. 

The common technology mapping algorithms and data 
structures of the environment described in this paper consist of the 
subject graph G derived in Step 1, a set of matches assigned in 
Step 2, the arrival times computed in Step 3 and the required 
times repeatedly computed in Step 4.  

The flexibility of the environment comes from the fact that all 
matches are available during each optimization pass. Although 
only one match is selected as best at a node according to the 
current cost function, all matches are stored for future use. In 
practice, the number of matches of an internal node ranges from 
10 to 1000, which gives substantial freedom to modify the 
selected mapping as the cost function changes. 

The mapping environment gains in optimality if the number of 
matches stored at each node is increased. This can be achieved by 
using supergates and choice nodes [20][21]. Both approaches 
reduce structural bias by adding decompositions to the subject 
graph that were not present in the original netlist. Supergates 
enumerate gate combinations of limited logic depth (as a 
preprocessing step on the gate library) while choice nodes 
accumulate functionally-equivalent structurally-different logic 
cones that occur during separate synthesis steps.  

4 Multi-objective optimization 
This section discusses the adaptation of the optimization 

performed in Step 4 of the technology mapping flow of Figure 1 
for various optimization criteria.  

4.1 Optimization pass 
Optimization is performed in separate passes over the mapped 

network. The pseudo-code of the generic optimization pass is 
shown in Figure 2. The AIG nodes of the subject graph are visited 
in topological order from PIs to POs. At each node, all matches 
are considered, and the current cost function is evaluated for each 
match. The match with the best cost is found and assigned as the 
best match at the node.  

 
OptimizationPass( subject graph N, cost function F ) 
{ 
         match mBest; 

     for each AIG node n of the subject graph N from PIs to POs  
     { 
           mBest = NULL; 
           for each match m of node n  

              { 
                     if ( CompareMatchesF( m, mBest, n ) > 0 ) 

          mBest = m;    
           } 

               set mBest as the best match at node n; 
        } 
} 

Figure 2. Pseudocode of the optimization pass. 

During optimization, the nodes in the transitive fanin cone of 
the given node are already mapped, so their arrival times are 
known. However, the fanouts are known only for the previous 

iteration. These fanouts are used to estimate some parameters, 
such as load, with the understanding that they may change in the 
current iteration (see Section 5.4). One way of partially 
overcoming the fanout bias, is to compute a linear combination of 
fanout counts in two consecutive iterations, as suggested in [19]. 
On termination, the procedure in Figure 2 assigns the best 
matches at each node using the current cost function while delay 
constraints are taken into account.  

The number of optimization passes performed depends on how 
quickly convergence is reached. The speed of convergence 
depends on the cost function and the circuit. Since estimation of 
some parameters (such as fanouts) is not accurate, the cumulative 
improvement in the given cost function, which is used to measure 
the convergence, is not monotonic. For example, in area flow 
minimization, we often observe that, after several iterations, the 
total area flow of the mapped network starts oscillating around 
some value. Typically the magnitude of oscillation is round 1% of 
the total amount of the area flow. In general, we found that, for 
most of the parameters, one optimization pass is enough, while 
some of them may require two or three passes. 

A typical cost function uses several metrics with various 
constraints, such as delay and area, or area and wirelength. 
Typical constraints are the required times at a node and a limit on 
the load of each gate type. In a given cost function, several 
metrics can be grouped according to some priority. A primary 
metric evaluates the quality of a match while lesser metrics are 
used as tie breakers.  

Figure 3 shows a typical cost function, which uses area flow as 
the primary metric and arrival times as a secondary metric. (Area 
flow is formally defined below in Section 4.2.) It assumes that 
match m1 is the current best match at the node, while match m2 is 
a new candidate. It returns -1 if m1 is strictly better than m2, 1 if 
m2 is strictly better than m1, and 0 if both matches are equal when 
compared using these metrics. 

 
int CompareMatches( match m1, match m2, node n ) 
{ 
        // using the required time as a constraint 
       if (ArrivalTime(m2) > RequiredTime(n) ) 
                return -1; 
        // comparing area flows 
        if (AreaFlow(m1) < AreaFlow(m2) ) 
                return -1; 
        if (AreaFlow(m1) > AreaFlow(m2) ) 
                return 1; 
        // a tie; comparing the arrival times 
        if (ArrivalTime(m1) < ArrivalTime(m2) ) 
                return -1; 
        if (ArrivalTime(m1) > ArrivalTime(m2) ) 
                return 1; 
        return 0; 
} 

Figure 3. A cost function to compare two matches. 

There are two approaches to optimize for multiple objectives:  
• combining several metrics into one cost function (as shown 

in Figure 2 for area flow and arrival times) and performing 
one or more optimization passes with this single function; 

• repeating the optimization passes with different cost 
functions corresponding to each objective.  

Experimentation is needed to determine which approach is best 
for a specific optimization type. For example, we observed that 
area recovery is best performed with one pass of area flow 
minimization (see Figure 3), followed by one pass of exact area 



minimization where area flow in Figure 3 is replaced by the area 
of the MFFC of gates used to implement the match. Area 
recovery is described in more detail in Section 5.3. 

4.2 Metrics 
An optimization objective comes with a metric, which indicates 

(perhaps roughly) how well the current netlist meets the objective. 
For example, dynamic power may be measured by the amount of 
switching activity at the inputs and outputs of the gates under 
random simulation. Although random simulation only 
approximates power dissipation, it is fast. A good metric should 
be a compromise between speed and accuracy. The presented 
mapping environment can be used with arbitrary metrics, as long 
as computation and updating procedures are provided to evaluate 
and incrementally update the metric when the mapping changes. 

Delay and area of a mapped circuit are well-known metrics for 
evaluating the mapping quality.  

Area flow [19] (effective area [7]) is a useful extension of the 
notion of area. It can be computed in one pass over the network 
from the PIs to the POs. Area flow for the PIs is set to 0. Area 
flow at a node n is: AF(n) = [Area(n) + Σi AF(Leafi(n))]/ 
NumFanouts(n), where Area(n) is the area of the best match at n, 
Leafi(n) is the i-th leaf of the cut of the best match at n, and 
NumFanouts(n) is the number of fanouts of n.  

If nodes are processed from the PIs to the POs, updating area 
flow is similar to computing it. The advantage of area flow over 
area of the cone is that area flow gives a more global view of the 
mapping. Area flow estimates the amount of sharing between the 
logic cones without the need to re-traverse the cones.  

Switching activity under random simulation is computed using a 
simulation vector s stored at each node of the subject graph. We 
assume that the probability of the output of a gate switching is 
Prob(s) = 2 * Nzeros(s) * Nones(s) / Nbits(s)2, where Nzeros(s), 
Nones(s), and Nbits(s) are the numbers of zeros, ones, and bits, 
respectively, in the simulation vector s of the gate.  

Wirelength is a commonly used metric to evaluate the quality of 
placement. Minimizing the sum of lengths of all wires during 
technology mapping is a heuristic for improving the final 
placement of the design, even if the placement information from 
the mapping is not used by the final placer.  

5 Case-studies  
The methods discussed in the following four case studies were 

implemented in a stand-alone ASIC/FPGA mapper, tested in the 
MVSIS environment [22]. The runtimes (except Case 3) are 
measured on a 1.6GHz computer with 1Gb RAM under Windows 
XP. The first two cases illustrate the flexibility of the environment 
in using different metrics. The third case shows its superiority (in 
area/delay mode) in both standard cell and FPGA mapping 
compared to state-of-the-art methods, while the fourth case 
illustrates how the delay model can be adapted to a load-
dependent delay model. 

5.1 Power-aware mapping 
In this section, we show how mapper can be used to reduce the 

dynamic power as measured using switching activity under 
random simulation. Switching activity is measured before 
mapping begins by propagating random simulation patterns 
through the subject graph and recording the switching probability 
at each AIG node. Switching activity of the network is computed 
as the sum of the probabilities of switching of all the signals 
including the PIs. 

In this study, we first map the circuit in the baseline mode 
(mapping for minimum delay followed by heuristic area 
recovery). Then, we perform one optimization pass, which 
greedily selects the best match at each node to reduce switching 
activity.  

The cost function computes the total of the switching activities 
of the gates in the MFFC of each match. The match that satisfies 
the required times and minimizes the switching activity is selected 
at each node. The area of the MFFC is used as a tie-breaker in 
prioritizing matches. As a result of this optimization, the total 
switching activity is reduced but the area can increase. This is 
because, in the process of remapping, larger gates can be selected. 
These gates typically subsume AIG nodes that switch often, 
resulting in an overall reduction of switching activity. 

More accurate metrics to measure power dissipation in a 
mapped circuit can take gate capacitance and leakage into 
account. Another interesting possibility is to use the notion of 
“switching flow”, which is similar to that of area flow. Switching 
flow may have a complementary strength compared to the exact 
switching activity of the MFFC used in this experiment. 

Experimental results 

Table 1 gives the statistics for a selection of benchmarks from 
the MCNC, ITC’99, and PicoJava benchmark sets. The 
benchmarks are chosen randomly among those having large size. 
The benchmarks for the experiments were pre-optimized by 
mvsis.rugged script in the MVSIS environment [22]. The standard 
cell library used was mcnc.genlib from the SIS distribution [25]. 
The gate delays were assumed to be load-independent. 

The first column contains the benchmark name. The next three 
columns contain the number of inputs, outputs, and latches. The 
column “FF lits” gives the number of literals in the factored forms 
of the nodes after optimization with mvsis.rugged. The last two 
columns contain the number of nodes and levels in the AIG 
derived by balancing the factored forms of the nodes. This AIG is 
used as the subject graph in all the experiments reported below. 

Table 1. Statistics for the benchmarks used. 

Name Ins Outs Latches FF lits AIG 
nodes 

AIG 
levels 

b14 32 54 245 8343 5641 110
b17 37 97 1415 37636 28891 148
c1355 41 32 0 604 423 20
c3540 50 22 0 1345 970 41
c6288 32 32 0 3651 2135 133
des 256 245 0 3849 3252 16
i10 257 224 0 2556 1963 45
pj1 1769 1063 0 17710 14221 70
pj2 690 429 0 3300 2982 21
 
Table 2 reports the results of power minimization for the 

benchmarks. The second column contains the delay derived by 
minimum-delay mapping. This delay is used as a constraint for 
both area optimization in the baseline mapping mode and power 
optimization. The next three columns report area, power, and 
runtime of the baseline mapping, which performed area 
optimization without trying to reduce power. The last three 
columns contain the same parameters after running one round of 
power optimization for the mapping derived in the baseline mode.  

 

 

 



Table 2. Reduction in switching activity during mapping. 

Baseline mapping Power optimization Name Delay 
Area Power T, s Area Power T, s 

b14 74.90 12676 1874 1.7 13209 1715 1.8
b17 103.80 55508 6116 6.1 60163 5428 6.5
c1355 17.30 1398 219 0.2 1386 206 0.3
c3540 33.50 2183 296 0.2 2276 268 0.4
c6288 83.10 7499 1108 1.2 7124 958 1.3
des 13.60 6420 668 0.6 7008 608 0.7
i10 36.20 4095 520 0.6 4256 476 0.6
pj1 41.80 27094 4025 2.8 28497 3738 2.8
pj2 15.90 5118 925 0.3 5626 877 0.4
Ratio  1.00 1.00 1.00 1.04 0.91 1.24

 
Table 2 shows that power optimization results in a 9% reduction 

in the switching activity, a 4% increase in area and a 24% 
increase in runtime. (Delay remains unchanged.) 

5.2 Placement-aware mapping  
In this study, we demonstrate the use of wirelength as a metric 

for optimization.  
We used the following simplistic way of deriving the placement 

information. Before mapping, the levelized subject graph is 
placed by assigning each AIG node a row equal to its logic level 
(starting from the PIs) and a column equal to its place in the row, 
derived by a DFS traversal (starting from the POs). In this 
traversal, each AIG node is added to its row after all the 
previously visited nodes have been added. The rows are balanced 
to create a placement symmetric with respect to the vertical axis, 
as shown in Figure 4. The width and the height of each AIG node 
are set to 1.  

 
Figure 4. Illustration of the placement model. 

The placement of the AIG nodes does not change during 
mapping. The placement of each gate is determined by the 
placement of the AIG node representing its root. The wirelength 
of a match is computed as the sum of the lengths of all wires 
connecting the gates in the MFFC of the match. The length of one 
wire is measured as the semi-perimeter of the bounding box of the 
two-terminal net originating at the output of a fanin gate and 
terminating at the input of a fanout gate. The wirelength of a 
match is used in the cost function similar to how area flow is used 
in Figure 3. 

Figure 4 illustrates the proposed simple placement for the AIG 
with 8 logic levels (numbered 0 through 7). The PO of the AIG is 
on top. The PIs are at the bottom. Each cell of the placement 
corresponds to one node of the AIG. The wirelength of match a is 
the sum of the lengths of all wires in the MFFC of a. In this 
example, the MFFC includes the gate rooted at node a and the 
gate rooted at node d. The gates rooted at nodes b, c, e, and f are 
the leaves of the MFFC. The wirelength of the gate at a is dist(ab) 
+ dist(ac) + dist(ad) = (dist(ab)x + dist(ab)y) + (dist(ac)x + 

dist(ac)y) + (dist(ad)x + dist(ad)y) =  (1+4) + (4+2) + (2+1) = 14. 
The wirelength of the gate at d is 5. Therefore, the wirelength of 
match a is 19. 

Experimental results 

Table 3 shows the results of wirelength reduction after one 
optimization pass performed on top of the baseline mapping. The 
experimental setting is the same as in the previous experiment, 
except that wirelength, instead of the switching activity, is the 
primary parameter in the cost function used for optimization. The 
notations in Table 3 are the same as in Table 2, except that instead 
of measuring the switching activity, the wirelength is measured.  

Table 3. Reduction in wirelength during mapping. 

Baseline mapping Wirelen optimization Name Delay 
Area Wirelen T,s Area Wirelen T,s 

b14 74.90 12676 655478 1.7 13289 589641 1.9
b17 103.80 55508 6570636 6.1 58260 5843631 6.7
c1355 17.30 1398 13282 0.2 1429 12878 0.2
c3540 33.50 2183 39176 0.2 2288 36297 0.2
c6288 83.10 7499 172404 1.2 7513 141939 1.3
des 13.60 6420 471372 0.6 6634 451189 0.7
i10 36.20 4095 123604 0.6 4157 114192 0.7
pj1 41.80 27094 4034882 2.8 28145 3680862 3.1
pj2 15.90 5118 384638 0.3 5317 359665 0.3
Ratio 1.00 1.00 1.00 1.03 0.92 1.08

 
Table 4 shows the corresponding numbers for technology 

mapping with supergates [20]. In this case, it is assumed that the 
gates inside one supergate are placed close to each other. In the 
approximate computation, the increase is wirelength due to the 
wires connecting the gates inside a supergate are ignored because 
the wires between the supergates are on average 50x longer than 
the size of the supergate using the given placement model. Note 
that the delays, areas, and runtimes reported in Table 4 differ from 
those in Tables 2 and 3. This is because supergates lead to 
improvements in delay at the price of increased runtime. 

Table 4. Reduction in wirelength when using supergates. 

Supergate mapping Wirelen optimization Name Delay 
Area Wirelen T,s Area Wirelen T,s 

b14 47.80 12666 582524 8.8 15198 478876 13.8
b17 65.40 54108 6097610 31.9 63460 4978561 49.9
c1355 14.70 1366 10798 0.6 1388 10273 0.9
c3540 25.50 2756 44556 1.1 2944 39186 1.7
c6288 63.70 9336 174895 5.1 9517 135210 7.7
des 12.20 7487 540267 2.7 7939 422711 4.3
i10 25.20 4433 124902 1.9 4848 114202 2.8
pj1 28.00 28946 4021123 13.6 32038 3462869 21.7
pj2 12.80 5673 398874 1.6 6230 353871 2.4
Ratio 1.00 1.00 1.00 1.09 0.85 1.54

 
The conclusion from Tables 3 and 4 is that the wirelength can 

be reduced by 8% after baseline mapping and by 15% after 
mapping with supergates, at the cost of 3% and 9% increase in 
area and some increase in runtime. The use of supergates leads to 
a more substantial reduction because of the additional structural 
freedom exploited by the mapper. We expect that the use of 
choice nodes [20] will lead to even larger reductions. 

It should be noted that, due to the simplistic placement model, 
these measurements are very approximate and may not lead to the 
same improvements after an accurate placement. Future 
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experiments will include the use of a standard cell placer for 
assessing wirelength gains from the simplistic model. Another 
experiment will include the use of an incremental placer during 
the mapping phase. 

5.3 Area recovery for standard cells and FPGAs  
Exact area minimization during technology mapping for DAGs 

is NP-hard [10] and therefore not tractable for large circuits. 
However, various heuristics for approximate area minimization 
during mapping [14][13][19][27][4][6] have shown good results.  

In this study, we use a combination of two known heuristics, 
that perform well in practice and when combined with the other 
algorithms in our mapping environment provide superior results 
compared to state-of-the-art mappers. We demonstrate this for 
both standard cell and FPGA mapping using the same basic 
algorithm.  

The first heuristic optimizes the area flow of a network mapped 
first for optimum delay. At each node, the match that optimizes 
area flow is selected, provided that it does not violate the required 
time. (The exact cost function is shown in Figure 3.) The second 
heuristic looks at the area to be gained by locally updating the 
best match at a node. In this case, the area cost of a match is equal 
to the sum of areas of all gates in the MFFC of the match, i.e. the 
gates to be removed from (added to) the mapping if the match is 
not used (is used).  

The advantage of using these two heuristics in this particular 
order is that they are complementary; area flow has a global view 
(selecting logic cones with more shared logic) while the exact 
area at a node has a local view.  

Experimental results 

In this experiment, the mapping flow, outlined in Figure 1, is 
applied to both standard cell and LUT-based FPGA mappings.  

Standard cells 

Table 5 contains the mapping results for standard cells. Some 
of the smaller benchmarks have been excluded from the set while 
a larger one (s15850) was included. The circuits were pre-
optimized by mvsis.rugged. The first column lists the benchmark 
name. The next two columns show the results of a delay-optimal 
mapping in SIS using a load-independent library mcnc.genlib.  

Table 5. Comparison of the two area-recovery heuristics for 
standard cell mapping. 

SIS New mapping with area recovery Name 
Delay Area Delay Area 1 2 1+2 T, s

b14 133.7 12701 47.8 12702 .55 .55 .61 9.5
b17 174.5 56273 65.4 54338 .53 .49 .58 39.6
des 21.9 5769 12.2 7545 .25 .21 .28 2.8
i10 58.2 3815 25.2 4448 .46 .47 .53 1.9
pj1 66.3 27073 28.0 28978 .45 .48 .53 14.9
s15850 47.5 6000 27.8 6429 .43 .43 .47 1.8
Average     .45 .44 .50
Ratio 1.00 1.00 0.46 1.10   

Columns 4 and 5 show the results of the new technology 
mapping with area recovery using supergates [21], which are used 
to increase structural flexibility exploited in technology mapping. 
The area and delay numbers are those achieved by the mapper 
with both area flow and exact area heuristics. 

The next three columns try to isolate the benefits of each 
heuristic. The column labeled “1” shows the area reduction 

achieved over the first pass of the mapper (i.e. the delay optimal 
pass) by applying only the area flow heuristic. Likewise, the 
column labeled “2” shows the area reduction achieved by 
applying only the exact area heuristic.  

The column labeled “1+2” shows the reduction when area flow 
optimization is followed by exact area optimization. These 
numbers correspond to the absolute numbers reported in column 
5. Thus for the pj1 benchmark, after the first delay-optimal 
mapping pass, the area is 61655 (not shown in table). If only area 
flow is used for recovery, the area is 33910 (reduction of 0.45); if 
only exact area is used the area is 32060 (reduction of 0.48), and 
if both are used, the area is 28978 (reduction of 0.53). 

The area and delay measurements in Table 5 show that the new 
mapper, on average, reduces delay more than two times, 
compared to SIS while the area increases by only 10%. The 
results clearly show that using a combination of the two heuristics 
works better than applying each one independently. 

The area can be further improved by optimizing phase 
assignment at the gate boundaries and sweeping equivalent gates 
in the mapped circuit. 

FPGAs 

A similar dynamic of area recovery using the proposed 
combination of two heuristics is observed in mapping for FPGAs. 

Table 6 compares the mapping results using DAOmap [4] and  
the proposed flow in baseline mode implemented in MVSIS. Both 
tools were run on a 4 CPU 3.00GHz computer with 510Mb RAM 
under Linux. The benchmarks were pre-optimized in SIS using 
script.algebraic followed by decomposition into two-input gates 
using command dmig implemented in the RASP package [9]. To 
ensure identical starting logic structures, the same pre-optimized 
benchmark files used in [4]1 were used in this experiment.  

Table 6. Comparison with DaoMap. 

DaoMap[4] MVSIS 
Example Depth LUTs Time, s Depth LUTs Time, s
alu4 6 1065 0.5 6 994 0.3 
apex2 7 1352 0.6 7 1202 0.4 
apex4 6 931 0.7 6 892 0.3 
Bigkey 3 1245 0.6 3 797 0.4 
Clma 13 5425 5.9 13 4429 1.7 
Des 5 965   0.8 5 1020 0.5 
Diffeq 10 817   0.6 10 854 0.4 
Dsip 3 686   0.5 3 686 0.3 
Elliptic 12 1965   2.0 12 2015 0.8 
ex1010 7 3564   4.0 7 3265 1.1 
ex5p 6 778   1.0 6 744 0.3 
Frisc 16 1999   1.9 15 2011 0.9 
misex3 6 980   0.8 6 955 0.3 
Pdc 7 3222   4.6 8 2919 1.2 
s298 13 1258   2.4 13 825 0.3 
s38417 9 3815   3.8 9 3852 1.6 
s38584 7 2987   27.0 7 2843 1.3 
Seq 6 1188   0.8 6 1109 0.3 
Spla 7 2734   4.0 7 2529 1.0 
Tseng 10 706   0.6 10 758 0.3 
Ratio 1.00 1.00 1.00 1.00 0.93 0.42 

 
                                                           
1 Three sequential benchmarks from this set (clma, s38417, and s38584) 
could not be entered into MVSIS due to a limitation of the BLIF parser. 
These benchmarks were preprocessed by SIS to remove the latches. The 
resulting logic cones were used for both DAOmap and MVSIS. 



Columns 2 and 5 give the number of logic levels of LUTs after 
technology mapping. These are equal in all but two cases. This 
supports the fact that both mappers perform delay-optimal 
mapping for the given logic structure. Differences may be 
explained by minor variations in manipulating the subject graph, 
such as AIG rebalancing performed by MVSIS. 

Columns 3 and 6 show the number of LUTs after technology 
mapping. The difference between the results produced by the two 
mappers reflects the fact that they use different area recovery 
heuristics and possibly, that MVSIS performs area recovery in a 
topological order, while DAOmap uses a reverse topological 
order.  

Columns 4 and 7 report the runtimes in seconds. These include 
the time needed to construct the subject graph and perform 
technology mapping with area recovery but not the time needed to 
read the input BLIF file. For smaller benchmarks, the differences 
in runtimes might be explained by the improvements to the basic 
data structures implemented in MVSIS. The increased runtime 
advantages of MVSIS on larger benchmarks may be due to better 
scalability and filtering heuristics employed by the MVSIS 
mapper.  

In summary, Table 6 demonstrates that the proposed technology 
mapping environment is applicable to FPGA mapping. In fact, the 
FPGA mapping engine implemented in our environment is 
superior to a state-of-the-art FPGA mapper with 7% less LUTs 
using less than half the runtime on average. 

5.4 Mapping using a load-dependent delay model 
This case study was designed to demonstrate that the mappings 

computed in the proposed environment, which currently uses a 
simple load-independent delay model, largely preserve their 
quality when the delay is evaluated using a load-dependent delay 
model.  

The load-dependent delay model of SIS was adopted. This 
assumes that the delay D of each pin p of a gate g is computed as 
follows: D(p) = Dind(p) + Cp * NFans(g), where  Dind(p) is a load-
independent delay of the pin, Cp is a constant, and NFans(g) is the 
number of fanouts of gate g. The genlib gate libraries included in 
the distribution of SIS use this model. 

Experimental Results 

In this experiment, summarized in Table 7, we consider a 
randomly selected subset of large benchmarks. The benchmarks 
are pre-optimized using script mvsis.rugged and mapped using 
three different methods: (1) SIS, (2) MVSIS in the baseline mode, 
and (3) MVSIS with supergates. In all cases, we report the 
resulting area and delay as measured by the SIS command 
print_map_stats and print_delay using the gate library 
mcnc.genlib from the standard SIS distribution. 

Table 7. SIS mapping vs. new mapping algorithms for load-
dependent delay model. 

The average ratios of improvements of the MVSIS mapper 
versus the SIS mapper are shown in the bottom row of the table. 
The (load-independent) MVSIS mapper in baseline mode 
produces 7% smaller area and 32% shorter delay, compared to 
SIS, even when the final delay is measured using the load-
dependent delay model. For mapping with supergates, the MVSIS 
mapper produced, on average, 1% worse  area and 39% better 
delay.  

It should be emphasized that the load-independent mapping 
result was only evaluated with the load-dependent delay model, 
while SIS used this model during the mapping process also. 
However, we propose an iteration process, where the load from 
the previous iteration is used to approximate the load of the 
current iteration. The initial iteration would use the load-
independent delay model. Iteration should improve the delays 
considerably.  

We believe that using a simple delay model at the beginning of 
the mapping process quickly finds a starting point, which is 
beneficial for iterative improvement by the transformations 
targeting a complex delay model, e.g. use of 2D tables to specify 
delays and slews for pin-to-pin rising/falling signals. In future 
work, we will explore the potential of the iterative process when 
applied to such accurate delay models. 

6 Conclusions and future work 
We described an integrated environment for technology 

mapping and demonstrated its flexibility by using different 
optimization criteria such as  power optimization, placement-
awareness, and efficient area recovery. Although some of the 
metrics used in these studies were simplistic, we believe they 
reflect general tendencies and show the potential of developing 
more accurate metrics for optimization in the new environment. 

Future work will include integrating industrial delay models in 
standard cell mapping, extending FPGA mapping to apply to 
large input LUTs, performing placement-aware mapping using a 
realistic placer, and generalizing the mapping flow to work for 
sequential circuits as discussed in [23]. 
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