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Abstract—Convolutional neural network (CNN) has become
a successful algorithm in the region of artificial intelligence
and a strong candidate for many computer vision algorithms.
But the computation complexity of CNN is much higher than
traditional algorithms. With the help of GPU acceleration, CNN-
based applications are widely deployed in servers. However, for
embedded platforms, CNN-based solutions are still too complex
to be applied. Various dedicated hardware designs on field-
programmable gate arrays (FPGAs) have been carried out to
accelerate CNNs, while few of them explore the whole design flow
for both fast deployment and high power efficiency. In this paper,
we investigate state-of-the-art CNN models and CNN-based appli-
cations. Requirements on memory, computation and the flexibility
of the system are summarized for mapping CNN on embedded
FPGAs. Based on these requirements, we propose Angel-Eye,
a programmable and flexible CNN accelerator architecture,
together with data quantization strategy and compilation tool.
Data quantization strategy helps reduce the bit-width down to
8-bit with negligible accuracy loss. The compilation tool maps
a certain CNN model efficiently onto hardware. Evaluated on
Zynq XC7Z045 platform, Angel-Eye is 6× faster and 5× bet-
ter in power efficiency than peer FPGA implementation on the
same platform. Applications of VGG network, pedestrian detec-
tion and face alignment are used to evaluate our design on Zynq
XC7Z020. NIVIDA TK1 and TX1 platforms are used for com-
parison. Angel-Eye achieves similar performance and delivers up
to 16× better energy efficiency.

Index Terms—Convolutional neural network (CNN), design
flow, embedded field-programmable gate array (FPGA), hard-
ware/software co-design.

I. INTRODUCTION

CONVOLUTIONAL neural network (CNN) is one of the
state-of-the-art artificial intelligence algorithms. With a
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large model and enough training data set, CNN generates
complex features for certain tasks, which outperforms tradi-
tional handcrafted features. Thus, CNNs can help achieve the
top performance in regions like image classification [1], [2],
object detection [3], and even stereo vision [4]. Some audio
algorithms also involves CNN as one of the feature extraction
steps [5].

Despite the outstanding performance, CNNs are hard to be
implemented in daily applications and devices, because of its
high computation complexity. Large CNN models can involve
up to about 40G operations (multiplication or addition) [2]
for the inference of one 224 × 224 image. Larger images in
real applications can scale this number up. Thus, CNN-based
applications are usually implemented as a cloud service on
large servers. For personal devices, traditional CPU platforms
are hardly able to handle CNN models with acceptable pro-
cessing speed. For tasks like object detection where real-time
processing is required, the situation is worse.

GPUs offer a high degree of parallelism and are good candi-
dates for accelerating CNN. GPUs have been widely applied
to the training and inference of CNN. The high utilization
of GPU relies on large batch size, which is the number of
images processed in parallel. Large batch size is not practical
for real-time inference. For applications on video stream like
object tracking, input images should be processed frame by
frame. The latency of the result of each frame is critical to
the application’s performance. Using batch in video process-
ing can greatly increase latency. In some tracking algorithms,
the result of one frame affects the process of the next frame.
This requires that the frames are processed one by one.

On the other hand, one can design dedicated architec-
ture for CNNs and parallelize the CNN computation within
a frame. The flexibility of field-programmable gate array
(FPGA) makes it a good candidate for CNN acceleration. With
a scalable design, we can also implement CNN accelerator
on embedded FPGAs. Several designs have been proposed for
CNN acceleration [6]–[8] but few of them discusses the overall
design flow for mapping CNN onto embedded FPGAs.

Considering the high computation and storage of CNN,
mapping it onto embedded FPGAs without simplification is
not feasible. Recent works on CNN have shown that the data
format can be compressed from 32-bit floating point to fixed
point. This greatly reduces the power and area cost of the
hardware. We have shown that 8-bit fixed point is enough for
VGG network [8]. Han et al. [9] compressed the data to 4-bit
by weight sharing. Recent work even tries 1-bit weight for
classification [10].
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(a) (b) (c) (d)

Fig. 1. Typical layers in CNN. (a) Convolutional layer. (b) FC layer (dense matrix multiplication). (c) Nonlinear layer with ReLU. (d) Max-pooling layer
with 2×2 kernel.

Various hardware architectures have been proposed to
accelerate CNN on FPGAs. Most of the works man-
ually map a target CNN model to hardware structure.
Zhang et al. [7] explored the design space for the accelerator
of AlexNet [1] and proposed a floating-point accelerator on
FPGA. Zhang et al. [11] and Sharma et al. [12] implemented
automatic design tools but are targeting a single network.
This pushes the hardware performance to the extreme while
sacrificing the flexibility to different networks.

With our investigation on CNN models and CNN-based
applications, which will be introduced in Section III, we show
that targeting a certain network may not be a good choice
for accelerator design. Another choice is to use a flexible
hardware structure and mapping different networks onto it
by changing the software. We adopt this choice and design
instructions such that we still provide good hardware effi-
ciency. This can response to the changes in network topology
quickly and support switching between different networks at
run-time.

In this paper, we extend our previous work [8] to a complete
design flow for mapping CNN onto embedded FPGA. Three
parts are included in this flow.

1) A data quantization strategy to compress the original
network to a fixed-point form.

2) A parameterized and run-time configurable hardware
architecture to support various networks and fit into
various platforms.

3) A compiler is proposed to map a CNN model onto the
hardware architecture.

Our experiments on FPGA show that the proposed design
flow delivers CNN acceleration with high energy efficiency.
The rest of this paper is organized as follows. Section II intro-
duces the background of CNN. The motivation and design
target is introduced in Section III. Details of the flow are
shown in Section IV. We show the experimental results in
Section V. Section VI reviews previous work. Section VII
concludes this paper.

II. PRELIMINARY OF CNN

A CNN consists of a set of layers. As the name suggests, the
most important layers in CNNs are the convolution (Conv) lay-
ers. Besides, fully connected (FC) layers, nonlinearity layers,
and pooling layers (down-sampling layer) are also essential in
CNN.

Conv layer applies 2-D convolution with trained filters on
input feature maps to extract local features. Multiple Conv
layers are usually cascaded to extract high-level features. An
example is shown in Fig. 1(a), where the feature maps are
blue, and the 3-D Conv kernel is green. Each pixel of each
output feature map is the inner product of a part of input with
a 3-D convolution kernel.

FC layer applies a linear transformation on the input feature
vector. It is usually used as the classifier in the final stage of a
CNN. A simple FC layer with four input and three output are
shown in Fig. 1(b) where each connection represents a weight
of the model.

Nonlinearity layer helps increase the fitting ability of neu-
ral networks. In CNN, the rectified linear unit (ReLU), as
shown in Fig. 1(c), is the most frequently used function [1].
Hyperbolic tangent function and sigmoid function are also
adopted in various neural networks.

Pooling layer is used for down-sampling. Average pool-
ing and max pooling are two major types of pooling layers.
For a pooling layer, it outputs the maximum or average
value of each subarea in the input feature map. The pool-
ing layer cannot only reduce the feature map size and the
computation for later layers, but also introduces translation
invariance. A simple max pooling layer with a 2×2 kernel is
shown in Fig. 1(d).

A practical CNN for face alignment is shown in Fig. 2. It
calculates the coordinates of five character points of human
face given the face image, two points for eyes, two points for
mouth, and one point for nose. Conv layers, pooling layers,
and nonlinearity layers are interleaved to extract features. An
FC layer at the end generates the coordinates of these points
from extracted features. We also use this network to evaluate
our hardware design.

III. MOTIVATION

Before introducing the details of the design flow, we
first investigate state-of-the-art CNN models and CNN-based
applications to see the required features for our design flow.

A. CNN Models

State-of-the-art CNN models differ greatly from the ear-
lier networks in topology. Recent work is focusing more on
the design of Conv layers than on FC layers. As in VGG
network [2], 3 FC layers with more than 0.12 billion weights
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Fig. 2. Practical CNN model for face alignment. For each layer, the kernel size, output channel number, and nonlinearity type are given.

TABLE I
DISTRIBUTION OF MAC FOR DIFFERENT CONVOLUTION KERNEL AND FC LAYER IN STATE-OF-THE-ART CNN MODELS

are used for the final classification. ResNet [14], the win-
ner of Image-Net Large-Scale Vision Recognition Challenge
(ILSVRC) 2015, implements 152 layers where only the last
layer is an FC layer. Shortcut structure is also introduced in
Conv layers to reinforce the learning ability. Networks with no
FC layer are also proposed [13], [15]. One of the most suc-
cessful applications of CNN is object detection. R-CNN [16]
extracts proposals with traditional computer vision (CV) algo-
rithm and gives each one a category and confidence with a
CNN. Fast R-CNN [17] takes the full image as the input of a
CNN and extracts proposals on the output features to reduce
the redundant calculation on overlapped proposals. Recent
work even uses a fully convolutional network for the complete
flow [3].

Convolution kernels in CNN are also changing. Recent
CNN models prefer smaller convolution kernels than larger
ones. Early CNN designs [1], [18] adopt convolution ker-
nels of size 11×11 for Conv layers, which are much larger
than the 3×3 kernels in VGG networks [2]. The 152-layer
Res-Net also uses 3×3 kernels in all the layers except for
the first one. SqueezeNet [13] even uses 1×1 kernels to
further reduce computation complexity. Experimental results
show that this kind of structure achieves comparable classifi-
cation accuracy with AlexNet [1] while the parameter size is
50× fewer. Using smaller kernels in Conv layers can reduce
the computation complexity while the network performance
remains. Statistics on how the MAC operations distribute
in state-of-the-art CNN models is shown in Table I. We
can see that convolution layers, especially those with small
kernel size like 3×3 are most popular in module design.
So the proposed hardware adopts a 3×3 convolution kernel
design to fit into most of the layers in state-of-the-art CNN
models.

Table I also shows the overall computation complexity of
these models. Usually, giga-level MAC is included in a CNN

Fig. 3. Statistics on number of input data and parameters for each layer in
VGG-11 model.

model. Using these models on embedded platforms is not
feasible without acceleration or simplification.

Besides computation complexity, storage complexity of CNN
is also high. For the CNN models listed in Table I, we also
investigate the size of intermediate data between different lay-
ers and the parameter of each layer. A sample statistics of the
VGG-11 model is shown in Fig. 3. For convolution layers, the
maximum size of the feature maps or the convolution kernels
of a single layer reaches MB level, which is hard to be totally
cached on-chip for embedded FPGA. Thus, effective memory
management and data reuse strategy should be explored.

B. Hints From Application

In many applications, like object detection [3], face recog-
nition [19], and stereo vision [4], CNN has shown its power
and beats traditional algorithms where handcrafted models are
used. Implementing this kind of algorithms on mobile devices
will do great help to the robot or smart camera manufactur-
ers. But in some cases, more than one network is needed in
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Fig. 4. Design flow from CNN model to hardware acceleration.

the algorithm. In [19], a cascaded CNN structure is proposed
for face detection. In this algorithm, the first CNN goes over
the whole image to drop useless proposals. The second CNN
is applied on the preserved proposals. More proposals are
dropped in this step. In this case, more than one CNN model
is needed in the algorithm. The results of CNN influence the
control flow of the algorithm. Simply implementing a CNN
accelerator for this kind of application is not enough.

In this case, using multiple accelerators is possible but not
a scalable solution if more models are involved. So the CNN
accelerator should be configurable at run-time. As the exe-
cution of CNN can be decided by run-time results, a host
controller is needed to handle the control flow.

IV. FLOW DESCRIPTION

The overall structure of the design flow is shown in Fig. 4.
First, to deal with the high computation complexity of CNN
models, data quantization is proposed to compress the data bit-
width to reduce the workload. Second, to deploy the model to
hardware accelerator, a compiler is proposed to automatically
generate an instruction sequence to describe the process of
CNN execution. Details of the three steps: block partition,
memory mapping, and dependency check will be discussed in
Section IV-C. A hardware accelerator is proposed to support
the instruction interface. To better describe the behavior of the
compiler, hardware architecture will be introduced before the
compiler.

A. Data Quantization

As introduced in the previous section, the high computation
complexity of CNN models makes it hard to be deployed on

Fig. 5. Data quantization flow for CNN. We add fine-tune to the flow in [8]
to further increase accuracy.

embedded platforms. Compressing the model is a good choice.
A straightforward way to compress a network is to reduce the
bit-width for computing. This utilizes the flexibility of FPGA
or ASIC design compared with GPU or CPU. It is also proved
to be an effective way in the previous work [6], [20], [21] but
limited to 16-bit or 12-bit.

Usually, a CNN is trained with 32-bit floating point data
on GPU. Latest GPU can handle 16-bit floating-point for-
mat, but still complex compared with fixed-point data format.
Compressing the bit-width means doing coarse data quanti-
zation. The dynamic range of data across different layers in
a CNN is usually large. Thus, a uniform quantization with
fixed point data format for all the layers may incur great
performance loss. To address this problem, we propose a quan-
tization strategy with which the radix position of the fixed
point data in each layer is chosen differently. The strategy
tries to find the best radix point position in each layer given
the bit-width. This is hardware friendly because only extra
shifters are needed to align the data. Fixed-point adders and
multipliers remain unchanged.

The quantization flow is shown in Fig. 5. The network is
first trained with floating point data format. Then for each
layer, we first collect the statistics on the feature maps and
network parameters to get a histogram of their logarithm value.
This inspires how we can choose the radix point position. For
each possible solution, we apply it to the network to get a
fixed-point format layer and test the accuracy after quantiza-
tion. Overflow and underflow may occur in this step. For the
overflow data, we keep its sign and set its absolute value to
the maximum. For underflow data, we set 0. Half-adjust is
used to convert the floating-point data to fixed-point format.
The quantization result with the best accuracy is kept. After
quantization on all the layers, we apply fine tuning to fur-
ther improve the accuracy. The network is converted back to
floating point format to be fine tuned: the gradient, weight,
activations are all floating point numbers during fine-tuning
for both feed-forward and back propagation. The fine tune
result is then converted to fixed-point format with the chosen
positions of radix points for each layer.

Note that we use a greedy strategy by optimizing the radix
position layer by layer. If we optimize all the layers together,
the solution space is exponential to the number of layers,
which will be too computation consuming. Our experimental
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Fig. 6. Overall architecture of Angel-Eye.

Fig. 7. Structure of a single PE.

results show that this greedy strategy can simplify state-of-
the-art network to 8-bit fixed point format with negligible
accuracy loss.

After data quantization, all the data in the network is set
to fixed-point format of the same bit-width. But the result of
each layer is extended to wider bit-width after multiplication
and accumulation.

B. Hardware Architecture

As discussed in Section III, the CNN accelerator should
be run-time configurable. Our previous work [8] is limited
to VGG models. In this paper, a flexible instruction interface
is proposed. The calculation of CNN is described with three
kinds of instructions: 1) LOAD; 2) SAVE; and 3) CALC,
corresponding to the I/O with external memory and the convo-
lution operation. Most of the variations of state-of-the-art CNN
models are covered with this instruction set. Each instruction
is 128-bit or 192-bit and contains the following fields.

1) Operation code is used to distinguish different instruc-
tions.

2) Dependency code sets the flags for interinstruction
dependency and helps to parallelize different kinds of
instructions. This enables scheduling before instruction
execution.

3) Parameter contains specific fields for each kind of
instruction. For LOAD and SAVE instructions, address
and size description for the data block in external
memory and on-chip memory is set. Offer the address
interface of on-chip memory helps the software fully
utilize the limited on-chip memory. For CALC instruc-
tions, data block address and size in on-chip memory
are set. Other flags for pooling, bias, and padding are
also set.

A hardware architecture is proposed as shown in Fig. 6 to
support this instruction interface. It can be divided into four

Fig. 8. 2-D data description example. An image of width w and height h is
stored in a 1-D buffer of size N at start address s with line step t. The colored
blocks denote the image.

parts: 1) PE array; 2) on-chip buffer; 3) external memory; and
4) controller.

1) PE Array: The PE array implements the convolution
operations in CNN. Three levels of parallelism are imple-
mented by PE array.

1) Kernel Level Parallelism: Each PE consists of several
convolution engines. Each convolution engine computes
the inner product of the convolution kernel and a window
of the image in parallel.

2) Input Channel Parallelism: Different convolution
engines in each PE do convolution on different input
channels in parallel. The results of different input chan-
nels are added together as CNN defines.

3) Output Channel Parallelism: Different PEs share the
same input channels, but not the convolution kernels,
to compute different output channels in parallel.

A detailed structure of a single PE is shown in Fig. 7. Within
each PE, different convolvers calculate 2-D convolution on dif-
ferent input channels in parallel. As introduced in Section III,
in state-of-the-art CNN models, the most popular convolution
kernel is of size 3×3. So we adopt the 3×3 convolution ker-
nel in our hardware based on the line buffer design [22] This
achieves the kernel level parallelism and makes good reuse of
image data. Though the kernel is fixed, we are still available
to support other kernel sizes as shown in Fig. 9. For smaller
kernels like 1×1 ones, the kernel is padded to 3×3 to be sup-
ported. For larger kernels like 5×5 ones, multiple 3×3 kernels
are used to cover it. This means doing 3×3 convolution on the
same image with slight deviation and add the result together.

With the help of data quantization, the multipliers and
adders can be simplified to use fixed-point data with certain
bit-width. To avoid data overflow, bit-width is extended for
intermediate data. For our 8-bit design, 24-bit intermediate
data is used. Shifters are used to align the bias with the
accumulated data and cut the final result according to data
quantization result for each layer.

2) On-Chip Buffer: This part separates PE array with exter-
nal memory. This means data I/O and calculation can be done
in parallel. Output buffer also offers intermediate result to PE
Array if more than one round of calculation is needed for an
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(a)

(b)

(c)

Fig. 9. Using 3×3 convolver for general convolution. (a) 3×3 kernel. (b) 1×1
kernel by padding. (c) 5×5 kernel by 4 3×3 kernels and padding.

Fig. 10. Structure of controller.

output channel. As mentioned in Section III, CNN is memory
intensive. Thus, we need to efficiently utilize on-chip buffer.
We introduce a 2-D description interface to manage the data,
which is shown in Fig. 8. Each of the image in the buffer is
described with the following parameters: start address, width,
height, and line step. This enables that software can fully uti-
lize the on-chip buffer for different feature map sizes. With this
interface, software can also implement the ping-pong strategy
on these buffer by splitting the matrix with address.

3) External Memory: For state-of-the-art CNN and the cur-
rently available embedded platforms, On-chip Buffer is usually
insufficient to cache all the parameters and data. External
memory is used to save all the parameters of the network
and the result of each layer. In the proposed system, exter-
nal memory is also used for the communication between the
CNN kernel and the host CPU. Using a shared memory for
data communication has the chance of reducing abundant data
transportation.

4) Controller: This part receives, decodes and issues
instructions to the other three parts. Controller monitors the
work state of each part and checks if the current instruction to
this part can be issued. Thus, the host can send the generated
instructions to controller through a simple FIFO interface and
wait for the work to finish by checking the state registers in
controller. This reduces the scheduling overhead for the host
at run-time. Other tasks can be done with the host CPU when
CNN is running.

Fig. 10 shows the structure of this part. Parallel execution of
instructions may cause data hazard. In hardware, an instruction
is executed if: 1) the corresponding hardware is free and 2) the
instructions it depends on have finished. Condition 1 is main-
tained by LOAD Ins FIFO, CALC Ins FIFO and SAVE Ins
FIFO as shown in Fig. 10. The instructions in the FIFOs are
issued when the corresponding hardware is free. Condition 2

is maintained by checking the dependency code in dep check
module.

C. Compiler

A compiler is proposed to map the network descriptor to
the instructions. Optimization is done to deal with the high
storage complexity of CNN. Some basic scheduling rules are
followed in this compiler to fully utilize the data localization
in CNN and reduce data I/O.

1) Input Channel First: Sometimes, the input feature map
needs to be cut into smaller blocks. We keep a set of
loaded input feature map blocks in input buffer and gen-
erates as many output channels’ intermediate results as
possible. This means the convolution kernels are chang-
ing in this process. Usually, feature map is much larger
than convolution kernels. So keeping the feature maps
on-chip is better than keeping the convolution kernels.

2) Output Channel Second: When the feature maps are cut
into blocks, we first calculate all the output blocks at the
same position and then move on to the next position.

3) No Intermediate Result Out: This means when the out-
put buffer is full with intermediate results, we load a
new set of input feature maps to input buffer and do
accumulation on these output channels.

4) Back and Forth: When a set of output buffer finishes the
calculation, we have traversed all the input channels. The
next round of traverse is done in the opposite direction.
This reduces a redundant LOAD between two rounds of
traverse.

Three steps are included in the compiling process.
1) Block Partition: Since the on-chip memory is limited,

especially for embedded platforms, not all the feature maps
and network parameters for one layer can be cached on-chip.
Thus, we need to partition the calculation of one layer to fit
each block into the hardware. Different partition strategies are
analyzed, in order to achieve high efficiency, while almost any
kind of partition can be implemented with the instruction set.
The main problem of the partition is the bandwidth require-
ment. Reducing I/O can reduce power consumption and saves
the bandwidth for other cooperative accelerators and the host
in the system. To remain the data I/O burst length, we require
that the feature map is cut horizontally for the row-major data
format. Then the remained problem is to decide how many
rows are in a single block.

Suppose a layer has M input feature maps of size f × f
and N output feature maps of the same size. The convolution
kernels are of size K × K. The buffer size for input, output
and convolution kernels are Bi, Bo, and Bw. r rows are in each
feature map block. Since we do not store intermediate result
to DDR, the output amount is a constant to a layer. We can
generate the functions for the input amount of input feature
maps and convolution kernels as Di and Dw

R = Bi

Mf
− K + 1 (1)

Di =

⎧
⎪⎨

⎪⎩

f

r
(r + K − 1)fM r ≤ R

f

r

{[
(r + K − 1)fM − Bi

]Nrf
Bo + Bi

}
r > R

(2)
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(a) (b) (c)

Fig. 11. Examples of block partition. Bi, Bo, and Bw are effective value. (a) M=3, N=64, f=224, K=3, Bi=24K, Bo =32K, Bw =2K. (b) M=128, N=256,
f=80, K=3, Bi =128K, Bo =32K, Bw =2K. (c) M=512, N=512, f=14, K=3, Bi =128K, Bo =32K, Bw =2K.

Dw =
⎧
⎨

⎩

MNK2 MNK2 ≤ Bw

f

r

(
MNK2 − Bw

) + Bw MNK2 > Bw.
(3)

Equation (1) gives the boundary of the two branches for Di.
If r rows are in a block, we get f /r blocks of a feature map.
r + K − 1 rows are loaded for each block considering padding
and overlap between adjacent blocks.

If r ≤ R, the blocks at the same position of all the input
channels can be buffered on-chip. Moving from one output
channel to the next will cost no extra data exchange with
external memory. So each block is loaded only once and the
total amount of input is according to the first branch of (2).
If r > R, extra data exchange is needed. Consider the compu-
tation for one output block, all the input blocks at the same
position are needed. If the previous output block is at the
same position, the input blocks can be reused. The maximum
reuse size is Bi. So data input amount for each output block is
(r +K −1)fM −Bi, except for the first output channel. To uti-
lize output buffer, Bo/rf output channels are grouped together.
This means each group can be totally buffered on-chip. So get-
ting the blocks at the same position of all the output channels
needs Nrf /Bo rounds of calculation. This corresponds to the
second branch of (2).

For convolution kernels, if the total amount of data is larger
than weight buffer, then extra data exchange is needed when
moving from the blocks at one position to the next. Similar to
the input feature maps, Bw data can be reused and we get the
second branch of (3). This is the common case for our design.

The above functions do not consider the nondivisible situa-
tions. In our compiler, a simulation is done to calculate all the
input amount for each possible r. The r with the least input
amount is selected. Three examples are shown in Fig. 11.

As for case (a), only the first branch of Di is satisfied. So
the total input amount can be expressed as (4). r should be as
large as possible in this case

Di + Dw = f

r

[
Mf (K − 1) + MNK2 − Bw

]
+ const. (4)

Case (b) is a typical layer in the middle of a CNN model
where the number of channels is large and the feature maps
are of middle size. The split condition R lies in the domain of
r so both of the branches should be considered. For the second
branch, the total input amount can be expressed as (5). In this
case, a local minimum solution can be found

Di + Dw =
(

Bi − Bw + MNK2
) f

r
+ MNf 3

Bo
r + const. (5)

Case (c) is a typical layer at the end of a CNN model where
the number of channels is large and the feature maps are small.
Only the first branch in (2) is satisfied. So the solution is the
same to case (a).

Note that Bi and Bo in case (a) are different from that in
cases (b) and (c). Only three input channels are used in this
layer while we have 16 input channels in hardware design. So
Bi is only 3/16 of the total input buffer size.

2) Memory Mapping: External memory space is allocated
for the communication between host CPU and the CNN
accelerator. First, input feature map memory space should be
allocated. The feature maps should be in the row-major for-
mat with each channel stored continuously. Then, the memory
space for the result of each layer should be allocated. The
data format will be automatically handled by hardware. Only
two blocks of memory are needed during the calculation of
one layer, one for input and one for output. Thus, the memory
space for nonadjacent layer’s result can overlap. The compiler
supports the case if an intermediate layer’s result is needed
and preserves the space from rewritten by other layers.

Then, memory space for convolution kernels and bias is
allocated. This space is preserved during the whole process of
CNN acceleration. Usually this space is only initialized once
before the first time for CNN acceleration. With the block
partition result, the order of how the convolution kernels and
bias are used is determined. A parameter.bin file filling the
parameter memory space is generated according to this order.

On-chip memory is also allocated for input and output fea-
ture map blocks and also the convolution kernels according to
the block partition result. After all the memory allocation, the
corresponding address fields in the instruction sequence are
filled.

3) Dependency Check: After memory mapping step, the
instruction set can already finish the CNN calculation pro-
cess. But data dependency check can find potential parallelism
between calculation and data I/O. This step checks the data
dependency among instructions and sets the flag bits in instruc-
tions to let the hardware explore the parallelism. The order
of the instructions is also adjusted to make the most use of
hardware parallelism.

D. Run-Time Work Flow

The run-time work flow of the proposed system is shown in
Fig. 12. In the initialization phase, the parameter.bin file gen-
erated by data quantization should be loaded into the memory
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Fig. 12. Run-time work flow of the proposed system on embedded FPGA.

TABLE II
DATA QUANTIZATION RESULT ON DIFFERENT CNN MODELS. THE TWO COLUMNS FOR EACH

BIT-WIDTH CONFIGURATION INDICATE THE MODEL IS APPLIED FINE TUNE OR NOT

according to the address given by compiler. Instructions should
be prepared in the memory as well. At run-time, non-CNN
tasks are run on the ARM core in the system. When CNN
is to be called, the input image is first copied to the physical
memory space allocated by the compiler, then the instructions
are sent down to the accelerator. While the accelerator is work-
ing, other tasks can be executed with the host CPU. The host
checks the state register of the accelerator to see if it is done.
Then the algorithm goes on. Note that multiple CNN can be
done within each frame while the graph is an example of one
inference per frame.

V. EXPERIMENT

In this section, the proposed data quantization strategy is
analyzed on different state-of-the-art CNNs. The hardware
performance is then evaluated with the quantized networks.

A. Data Quantization Result

The proposed data quantization strategy is evaluated on
four networks: 1) GoogLeNet [23]; 2) VGG-16 network [2];
3) SqueezeNet [13]; and 4) VGG-CNN-F model which is
available from the model zoo in Caffe [24]. ImageNet classi-
fication dataset [25] is used for quantization and verification.
Fifty images are used to optimize the radix position of each
layer. Five thousand images are used to test the classification
accuracy of the network. After data quantization, fine-tune is
done on all the bit-width configurations. 32-bit floating point

result is used as the baseline. Experimental results are shown
in Table II.

For all the networks, 16-bit data quantization brings within
1% accuracy loss on ImageNet dataset except for the fine-
tune result on VGG-CNN-F. This is consistent with previous
work. Going down to 8-bit, VGG-16 and VGG-CNN-F model
remains a similar performance as 16-bit while GoogLeNet and
SqueezeNet suffer further performance loss. Until 8-bit data
quantization, the performance of all the models remains rela-
tively high. With 6-bit data quantization, all the models crash,
to some extent. Thus, we choose 8- and 16-bit in our hardware
implementation.

Fine tune is also done on all the models. It works well
on VGG-16 and VGG-CNN-F model but is not helpful to
GoogLeNet and SqueezeNet. Focusing on VGG-16 and VGG-
CNN-F, we see that fine tune is important especially when the
bit-width is narrow. It brings more than 13% top-1 accuracy
improvement on VGG-16 model when using 6-bit fixed point
data.

Besides image classification, we also tested this strategy on
the face alignment network in Fig. 2. Compared with classi-
fication, the network used in this task outputs the key point
coordinates rather than a relative score and thus requires a
higher data precision. Example alignment results are shown in
Fig. 13. 8-bit data quantization in this application still offers
good performance. The coordinate error is within 2 pixels.

Another application of CNN is object detection. Recent
work is using CNN to generate proposals from an image and
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TABLE III
HARDWARE PARAMETER AND RESOURCE UTILIZATION

Fig. 13. Five point face alignment result. Red points: floating-point network
result. Green points: 8-bit fixed point network result.

Fig. 14. Pedestrian detection result using YOLO. The purple box shows the
detected target.

give each one a classification result. In our test, we choose
YOLO [26] detection algorithm with the YOLO tiny model
for pedestrian detection task. This algorithm is applied to the
video recorded from drones. 8-bit data quantization is also
applied to the convolution layers of the network. One sample
result is shown in Fig. 14. These two examples show that 8-bit
data quantization can support common applications.

B. Hardware Performance

Two FPGA-based designs of the hardware architecture are
carried out. A 16-bit version of the design is implemented on
the Xilinx XC7Z045 chip which targets at high-performance
applications. An 8-bit version is implemented on the Xilinx
XC7Z020 chip which targets at low power applications.

The hardware parameters and resource utilization of our
design are shown in Table III. All the results are generated
by Vivado 2015.4 version after synthesis and implementa-
tion. By choosing the design parameters properly, we can
fully utilize the on-chip resource. Note that we are not using

all the resource on XC7Z020 because the design coexists
with an HDMI display logic for our demo. Comparing the
8- and 16-bit version result on XC7Z045, we see that 8-bit
version offers 50% more parallelism while consuming less
resource. This shows the importance of data quantization.

The VGG16 network is used to test the performance and
energy efficiency of our design on XC7Z045 and XC7Z020
FPGAs. The result together with that of other FPGA designs
for CNN and GPU is shown in Table IV. Some conclusions
can be drawn from this comparison.

First, precision greatly affects the energy efficiency. Early
designs [7], [27] using 48-bit fixed-point data or 32-bit floating
point data are with much lower energy efficiency. Comparing
the estimated 8-bit design on XC7Z045 with the 16-bit version
also gives this conclusion. These two designs utilize sim-
ilar resource and run with the same clock frequency, thus
should consume similar power. But the 8-bit design offers
more than 50% performance improvement, which means the
energy efficiency is better.

Second, the utilization of the hardware is important. The
reported performance in [6] is 200GOPs when the network
perfectly matches the 10 × 10 convolver design. But for the
5×5 and 7×7 kernels, the performance is down to 23 GOPs.
As discussed in Section II, most of the computation in state-
of-the-art neural networks is from 3 × 3 convolution. So the
proposed design in this paper should be better.

Third, memory I/O affects the energy efficiency: The energy
cost of reading/writing data from/to memory is high. The
design in [7] only implements channel parallelism to simplify
the design of data path. But this strategy does not utilize the
data locality in the convolution operations and leads to more
data I/O. The design in [28] implements the whole AlexNet the
large VX690T chip, where the intermediate result of each layer
is not written back to memory. This further reduces data I/O
and thus achieves higher energy efficiency compared with our
16-bit design. But this kind of design is hard to be scaled down
to be deployed on embedded platforms with limited BRAM
resources.

We also compared our design with desktop GPU using the
VGG-16 network. Both batch one mode and batch 32 mode
are tested. The batch one mode suffers about 41% performance
loss compared with batch 32 mode. Our 8-bit design achieves
even higher energy efficiency with the batch 1 mode on the
large network. But the scale of GPU is too large for embedded
platforms.

For the 8-bit version implementation on XC7Z020, two
more tasks, YOLO, and face alignment are used for evaluation
besides the VGG-16 network. We compare the performance
of our design with the 28nm NVIDIA TK1 SoC and the
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TABLE IV
PERFORMANCE COMPARISON OF ANGEL-EYE ON XC7Z045 AND XC7Z020 WITH OTHER FPGA DESIGNS AND GPU

TABLE V
PERFORMANCE COMPARISON OF ANGEL-EYE ON XC7Z020 WITH TK1 AND TX1 ON DIFFERENT TASKS

latest NVIDIA TX1 SoC platforms. For YOLO and face align-
ment, CNN part is implemented on FPGA. The rest of the
algorithms are handled by the integrated CPU in the SoC.
Although a batched way of processing can fully utilize the
parallelism of GPU on TK1 or TX1, it is not a good choice
for real-time video processing because it increases latency.
For some applications like tracking, the result of one frame
is used for the computation on the next frame. This requires
the frames to be processed one by one. So we do not use
batch in our experiment. Performance comparison is shown
in Table V.

All the three platforms perform better on larger CNN mod-
els. But the proposed design offers a more stable performance.
On YOLO and face alignment tasks, Angel-Eye even offers
better performance than TK1 and achieves similar performance
as TX1. This is because the parallelism pattern of GPU
does not fit into small network well. The running power
of TK1 and TX1 are 10 W while that of Angel-Eye on
XC7Z020 is only 3.5 W. So our design can achieve up
to 16× better energy efficiency than TK1 and 10× better
than TX1.

Performance of the 8-bit version on XC7Z030 and
XC7Z045 is estimated with simulation. On XC7Z020, we
measured the actual I/O bandwidth to be about 500 Mb/s.
The estimation is based on this. XC7Z030 is with the same
bandwidth and XC7Z045 doubles the bandwidth with an extra
independent DDR port for FPGA. About 1.25× and 3.46×
performance can be achieved by these two platforms com-
pared with XC7Z020 with the help of more resource even
with a conservative 150-MHz estimated clock frequency.

VI. RELATED WORK

Though many regions in machine learning benefit from neu-
ral network like algorithms, one of the main drawbacks is the
high computation complexity, especially for CNNs. Various
ways of accelerating CNN algorithms have been proposed,
in hardware level, with dedicated designed accelerators, or in
software level, aiming at compressing the network.

A. CNN Accelerator

It is common to accelerate the original version of CNN with
32-bit floating point data on GPUs since Caffe [24] and many
other neural network frameworks are offering convenient GPU
interface. But the energy efficiency is not good and the high
power of GPUs limits the application range. Thus, various
architectures have been proposed to accelerate CNNs, includ-
ing both ASIC and FPGA designs. As discussed in [7], one
Conv Layer can be expressed as six nested loops on input
channel, output channel, 2-D on feature map, and 2-D on con-
volution kernel. The key point in CNN accelerator design is
the unrolling strategy of the loops for each layer.

Fixed loop unrolling strategy is commonly applied in CNN
accelerator designs. Zhang et al. [7] analyzed the data shar-
ing relation of different iterations of a loop to evaluate the
cost of unrolling. Calculation on different input channels and
that for different output channels are of the lowest cost to
be parallelized. But feature map level and kernel level par-
allelization are not fully explored. On these two levels, data
locality is obvious. Utilizing this character can further reduce
the data movement between different memory hierarchies and
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TABLE VI
DESIGN CHARACTER OF STATE-OF-THE-ART CNN ACCELERATORS

thus reduce energy cost. nn-X [6] adopted 2-D convolver
design of size 10×10, which achieves kernel level paralleliza-
tion. Our previous work [8] uses a 3×3 convolver design
targeting at VGG network. Smaller convolver fits better with
the trend of reducing convolution kernel size in CNN design.
ShiDianNao [20] implements a mesh grid style structure to
achieve parallelization on feature map level. A similar strategy
is also adopted by Sim et al. [31].

Since the size of each layer is different, it is hard to use
a fixed loop unrolling strategy to fit into all the layers. This
means the calculation logic is not fully utilized. Configurable
loop unrolling costs much in data routing but can fit into dif-
ferent network topologies better. Chen et al. [30] proposed a
2-D PE array design optimized for CNN. The global bus is
used to broadcast and collect data from PEs. The connections
are configurable to group different PEs together as convolvers
of different sizes. The overhead is the routing cost and extra
bits to identify the target PE of the data.

All the designs above achieves intra layer paralleliza-
tion. Some other works focus on inter layer parallelization.
Li et al. [28] used a pipeline design and accelerates all the
layers concurrently on a single chip. By implementing each
layer independently, calculation resource can be evenly allo-
cated among different layers to achieve the highest efficiency
for all the layers. This kind of solution is easily scaled up to
a larger platform but hard to be scaled down. Also, state of
the art CNN model involves up to 100 layers [14] which is
also hard to be supported by this solution. Another work by
Shen et al. [32] implement a similar design but group some
of the adjacent layers, making it less resource consuming.

Besides computation, the high storage complexity is another
challenge for CNN accelerator designs. For real applications,
totally using on-chip memory is not feasible, especially on
embedded systems. Du et al. [20] discussed data management
in on-chip cache to fully utilize the hardware parallelization
strategy. All the data is assumed on-chip in this paper, so
no external memory is used. Qiu et al. [8] discussed the
data arrangement in external memory to maximize the burst
length of data access. This raises the bandwidth utility factor.
Multilayer implementations [28], [32] reduce the communi-
cation with the external memory for intermediate results but
requires large on-chip memory.

A comparison of these designs is in Table VI. As discussed
above, memory system and parallel strategy for each work are
listed in this table. It is common to use a single layer imple-
mentation with static loop unroll strategy, which is the same as
this paper. The latest research on CNN explores the sparsity
to further reduce the computation complexity. In this situa-
tion, more dedicated hardware should be designed to utilize
sparsity. Latest accelerator designs [33]–[35] is focusing on
sparsity to achieve higher energy efficiency.

B. Network Compression

CNN offers a high performance against traditional CV
algorithms but brings with it high computation complexity.
Besides hardware acceleration, reducing the model complex-
ity is also a cutting edge topic. On CPU and GPU platforms,
usually 32-bit floating point data is used for computing.
Gokhale et al. [6] and Du et al. [20] use 16-bit fixed-point
data with 8-bit for integer and 8-bit for fractional in their
hardware design, which proves to bring negligible accuracy
loss. Our previous work [8] shows that 8-bit for CONV layers
and 4-bit for FC layers is a promising solution for the VGG
model. Han et al. [9] compressed the data to 4-bit by cluster-
ing. But the data are converted back to 32-bit floating point
format for computation. Some of the recent work [10], [36]
is trying 1-bit or 2-bit data. This requires more techniques in
training the network. More experiments are needed to validate
these techniques.

Besides reducing the bit-width, reducing the number of con-
nections is another way to compress the network. Singular
value decomposition is a common way for matrix approx-
imation and has been applied to compress FC layers [9].
Han et al. [9] used iterative pruning in their work which
reduces the number of connections of the FC layers of
VGG-16 model to 1/13.

C. CNN Acceleration Design Flow

Besides single accelerator design, some work focuses on
automatic tool mapping CNN onto hardware, which is similar
to this paper. Zhang et al. [11] proposed a CNN acceleration
framework to automatically choose the best hardware parame-
ters given the model files from Caffe. Dedicated design space
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exploration is done based on roofline model. Data organization
in DRAM is also handled in the framework. In [12], an ISA is
proposed to describe the network as a data flow graph (DFG).
With the DFG, software compiler can statically schedule the
whole process of computing one network. But the graph is also
converted to a finite state machine and is not run-time con-
figurable. Another framework by [37] partitions deep learning
algorithms into basic blocks and generates a combination of
the blocks targeting at a certain network.

On the server side, targeting at a single network is a good
choice to achieve extreme hardware performance. For real-
time mobile applications, more than one network may be
needed. The overhead of programming FPGA at run-time to
switch network is too large. In this paper, the proposed CNN
acceleration flow isolates the design of hardware and software.
The hardware parameter can be chosen based on a certain
network structure but it supports different networks by simply
changing the software at run-time. This makes it more suit-
able for complex applications. Also, this kind of design usually
requires more resource than single-layer implementations and
thus is not suitable for embedded FPGA platforms.

VII. CONCLUSION

In this paper, we propose a complete flow for mapping
CNN onto customized hardware. A data quantization strategy
is proposed to compress the bit-width used in CNN. Evaluated
on state-of-the-art CNN models, this strategy brings negligible
performance loss with 16- and 8-bit configuration. A compiler
is also implemented to map different CNN models to instruc-
tion sequences. Optimization is done on compilation to fully
utilize the on-chip cache and the parallelism between calcula-
tion and data I/O. For the hardware, we extend our previous
work [8] with a flexible instruction interface to support this
paper. Experimental results show that 16-bit Angel-Eye on
XC7Z045 is 6× faster and 5× better in power efficiency than
peer FPGA implementation on the same platform. The 8-bit
version on XC7Z020 achieves up to 16× better energy effi-
ciency than NVIDIA TK1 and 10× better than TX1. More
importantly, we show that data bitwidth, computation resource
utilization, and memory I/O amount are the three aspects
that should be focused to design efficient hardware for CNN
acceleration.

Some aspects of this paper still need improvement. For CNN
acceleration, better performance can be achieved. As men-
tioned in Section VI-B, the latest network compression work is
adopting 1-bit design. Focusing on hardware accelerator with
narrower bit-width is one direction of future work. The sparsity
of CNN offers more chance of acceleration. Also, fast algo-
rithm on convolution has been proposed and proved to work
well on CNN [38], integrating this algorithm into the accel-
erator is also a good choice to further improve the hardware
performance.

For the whole system, simply accelerate CNN may not be
the best choice. Though CNN is powerful in many regions, it
cannot cover every corner of an application. Optimization on
integration with other accelerators to explore the best system
level design should be done in the future.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifica-
tion with deep convolutional neural networks,” in Proc. NIPS, 2012,
pp. 1097–1105.

[2] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” CoRR, vol. abs/1409.1556, 2014.

[3] J. Dai, Y. Li, K. He, and J. Sun, “R-FCN: Object detection via region-
based fully convolutional networks,” in Proc. 29th Adv. Neural Inf.
Process. Syst., 2016, pp. 379–387.

[4] J. Žbontar and Y. LeCun, “Stereo matching by training a convolutional
neural network to compare image patches,” J. Mach. Learn. Res., vol. 17,
no. 1, pp. 2287–2318, 2016.

[5] O. Abdel-Hamid, L. Deng, and D. Yu, “Exploring convolutional neural
network structures and optimization techniques for speech recognition,”
in Proc. Interspeech, Lyon, France, 2013, pp. 3366–3370.

[6] V. Gokhale, J. Jin, A. Dundar, B. Martini, and E. Culurciello, “A 240
g-ops/s mobile coprocessor for deep neural networks,” in Proc. CVPRW,
Columbus, OH, USA, 2014, pp. 696–701.

[7] C. Zhang et al., “Optimizing FPGA-based accelerator design for deep
convolutional neural networks,” in Proc. FPGA, Monterey, CA, USA,
2015, pp. 161–170.

[8] J. Qiu et al., “Going deeper with embedded FPGA platform for con-
volutional neural network,” in Proc. FPGA, Monterey, CA, USA, 2016,
pp. 26–35.

[9] S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning both weights and
connections for efficient neural network,” in Proc. NIPS, Montreal, QC,
Canada, 2015, pp. 1135–1143.

[10] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net:
Imagenet classification using binary convolutional neural networks,” in
Proc. Eur. Conf. Comput. Vis., Amsterdam, The Netherlands, 2016,
pp. 525–542.

[11] C. Zhang, Z. Fang, P. Zhou, P. Pan, and J. Cong, “Caffeine: Towards
uniformed representation and acceleration for deep convolutional neural
networks,” in Proc. 35th Int. Conf. Comput.-Aided Design, Austin, TX,
USA, 2016, pp. 1–8.

[12] H. Sharma et al., “DNNWEAVER: From high-level deep network mod-
els to FPGA acceleration,” in Proc. Workshop Cogn. Archit., Atlanta,
GA, USA, 2016.

[13] F. N. Iandola et al., “Squeezenet: Alexnet-level accuracy with 50x fewer
parameters and <0.5mb model size,” CoRR, vol. abs/1602.07360, 2016.

[14] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Las
Vegas, NV, USA, 2016, pp. 770–778.

[15] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proc. CVPR, Boston, MA, USA, 2015,
pp. 3431–3440.

[16] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierar-
chies for accurate object detection and semantic segmentation,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., Columbus, OH, USA, 2014,
pp. 580–587.

[17] R. Girshick, “Fast R-CNN,” in Proc. IEEE Int. Conf. Comput. Vis.,
Santiago, Chile, 2015, pp. 1440–1448.

[18] M. D. Zeiler and R. Fergus, “Visualizing and understanding con-
volutional networks,” in Proc. ECCV, Zürich, Switzerland, 2014,
pp. 818–833.

[19] H. Li, Z. Lin, X. Shen, J. Brandt, and G. Hua, “A convolutional neural
network cascade for face detection,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Boston, MA, USA, 2015, pp. 5325–5334.

[20] Z. Du et al., “ShiDianNao: Shifting vision processing closer to the
sensor,” in Proc. ISCA, Portland, OR, USA, 2015, pp. 92–104.

[21] L. Cavigelli et al., “Origami: A convolutional network accelerator,” in
Proc. 25th Edition Great Lakes Symp. VLSI, Pittsburgh, PA, USA, 2015,
pp. 199–204.

[22] B. Bosi, G. Bois, and Y. Savaria, “Reconfigurable pipelined 2-D con-
volvers for fast digital signal processing,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 7, no. 3, pp. 299–308, Sep. 1999.

[23] C. Szegedy et al., “Going deeper with convolutions,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., Boston, MA, USA, 2015, pp. 1–9.

[24] Y. Jia et al., “Caffe: Convolutional architecture for fast feature embed-
ding,” in Proc. 22nd ACM Int. Conf. Multimedia, Orlando, FL, USA,
2014, pp. 675–678.

[25] L. Fei-Fei, “Imagenet: Crowdsourcing, benchmarking & other cool
things,” in Proc. CMU VASC Seminar, 2010.

[26] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Las Vegas, NV, USA, 2016, pp. 779–788.



GUO et al.: ANGEL-EYE: COMPLETE DESIGN FLOW FOR MAPPING CNN ONTO EMBEDDED FPGA 47

[27] S. Chakradhar, M. Sankaradas, V. Jakkula, and S. Cadambi, “A dynami-
cally configurable coprocessor for convolutional neural networks,” ACM
SIGARCH Comput. Archit. News, vol. 38, no. 3, pp. 247–257, 2010.

[28] H. Li et al., “A high performance FPGA-based accelerator for large-scale
convolutional neural networks,” in Proc. 26th Int. Conf. Field Program.
Logic Appl., Lausanne, Switzerland, 2016, pp. 1–9.

[29] C. Farabet et al., “Neuflow: A runtime reconfigurable dataflow processor
for vision,” in Proc. CVPR IEEE Workshops, Sydney, NSW, Australia,
2011, pp. 109–116.

[30] Y.-H. Chen, T. Krishna, J. Emer, and V. Sze, “Eyeriss: An
energy-efficient reconfigurable accelerator for deep convolutional neu-
ral networks,” in Proc. ISSCC, San Francisco, CA, USA, 2016,
pp. 262–263.

[31] J. Sim et al., “A 1.42tops/w deep convolutional neural network
recognition processor for intelligent ioe systems,” in Proc. ISSCC,
San Francisco, CA, USA, 2016, pp. 264–265.

[32] Y. Shen, M. Ferdman, and P. Milder, “Overcoming resource underuti-
lization in spatial CNN accelerators,” in Proc. 26th Int. Conf. Field
Program. Logic Appl. (FPL), Lausanne, Switzerland, 2016, pp. 1–4.

[33] S. Han et al., “EIE: Efficient inference engine on compressed deep
neural network,” in Proc. 43rd ACM/IEEE Annu. Int. Symp. Comput.
Archit. (ISCA), Seoul, South Korea, Jun. 2016, pp. 243–254.

[34] J. Albericio et al., “Cnvlutin: Ineffectual-neuron-free deep neural
network computing,” in Proc. ACM/IEEE 43rd Annu. Int. Symp. Comput.
Archit. (ISCA), Seoul, South Korea, 2016, pp. 1–13.

[35] S. Zhang et al., “Cambricon-X: An accelerator for sparse neu-
ral networks,” in Proc. 49th Annu. IEEE/ACM Int. Symp.
Microarchit. (MICRO), Taipei, Taiwan, 2016, pp. 1–12.

[36] S. Zhou et al., “DoReFa-net: Training low bitwidth convolutional neu-
ral networks with low bitwidth gradients,” CoRR, vol. abs/1606.06160,
2016.

[37] Y. Wang, J. Xu, Y. Han, H. Li, and X. Li, “Deepburning: Automatic
generation of FPGA-based learning accelerators for the neural network
family,” in Proc. 53rd Annu. Design Autom. Conf., Austin, TX, USA,
2016, pp. 1–6.

[38] A. Lavin and S. Gray, “Fast algorithms for convolutional neural
networks,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Las
Vegas, NV, USA, 2016, pp. 4013–4021.

Kaiyuan Guo (S’16) received the B.S. degree from
Tsinghua University, Beijing, China, in 2015, where
he is currently pursuing the Ph.D. degree with the
Department of Electronic Engineering.

His current research interests include hardware
acceleration of deep learning and SLAM.

Lingzhi Sui received the B.S. degree from Tsinghua
University, Beijing, China, in 2016.

He is currently a Senior Engineer with DeePhi
Technology Company Ltd., Beijing. His cur-
rent research interests include network optimiza-
tion and scheduling for hardware neural network
acceleration.

Jiantao Qiu received the B.S. degree in electronic
engineering from Tsinghua University, Beijing,
China, in 2015, where he is currently pursuing the
Ph.D. degree with the Center for Brain Inspired
Computing Research.

His current research interests include computing
architecture, brain inspired computing, and system
scheduling.

Jincheng Yu received the B.S. degree from
Tsinghua University, Beijing, China, in 2016, where
he is currently pursuing the Ph.D. degree with the
Department of Electronic Engineering.

His current research interests include software
optimization and hardware architecture for deep
learning acceleration.

Junbin Wang received the B.S. degree in electronic
engineering from Chongqing University, Chongqing,
China, in 2013, and the master’s degree from the
Institute of Microelectronics, Tsinghua University,
Beijing, China, in 2016.

He is currently a CNN Development Engineer
with Deephi Technology Company Ltd., Beijing. His
current research interests include SoC design, deep
learning, and reconfigurable computing.

Song Yao received the B.S. degree from Tsinghua
University, Beijing, China, in 2015.

He is currently the CEO and the Co-Founder
with Deephi Technology Company Ltd., Beijing, a
startup that is devoted to provide the world with
more efficient deep learning platform. He is a well-
recognized researcher of hardware acceleration of
deep learning.

Mr. Yao was a recipient of several awards, includ-
ing the FPGA 2017 Best Paper, the Top 30 AI
Entrepreneurs in China, and the Forbes 30 Under
30 Asia.

Song Han received the B.S. degree from Tsinghua
University, Beijing, China, in 2012, and the M.S.
degree from Stanford University, Stanford, CA,
USA, in 2014, where he is currently pursu-
ing the Ph.D. degree under the supervision of
Prof. B. Dally.

His current research interests include energy-
efficient deep learning, at the intersection between
machine learning and computer architecture.

Mr. Han was a recipient of the Best Paper Award
at ICLR’16 and FPGA’17.

Yu Wang (S’05–M’07–SM’14) received the B.S.
and Ph.D. (Hons.) degrees from Tsinghua University,
Beijing, China, in 2002 and 2007, respectively.

He is currently an Associate Professor with the
Department of Electronic Engineering, Tsinghua
University, Beijing. His current research interests
include application specific hardware computing
(especially on the brain related problems), parallel
circuit analysis, and power/reliability aware system
design methodology.

Huazhong Yang (M’97–SM’00) received the B.S.
degree in microelectronics and the M.S. and Ph.D.
degrees in electronic engineering from Tsinghua
University, Beijing, China, in 1989, 1993, and 1998,
respectively.

In 1993, he joined the Department of Electronic
Engineering, Tsinghua University, where he is cur-
rently a Specially Appointed Professor of the
Cheung Kong Scholars Program. He has authored
and co-authored over 200 technical papers and holds
70 granted patents. His current research interests

include wireless sensor networks, data converters, parallel circuit simulation
algorithms, nonvolatile processors, and energy-harvesting circuits.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZapfChancery-MediumItalic
    /ZapfDingBats
    /ZapfDingbatsITCbyBT-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


