
905 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL. 9 NO. 9. SEPTEMBER 1990

NOVA: State Assignment of Finite State Machines
for Optimal Two-Level Logic Implementation

TIZIANO VILLA AND ALBERT0 SANGIOVANNI-VINCENTELLI, FELLOW, IEEE

Abstract-The problem of encoding the states of a synchronous finite
state machine (FSM), so that the area of a two-level implementation of
the combinational logic is minimized, is addressed. As in previous ap-
proaches, the problem is reduced to the solution of the combinatorial
optimization problems defined by the translation of the cover obtained
by a multiple-valued logic minimization or by a symbolic minimization
into a compatible Boolean representation. In this paper we present al-
gorithms for their solution, based on a new theoretical framework that
offers advantages over previous approaches to develop effective heu-
ristics. The algorithms are part of NOVA, a program for optimal en-
coding of control logic. Final areas averaging 20% less than other state
assignment programs and 30% less than the best random solutions have
been obtained. Literal counts averaging 30% less than the best random
solutions have been obtained.

I. INTRODUCTION
HE AUTOMATIC synthesis of a sequential circuit as T a programmable logic array (PLA)-based finite state

machine (FSM) involves functional design, logic design,
topological design, and physical design. The step of logic
design maps the functional description into a logic rep-
resentation in terms of logic variables. A representation
of the symbolic states (and also of the proper inputs and
outputs, if they are symbolic) in terms of Boolean vari-
ables, called state assignment, is chosen. The complexity
of the combinational component of the FSM depends
heavily on the state assignment and selection of memory
elements. PLA optimization aims at minimizing the area
occupied by the PLA and the delay through it (propor-
tional to the number of product-terms, to a first-order ap-
proximation). The PLA area is proportional to the product
of the number of rows (product-terms) times the number
of columns. The optimum state assignment (or encoding)
problem looks for the assignment corresponding to a PLA
implementation of minimum area. The (minimum) num-
ber of rows is the cardinality of the (minimum) cover of
the FSM combinational component according to a given
assignment. The number of bits used to represent the states

Manuscript received June 22, 1989; revised October9, 1989. This work
was supported in part by DARPA under Contract N00039-87-C-0182, by
the National Science Foundation under Grant ECS 84-30435, and by grants
from MICRO, AMD, AT&T Bell Laboratories, Bell Communications Re-
search, GE, Harris, HP, Hughes, Intel, Microelectronics and Computer
Technology, Olivetti, PhilipdSignetics, Rockwell, Silicon Computers, and
Xerox. This paper was recommended by Editor M. R. Lightner.

This is an expanded version of the work presented at DAC’89.
The authors are with the Department of Electrical Engineering and

IEEE Log Number 9036179.
Computer Science, University of California, Berkeley, CA 94720.

(and the proper inputs and outputs, in case they are sym-
bolic) is related to the number of PLA columns. There-
fore, the PLA area depends in a complex way on the state
assignment.

There is a rich early literature on the state assignment
problem. Armstrong [3] was the first to formulate the en-
coding problem as a graph embedding problem, where a
graph defines adjacency relations (in terms of Hamming
distance) between the codes of the states to be preserved
by a subgraph isomorphism on the encoding cube, with
the objective to minimize the number of gates of the final
implementation. Others [13, [2], [4], [5] proposed alge-
braic methods based on partition theory and on a reduced
dependence criterion. In [6] conditions to find a critical
race free encoding of asynchronous sequential machines
were reduced to a graph embedding problem. Each input
defined a partition of the states (or of a subset of the states)
by the successor relation. The states were assigned to ver-
tices in the cube so that for each partition the images of
all states in the same block formed a path (using, if nec-
essary, states not also included in the partition or unused
vertices, each for at most one block) disjoint from the
ones associated to the other blocks. In terms of imple-
mentations of minimum area, these approches suffered
from a weak connection with the logic optimization steps
after the encoding.

Advances in the state assignment problem [7]-[9] have
made a key connection with multiple-valued logic min-
imization: the states of a FSM are represented as the set
of possible values for a single multiple-valued variable.
Logic minimization is applied on a symbolic representa-
tion of the combinational component of the FSM. The
effect of multiple-valued logic minimization is to group
together the states that are mapped by some input into the
same next state and assert the same output. A new com-
binatorial optimization problem arises (called FACE HY-
PERCUBE EMBEDDING) of assigning each of these sets
(called input constraints) to subcubes of a Boolean k-cube,
for a minimum k, in a way that each subcube contains all
and only all the codes of the states included in the corre-
sponding constraint. More recently, symbolic minimiza-
tion [lo], [17] has been proposed to take into account the
effect of the encoding on the next state part. Symbolic
minimization is a technique that yields a minimal encod-
ing-independent sum-of-products representation of a sym-
bolic function. It builds up a directed acyclic graph, where

0278-0070/90/0900-0905$01 .OO 0 1990 IEEE

906 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL. 9 NO. 9. SEPTEMBER 1990

the nodes are the next states and an edge (U, U) corre-
sponds to the covering constraint (called output con-
straint) that the code of U covers bit-wise the code of U.

The translation of the cover obtained by symbolic min-
imization into a compatible Boolean representation de-
fines simultaneously a face hypercube embedding prob-
lem and an output covering problem (called ORDERED
FACE HYPERCUBE EMBEDDING).

Ongoing work [161, [181 is focusing on the output en-
coding problem defined in the optimal state assignment.
Output minimization techniques may be seen as setting
disjunctive constraints on the codes of the symbolic states
(the code of some states is the logical disjunction of the
codes of two or more other states). Finding a compatible
Boolean representation entails solving a difficult encoding
problem based on input, output, and disjunctive con-
straints.

Other recent approaches [131 rely on local optimization
rules defined on a control flowgraph. These rules are ex-
pressed as constraints on the codes of the internal vari-
ables and an encoding algorithm tries to satisfy most of
these constraints.

In this paper we present algorithms for optimal state
assignment of FSM’s based on the solution of face hy-
percube embedding and ordered face hypercube embed-
ding. We revisit symbolic minimization and describe an
effective version of it. The proposed theoretical frame-
work offers substantial advantages over previous ap-
proaches to develop effective algorithms. The algorithms
are part of NOVA, a program for optimal encoding of
control logic, available as a tool of the Berkeley logic syn-
thesis system [l l] , [15]. The first three algorithms: iex-
act-code, ihybrid-code, and igreedy-code, solve face hy-
percube embedding. The last algorithm, iohybrid-code,
solves ordered face hypercube embedding. iexact-code is
an exact algorithm that finds an encoding satisfying all
input constraints and minimizing the encoding length.
ihybrid-code and igreedy-code are heuristic encoding al-
gorithms that maximize input constraint satisfaction, for
a (user or default)-given encoding length. ihybrid-code,
based on a polynomial version of iexact-code, yields so-
lutions of high quality and guarantees the satisfaction of
all input constraints, for an encoding space large enough.
iohybrid-code is a heuristic encoding algorithm that max-
imizes simultaneous input and output constraint satisfac-
tion, according to an appropriately defined metric. It is
based on an adaptation of ihybrid-code to deal with both
input and output constraints.

We present results over a wide range of benchmarks
that show that the final areas obtained by the best solution
of NOVA average 20% less than those obtained by KISS
[9], and 30% less than the best of a number of random
state assignments. Final areas obtained by iohybrid-code
average 30% less than the results reported for Cappuc-
cino/Cream [101. Although NOVA targets two-level log-
ical implementations, running our examples also through
MIS-11, a multilevel logic synthesis system developed at
UCB, we found that the final literal counts in a factored

form of the logic when encoded by NOVA average 30%
less than the literal counts obtained by the best of a num-
ber of random state assignments. Comparisons with
MUSTANG [12] in the two-level and multilevel case are
also reported. Even though NOVA was not designed as a
multilevel state assignment program, its performances
compare successfully with MUSTANG.

The paper is organized as follows. Algorithms iexact-
code, ihybrid-code, igreedy-code and iohybrid-code are
described, respectively, in Sections 111-VI. Results on the
benchmark examples are presented in Section VI1 to-
gether with final remarks and future work.

11. PRELIMINARIES
In this section, we introduce some background material

that is used throughout the paper. The definitions are con-
sistent with [9]-[lo], to which we refer for details.

2. I . Encoding Problems in Logic Synthesis
Tabular descriptions of logic functions at the structural

level are transformed into Boolean representations by re-
placing each symbolic entry by Boolean vectors. An as-
signment of Boolean vectors to symbolic entries is called
an encoding. The optimization of logic functions per-
formed on the Boolean representation is heavily depen-
dent on the representation of the variables. For instance,
the complexity of the combinational component of a FSM
depends on the assignment of Boolean variables to the
internal states. The following optimal encoding problems
may be defined, with respect to a proper cost function:

a) optimal encoding of inputs of a logic function. A
problem in class A is the optimal assignment of op-
codes for a microprocessor,

b) optimal encoding of outputs of a logic function,
c) optimal encoding of both inputs and outputs (or

some inputs and some outputs) of a logic function.
d) optimal encoding of both inputs and outputs (or

some inputs and some outputs) of a logic function,
where the encoding of the inputs (or some inputs) is
the same as the encoding of the outputs (or some
outputs). Encoding the states of a FSM is a problem
in class D since the state variables appear both as
input (present state) and output (next state) vari-
ables. Another problem in class D is encoding the
signals connecting two (or more) combinational cir-
cuits.

In this paper we study the problem of the optimal state
(and proper input) assignment of FSM’s, using as a cost
function the area of a two-level implementation. In Sec-
tions 111-V we approximate the solution of the state as-
signment problem by modeling it as a problem in class A,
i.e., driving the assignment only from information related
to the optimal encoding of the present states (and the
proper inputs). The algorithms proposed are applicable to
any problem in class A. In Section V we model the state
assignment problem as a problem in class D, using a
scheme of symbolic minimization [101 that captures par-

VILLA AND SANGIOVANNI-VINCENTELLI: NOVA: ASSIGNMENT OF FSM’S FOR LOGIC IMPLEMENTATION

tially the effect of the next states in case of two-level im-
plementations.

2 .2 . Multiple-valued Minimization of FSM’s
FSM’s can be represented by state transition tables.

State transitions tables have as many rows as transitions
in the FSM. The rows of the table are divided into four
fields corresponding to the primary inputs, present states,
next states, and primary outputs of the FSM. Each field
is a string of characters. The primary inputs may be in
Boolean form or symbolic. We assume that the primary
outputs of the FSM are always in Boolean form. Note that
the input and output patterns may contain don’t care en-
tries. A state transition table defines a symbolic cover of
the combinational component of a FSM. The rows of the
state transition table are called symbolic implicants of the
symbolic cover. The symbolic cover reresentation may be
seen as a multiple-valued logic representation, where each
present state mnemonic is one of the possible values of a
present-state multiple-valued variable. A similar identifi-
cation holds for the next states (and the proper inputs, if
they are symbolic). A multiple-valued logic minimizer can
be used to compute a minimal or minimum multiple-val-
ued symbolic cover. The effect of multiple-valued logic
minimization is to determine subsets of states that are
mapped by some input combination into the same next
state and assert the same output. These subsets of states
are called input constraints, because they constrain the
encoding of the present states (and of the proper inputs,
if symbolic) when transforming the symbolic representa-
tion into a compatible Boolean representation. The goal
of state assignment is to assign each of these subsets of
states to subcubes of a Boolean k-cube, for a minimum k ,
in a way that each subcube contains all and only the codes
of the states included in the corresponding constraint. This
problem is called face hypercube embedding.

From now on, algorithms for the satisfaction of input
constraints are algorithms that can solve any problem in
class A, although here we are particularly concerned with
FSM encoding approximated as a problem in class A , by
means of multiple-valued minimization applied to a sym-
bolic cover of the FSM. Later, in Section VI, we will
define other kinds of constraints arising when dealing with
FSM encoding solved more generally as a problem in class
D. In the next section we describe a theoretical framework
and an exact algorithm to solve face hypercube embed-
ding.

111. AN EXACT ALGORITHM FOR FACE HYPERCUBE
EMBEDDING

In this section we present iexact-code, an exact algo-
rithm that finds an encoding satisfying all input con-
straints and minimizing the encoding length.

3. I Theoretical Background
Consider the problem FACE HYPERCUBE EMBED-

DING: given a collection of subsets of states or symbols

907

4

1

Fig. 1. Encoding of examples 2 .1 and 3.1.

(called input constraints and represented as characteristic
vectors of the subsets), assign each of these subsets to
subcubes (called faces) of a Boolean hypercube of mini-
mum dimension in such a way that each face does not
intersect the Boolean vector (called encoding, code or as-
signment) assigned to any state not contained in the cor-
responding constraint. Formally it may be stated as the
following.

INSTANCE: Set S = { 1, . . . , n } and a collection IC
of subsets ic G S .

QUESTION: Find the minimum k and an injective map
ffrom the sets E IC U S to B k , where B = { 0 , 1, x } ,
such that for all subsets ic E IC and singletons s E S :

f (i c) n f (s) z ip e s E ic.

Example 3. I . I : Consider IC = { 11 10000, 01 11000,
0000111, 1000110, 0000011, OOllOOO}: A solution is k
= 4 and f(1110000) = ~ 0 x 0 , f(OlllOO0) = 1 ~ x 0 ,
f(00001 11) = x l x l , f(10001 10) = oxxx, f(000001 1)
= x l l l , f(0011000) = 1x00, f(1000000) = 0000,
f(0100000) = 1010, f(0010000) = 1000, f(0001000)
= 1100, f(0000100) = 0101, f(0000010) = 0111,

f(OOOOOO1) = 1111. Fig. 1 shows the encoding on the
4-cube.

To verify the correctness for ic = 1110000, we com-
pute:

f (i i ioo00) = xoxo nf(1oooooo) = oooo # ip

f (i i ioo00) = xoxo n f(oiooooo) = io10 + ip

f (i i i oo00) = xoxo nf(ooioo0O) = io00 + ip

f (i i i oo00) = xoxo n f(oooio00) = 1100 = ip

f(i i ioooo) = xoxo n f(oo00ioo) = 0101 = ip

f (i i ioo00) = xoxo nf(oooO0io) = 0111 = ip

f (i i ioo00) = xoxo nf (oooooo i) = 1111 = ip.

To capture the inclusion relations among the faces of
the hypercube, we choose to represent it with its under-

908 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL. 9 NO. 9. SEPTEMBER 1990

000

Fig. 2. The 3-cube poset.

Fig. 3. The 3-cube face-poset.

lying face-poset (partially ordered set), obtained by or-
dering all faces of all available dimensions according to
the Boolean inclusion relation. Formally the n-cube face-
poset (or n-face-poset) is the set of all sequences of 0, 1,
x (don’t care) of length rr(cal1ed faces). It is a poset with
the natural partial ordering defined by f 5 g iff f (i) 5
g (i) forall i I n (0 I x , 1 I x) . Notice that then-cube
face-poset is completely different from the n-cube poset ,
i.e., the poset structure induced on the n-cube by the nat-
ural partial ordering on the Hamming codes of the vertices
and isomorphic to the poset consisting of all subsets of an
n-element set ordered by inclusion. Fig. 2 shows the
3-cube poset and Fig. 3 shows the 3-cube face-poset,
drawn as Hasse diagrams, i.e., directed acyclic graphs
whose nodes are faces and an arc from node vi to node vj
denotes inclusion between the corresponding faces. Level
of a face, level, is the number of x’s contained in the se-
quence. There are n + 1 levels in a n-face-poset. Cardi-
nality or dimension of a face is 21ever. We define the inter-
section of faces, with the usual Boolean rules.

Also, the collection of constraint relations of the prob-
lem instance can be seen as a poset by ordering them ac-
cording to the set inclusion relation and can be drawn as
an Hasse diagram. We call singleton constraints (or sim-
ply singletons) the constraints including exactly one ele-
ment of S, and universe constraint (or simply the uni-
verse) the constraint including all elements of S. We define

Closure n [IC] :

L s U IC U { icJ: icJ = icJ, n icJ2, ic,,, icJ2 E I C }

where fl , U are assumed in a set theoretical sense.

Example 3.1.2: Consider IC = { 11 10000, 01 11000,
oooO111, 1o00110, 00OOO11, OOllO00>. Closuren [IC]
= { 11 1o000, 01 11000, 00001 11, 10001 10, oo00011,
0011000, OlloooO, OOOOllO, 1000000, 0100000,
001oo00, o001000, 0000100, 0000010, Oo00001}.

We say that f preserves set theoretic inclusion when

icl II ic2 e f(icl) 2 f (i c 2)

and that f preserves set theoretic intersection when

icl n ic2 = ic3 e) f (ic,) n f (i c 2) = f (i cg) .

We denote the cardinality of set S by # (S), and the car-
dinality of face f(S) by #(f(s)). Within this setting,
the optimization version of FACE HYPERCUBE
EMBEDDING can be stated as SUBPOSET DIMEN-
SION.

INSTANCE: Set S = { 1, * * * , n } and a collection IC
of subsets ic G S.

QUESTION: Find the minimum k and an injection map
f from the sets ic E Closuren [IC] to the faces of the
k-cube, satisfying #(ic) I #(f (ic)) and such that the
k-cube contains a poset equivalent to the given one, i.e.,
for all elements E Closuren [IC], f preserves the set the-
oretic operations of inclusion and intersection.

The decision version can be stated as SUBPOSET
EQUIVALENCE.

INSTANCE: Set S = { 1, * * , n } and a collection IC
of subsets ic G S, and a positive integer k.

QUESTION: Does the k-cube contain a poset equiva-
lent to the given one, i.e., is there an injective map f from
the sets ic E Closuren [IC] to the faces of the k-cube,
satisfying #(ic) I #(f (ic)) and such that, for all ele-
ments E Closuren [IC 1, f preserves the set theoretic op-
erations of inclusion and intersection?

Figs. 4 and 5 show an example of this decision problem
reduced to subgraph isomorphism. A restriction to
subgraph homeomorphism is shown by Figs. 6 and 7. A
general example is shown by Figs. 8 and 9. We notice
that this decision problem can always be seen as a special
instance of subgraph isomorphism into the transitive clo-
sure of the directed acyclic graph induced by the k-cube
face-poset .

3.2. Processing a Problem Instance of SUBPOSET
DIMENSION

The input exact encoding algorithm has a preprocessing
stage that, given the set of input constraints IC, builds a
representation of the closure of the poset generated by IC.
We call this closure, augmented by the universe, the input
poset of the problem. The input poset can be represented

VILLA AND SANGIOVANNI-VINCENTELLI: NOVA: ASSIGNMENT OF FSM’S FOR LOGIC IMPLEMENTATION 909

Fig. 7 . 3-face poset with subgraph homeomorphic to poset of Fig. 6.

Fig. 4. Completely leveled input poset

Fig. 8. Generic input poset

Fig. 5 . 3-face poset with subgraph isomorphic to poset of Fig. 4.

Fig. 9. 3-face poset with subposet equivalent to poset of Fig. 8 .

include ic, and C (i c) is the set of maximal constraints
included in ic (edges of ZG). The relations of fathers and
children, are a succinct representation of the Hasse dia-
gram arcs, instead of the arcs between all possible com-
parable constraints. We walk through the input poset from
a constraint to another, through the edges of ZG.

Fig. 6. Partially leveled input poset.

by an Hasse diagram, or by a more compact representa-
tion, that we call input graph, ZG(V , E) . To every con-
straint ic in the input poset (nodes of ZG), we associate
the set of his fathers F (i c) and the set of his children
C (ic), where F (i c) is the set of minimal constraints that

Example 3.2.1: Consider I C = { 1110000, 0111000,
oo00111, 1000110,0000011,0011000}. V = { 1111111,
1110000, 0111000, 0000111, 1000110, 0000011,
0011000, 01100oc), 0000110, 1000000, 0100000,
0010000, 0001000, 0000100, 0000010, 0000001 }.

To compute E, it is sufficient to determine F (ic) for all
ic E V. The pairs (ic, iq), for all ici E F (i c) , represent

910 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL. 9 NO. 9. SEPTEMBER 1990

all the ingoing edges of ic:

9, F(111oooo) = F(0111000)

F (m 1 1 1) = F(1000110) = 1111111,

01 11000, F(01 loooo)

(0111000, l l l m) , F(0000011)

m 1 1 1 ,

(oooo111, lo00llO), F(00loooo)

(001 1o00, 01 loooo),

001 1o00, F(Ol00000)

O l l ~ , F(oooool0)

(000001 1, m 1 lo),

0000011, F(ooool00)

m 1 1 0 , F(loooooo)

(1 lloooo, lo001 10).

Fig. 10 shows the input graph, ZG, associated to the input
constraints IC.

3.3. General Scheme of iexuct-code
The input exact encoding algorithm, iexuct-code, finds

an answer to SUBPOSET DIMENSION, by answering
exactly SUBPOSET EQUIVALENCE for increasing di-
mensions of the hypercube. Solving exactly SUBPOSET
EQUIVALENCE decides whether the input poset can be
embedded in a given k-face-poset, and finds a satisfactory
assignment, ENC, if any. If it exists for dimension k, and
we already answered “no” for dimensions < k, we have
an answer to SUBPOSET DIMENSION. The procedure
mincube-dim computes a lower bound on the
dimension of the k-face-poset. The procedure subposer-
equivalence decides SUBPOSET EQUIVALENCE. The
pseudocode below illustrates the general scheme of the
algorithm.

iexuct-code(ZG)
{

mincube = minimum feasible cube dimension
ENC = 9
mincube = mincube-dim(ZG)
for (k = mincube; k I #(S); k + +) {

ENC = subposet-equivulence(ZG, k)
if (ENC # 9) return(ENC)
1

1
1.

3.3. I Re$ned Scheme of iexuct-code: The general
scheme of Section 111-3.3 can be refined, replacing a sin-
gle call to subposet-equivalence with a number of calls to
a procedure, pos-equiv, that decides a restriction of SUB-
POSET EQUIVALENCE with fixed #(f (i c)) , for all ic
E ZG such that F(i c) is the universe (the constraint in-

Fig. 10. Input Graph IC (example 2.2.1)

cluding all elements of S) . We recall that an assignment
of constraint ic of the input poset to face f (i c) of the face-
poset satisfies # (i c) I # (f (ic)). For a given dimension
of the hypercube on which we invoke pos-equiv, in many
cases a solution exists only when the previous inequality
is proper for one or more of the constraints. One reason
may be that some constraints need to be adjacent to many
others and so they require a large face, i.e., a large
boundary, to satisfy their numerous intersections. So, for
a cube of dimension k, we have for every constraint ic the
choice of different levels of the corresponding face, and
the choice of different faces of a given level.

Constraint ic E ZG is classified of category 1 and called
a primary constraint if # (F (i c)) = 1 and F (i c)) is the
universe; of category 2 if # (F(ic)) > 1 ; of category 3 if
(F (i c)) = 1 and F (i c) is not the universe. We use the
notation cut(ic) = i to denote that ic has category i. In
general if # (i c) = c and cut(ic) = 1 then #(f (i c)) is
such that log c I level I k - 1, where 21eve‘ = #(f(i c)).
Noticethatifcut(ic) = 2 , t h e n # (f (i c)) = # (n f (i c j))
for all icj E F (i c) . If cut(ic) = 3, then #(f (i c)) c
#(f (F (i c))) .

Example 3.3. I . I : Consider the input graph ZG given
in Example 3.2.1:
cut (11 10000) = cut (01 11000) = cut (00001 11) =
cut(1000110) = 1, cut(0000110) = cut(0110000) =
cut(0010000) = cut(0000010) = cut(1000000) = 2,
cut(0011000) = cut(0000011) = cut(0001000) =
cut(0100000) = cut(0000001) = cut(0000100) = 3.

The current chosen levels of primary constraints are
stored in a vector dimvect, called primary level vector.
The routine face-levels returns at every call a new pri-
mary level vector. face-levels is invoked when pos-equiv
answers no to the decision problem on (ZG, k) restricted
to dimvect. The primary level vectors are generated in in-
creasing lexicographic order. If, for a given embedding
dimension k, all possible primary level vectors have been
unsuccessfully tried, the main routine updates the hyper-
cube dimension to k + 1. Notice that # (S) is a trivial
upper bound on the hypercube dimension.

Example 3.3.1.2. : Continues from Example 3.3.1.1.
Given the set of ordered primary constraints (11 1oo00,
01 11000, OOOO111, 10001 lo), and cube dimension k =

VILLA A N D SANGIOVANNI-VINCENTELLI: NOVA: ASSIGNMENT OF FSM'S FOR LOGIC IMPLEMENTATION 91 I

4, the successive values of the primary level vector dim-
vect are

level, because it cannot hold for larger levels, if it does
not hold for the minimum one. Analytically, we look for
the smallest cube dimension such that the following ine-

(*, 2 7 *, 2) 7 (2 , 2, 2 y 3) 7 (2 , 2, 3? 2), (2 7 2 7 3 9 3) , (2 , qualities are satisfied: # (F (i c)) 5 # (S) - level(f (i c))
3 9 2, 2) , (2 , 3 9 2 7 3) 9 (2 7 3 , 3 , 2) > (2 9 3 , 3? 3) 7 (3 , 2 7 and #(f (i c)) = # (i c) .
2, 2)7 (3 , 2, 2, 31, (3 , 2, 3 , 21, (3 , 2, 3, 3) , (3 , 3, 2, 3.3.2.2. A counting argument based on uneven con-

straints: A third counting argument, (count_cond3), en- 21, (3 , 3 , 2, 3) , (3 , 3, 3, 21, (3 , 3 , 3 , 3) .
Since pos-equiv(IG, 4, (2, 2 , 2, 2)) returns a valid

encoding, in this example only the first vector (2, 2, 2,
2) is actually generated.

It is still an open problem how to decide a priori that
some values of the primary level vector are useless to ob-
tain a positive answer topos-equiv. A solution to it would
strongly speed up the running time of iexact-code. The
following pseudocode illustrates the flow of the algo-
rithm.

iexact-code(IG)

mincube = minimum feasible cube dimension
dimvect = vector of face levels
ENC =
mincube = mincube-dim(ZG)
for (k = mincube; k 5 # (S) ; k + +) {

dimvect = face-levels(k, dimvect)
while (dimvect f a) {

{

ENC = pos-equiv(IG, k , dimvect)
if (ENC # a) return(ENC)
else dimvect = face-levels(k, dimvect)

1

3.3.2. Lower Bounds on the Cube Dimension: To save
some useless calls to pos-equiv, one needs to find good
lower bounds on the hypercube dimension, as starting
points of the for outer cycle of iexact-code. The routine
mincube-dim implements some counting arguments and
returns mincube, the initial cube dimension passed to
pos-equiv. Some counting arguments are explained in the
following.

mincu b-dim(ZG)

min-cube = count-condI(IG)
min-cube = count-cond2(IG, min-cube)
min-cube = count-cond3(IG7 min-cube)

3.3.2.1. Two straightforward counting argu-
ments: A first counting argument, (count-condl), en-
forces the obvious condition that the cube should have at
least as many faces of a given cardinality as the input
graph has constraints of a given cardinality.

A second counting argument, (count-cond2), enforces
the condition that, in a feasible cube, the face assigned to
any constraint must have as least as many minimal in-
cluding faces (i.e., faces of the least larger level), as many
fathers the constraint has. The condition is checked in the
stronger case that the face is of the minimum feasible

{

1.

forces the condition that, in a feasible cube of dimension
min-cube, in case some constraints have a cardinality that
is not a power of 2 (called uneven constraints), there will
be enough faces of level 0 to accommodate them, in the
hypothesis of the densest possible packing of the uneven
constraints. We can think of the uneven constraints as
adding new virtual states to S . The question is: what is
the minimum number of virtual states introduced by a
given set of uneven constraints? Two facts must be taken
into account.

1) If # (i c) = c, then ic introduces minpow2(c) - c
virtual states, where minpow2 is the minimum power of
2 2 c.

2) At most min-cube constraints may intersect in the
same virtual state.

They are used in the algorithm illustrated by the pseu-
docode given in the following. We keep an array of the #
of virtual states introduced by each uneven constraint (fact
l), and we compute the maximum number of identifica-
tions between the virtual states introduced by different un-
even constraints (using fact 2). This is the densest possi-
ble packing of the uneven constraints. Notice that such a
packing could be unfeasible, among other reasons, when
the uneven constraints, completed by the virtual vertices,
generate new uneven constraints, and all level 0 faces of
the hypercube are already used.

count-cond3 (IG, min-cube)

entry U of array VRT stores the # of virtual
states introduced by uneven constraint ic,
for (each uneven ic, E ZG) {

VRT [U] = minpow2(ic,) - #(ic,)

{

1
sort VRT in nondecreasing order
while (a feasible dimension is found) {

iter-count = 0
while (VRT # zero vector) {

decrease by 1 the first min-cube nonzero en-
tries of VRT in nondecreasing order
iter-count is increased by 1

1
if (2m1n-cube - # (S I < iter-count) {

min-cube is increased by 1

(S) 2 iter-count) {
if 1 (2min-cube -

return(min-cube)
1

1
1.

912 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL. 9 NO. 9. SEPTEMBER 1990

Example 3.3.2.2.1: Consider the graph IG(V , E)
given in Example 3.2.1, where V = { 11 11 11 1, 11 10000,
01 11o00, oo00111, 10001 10, o000011, 001 1000,
011ooo0, o00Oll0, 1000000, Olooo00, 0010000,
0001o00, m 1 0 0 , 0 o 0 0 0 1 0 , OoOo001}.

The routines count-condl and count-cond2 return min-
- cube = 3 ; count-cond3 returns min-cube = 4, because
of two virtual states introduced by the uneven constraints
11 10000, 01 11000, 00001 11, 10001 10. Therefore, 4 is
the initial cube dimension passed to pos-equiv.

3.4. Solving Restricted Subposet Equivalence

The solution to subposet equivalence, restricted to
a given cube dimension and primary level vector, is
based on a backtracking scheme. Basic operations of it
are selecting the nodes (constraints) of the input graph
(next-to-code), and assigning them to faces of the cube,
so to preserve intersection and inclusion relations in the
two posets (assign-face). The selected nodes are inserted
in a list Sic, ordered by selection time. Notice that next-
to-code selects only constraints ic such that cat (i c) = 1
orcat (ic) = 3, (i.e., # (F (i c)) = 1). We recall that the
codes of the constraints ic such that cat (i c) = 2 are de-
termined by the codes assigned to theirs fathers, and
therefore, they do not need to be selected at this level. A
selected constraint is given a code consistent with ENC,
if any. In this way, an assignment, ENC, is built incre-
mentally and when it cannot be consistently extended to
a new constraint, because of previous wrong choices, an
old constraint-face map is undone (next-to-recode), and
a new one, consistent with the reduced ENC, is at-
tempted. While a backtracking phase starts or continues,
next-to-recode chooses the last constraint of Sic, among
those successfully encoded. While a backtracking phase
ends, next-to-recode chooses the first constraint in Sic,
among those whose assignment was undone. In case no
feasible assignment exists, pos-equiv returns an empty
encoding. The pseudocode that follows illustrates the
general scheme of the procedure.

pos-equiv(IG, k , dim-vect)

ENC = 9
Sic = 9
backtrack Boolean flag to signal backtracking
next-to-code(IG, Sic) returns unencoded ic E V
first selected constraint ic is stored asfic
Sic = Sic U ic
while(there are unencoded constraints) {

{

backtrack set to FALSE
assign- face(ic, ENC, k , dim-vect) returns
f (i c) # 9 iff ic can be encoded consistently

ENC = ENC U f (i c)
while (f (i c) = 9 or backtrack is TRUE) {

iff(ic) = 9 & backtrack is FALSE) {

with ENC

a backtracking phase starts

backtrack set to TRUE
if (ic coincides withfic) {

no feasible assignment exists
return(+)

} else {
next-to-recode(IG, Sic) returns ic E
Sic
ENC = ENC - f (ic)
assign- face(ic, ENC, k , dim-vect)
returns f (ic)
ENC = ENC U f (ic)

1
1
if (f (i c) = 9 & backtrack is TRUE) {

the current backtracking phase continues
if (ic coincides with$c) {

no feasible assignment exists
return(@)

next-to-recode(IG, Sic) returns ic
E Sic
ENC = ENC - f (i c)
assign- face(ic, ENC, k, dim-
- vect) returns f (ic)
ENC = ENC U f (ic)

} else {

1
1
if (f (i c) # 9 & backtrack is TRUE) {

a backtracking phase ends
next-to-recode(ZG, Sic) returns ic E
Sic
assign- face(ic, ENC, k, dim-vect)
returns f (i c)
ENC = ENC U f (i c)
if (ic coincides with lic) {

backtruck set to FALSE
1

1
1
next-to-code(ZG, Sic) returns unencoded ic E
V
last selected constraint ic is stored as lic
Sic = Sic U ic

1
return(ENC)

1.

3.4.1. Walking Through the Input Graph: The routine
next-to-code selects an unencoded constraint according
to the following priority branching scheme. Recall that lic
is the last constraint inserted in Sic.

1) Choose, if any, a constraint of category 1 not al-
ready coded, mappable to a face of the same level as
f(l ic) , and sharing children with it.

2) Choose, if any, a constraint of category 1 not al-
ready coded, mappable to a face of the same level as
f (l i c) .

913 VILLA A N D SANGIOVANNI-VINCENTELLI: NOVA: ASSIGNMENT OF FSM’S FOR LOGIC IMPLEMENTATION

3) Choose, if any, a constraint not already coded,
mappable to a face of the same level asf(l ic) , and sharing
children with it.

4) Choose, if any, a constraint not already coded,
mappable to a face of the same level a s f (l ic) .

5) Choose, if any, a constraint of category 1 not al-
ready coded, mappable to a face of the maximum level
less thanf(l ic) s .

6) Choose, if any, a constraint not already coded.
mappable to a face of the maximum level less than
f (1 i c) s .

The selection mechanism chooses the constraints in or-
der of decreasing feasible face level, and within it gives
higher priority to constraints of cardinality 1, and among
them to those sharing children with constraints already
coded. The rationale is that we want to first code the con-
straints needing larger faces, and among them those of
category 1, and that we exploit a look-ahead of one level
(sharing of children) to reject encodings at an upper level,
if they are unable to satisfy face intersections at the next
lower level. This allows us to discover at an early time
when an assignment is unfeasible, i.e., cannot be ex-
tended downwards.

3.4.2. Walking Through the Face-Poset: The routine
assign-face walks through the face-poset and assigns
faces to constraints, if feasible. Faces are generated call-
ing the routine genface, and verified for consistency with
the incrementally built encoding ENC by the routine ver-
i’. A face is accepted if it also the case that, for all the
children of category 2 of the constraint being encoded,
the intersection of the faces assigned to their encoded (if
any) fathers is a feasible code for them. The set of chil-
dren of category 2 of ic, with some fathers already en-
coded, is denoted by D (ic). When unable to map the con-
straint to a face, assign-face returns the empty face. The
routine genface is invoked for constraints of category 1
and 3 . The generation of the faces is based on the pro-
duction of all combinations of patterns of x ’s , according
to the level of the face, in lexicographic order.

assign- face(ic, ENC, k , dim-vect)
1
genfuce(ic, k , dim-vect) returns f (i c)
while (f (i c) # 9) {

if (verify(f(ic), ENC) succeeds) {
for (all constraints ic, E D(ic)) {

if (n f (i c j) , icj E F(ic,),f(icj) # 9 w.d.
& veri fy(nf(ic j) , ENC) succeeds) {
ic, is mapped to n f (i c j)
} else break from thefor cycle
return(f (i c))

1
1
genface(ic, k , dim-vect) returns f (i c)

1

1.
return(9)

Example 3.4.2. I : Consider the input graph ZG given
in Example 3.2.1. The procedure pos-equiv(ZG, 4, (2, 2,
2 , 2)) flows as follows.

Step I :

next-to-code returns 01 11000
after assign-face: f(OlllOO0) = ~ 0 x 0 .

Step 2:

next-to-code returns 11 10000 (branch n. 1)
after assign-face: f (11 10000) = xOOx, f(OllOOO0) =
xooo .
Step 3:

next-to-code returns 10001 10 (branch n. 1)
face OxxO is generated and rejected
after assign-face: f(10001 10) = Oxxl, f(1000000) =
0001.

Step 4:

next-to-code returns 00001 11 (branch n. 1)
faces O x l x , lxOx, lxlx, OxOx, OOxx are generated and
rejected
after assign-face: f(OOOOll1) = Olxx, f(OOOOll0)
01x1.

Step 5:

next-to-code returns 001 1000 (branch n. 6)
after assign-face: f(OOllOO0) = 00x0, f(OOlOOO0)
0000.

Step 6:

next-to-code returns 000001 1 (branch n. 4)
after assign-face: f(OOOOOl1) = OlOx, f(OOOOOl0)
0101.

Step 7:

next-to-code returns 0000001 (branch n. 6)
after assign-face: f(OOOOO0l) = 0100.

Step 8:

next-to-code returns 0000100 (branch n. 4)
face 0101 is generated and rejected
after assign-face: f(OOOOlO0) = 01 11.

Step 9:

next-to-code returns 00010000 (branch n. 4)
face 0000 is generated and rejected
after assign-face: f(OOOlOO0) = 0010.

Step IO:

next-to-code returns 0100000 (branch n. 4)
face 0000 is generated and rejected
after assign-face: f(OlOOOO0) = 1000.
ENC:

f(1111111) = xxxx

f(0111000) = xoxo

9 14 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL. 9 NO. 9. SEPTEMBER 1990

f(00001 11) = Olxx

f(1 1 10000) = xoox

f(1000110) = Oxxl

f (0 0 0 0 l l O) = 01x1

f (Ol lOo00) = xooo
f(001 1000) = 00x0

f(000001 1) = O l O X

f(0000001) = 0100

f (ooOool0) = 0101

f (0000100) = 01 1 1

f (0001000) = 0010

f(OOlO000) = 0000

partial assignment, so when we are able to extend it to the
complete input poset, we have a correct solution of the
problem.

3.5. Complexity

Two quantities measure the complexity of iexact-code:
the number of upper level backtracking trials, #Ulb, and,
for each of them, the number of lower level backtracking
attempted assignments of faces to constraints, #Lfb. We
evaluate first #Ulb. Suppose that from the set of input
constraints we have the following subset of constraints of
category 1: { i c ; } , i = 1 , * - , n. Call di the minimum
dimension of a face that can be assigned to ic, and d the
current encoding length. In the worst case

i = n

#Ulb = IT (d - d;) .
i = I

f (0100000) = 1000 If d - dj = (d /2) , we have

f(1000000) = 0001.

3.4.3. Correctness: The correctness of the assignment
is guaranteed incrementally. We suppose that up to the
ith step we built a correct partial assignment, i.e., an as-
signment to a subset of constraints that verifies the sub-
poset equivalence among the constraints already taken into
consideration. Coding a new constraint, we want to make
sure that we still get a correct assignment with respect to
the enlarged set of encoded constraints and of inclusion/
intersection relations holding among them. The verifica-
tion on the input poset consists of the following checks:
1) if the new constraint has only one father, the latter's
face must include the face proposed for the former (inclu-
sion condition ici 3 icj -+ f(ic;) 3 f(i c j)) ; 2) if the new
constraint has more than one father, the faces assigned to
the fathers must intersect in the face proposed for the child
(intersection condition ic, n icj = ick + f(ici) n f(i c j)
= f (i c k)) . On the input poset we limit the checks to the
fathers of the constraints being encoded, because we build
the global assignment function incrementally fathers first,
children after, and so we need to worry only about the
local fatherdchildren relations.

The verification on the face-poset consists of the fol-
lowing checks: 1) the face proposed for the constraint
being encoded must be different from the faces already
assigned (the mapping has to be injective); 2a) if an as-
signed face includes properly the face proposed, the for-
mer's inverse must be a father of the constraint being en-
coded; 2b) if the face proposed includes properly a face
already assigned, the latter's inverse has a to be a child
of the constraint being encoded (both verify the inclusion
conditionf(ic,) 3 f (ic j) + ici 3 icj); 3) if an assigned
face has a nonempty intersection with the face proposed,
their inverses must intersect in a nonempty constraint (in-
tersection conditionf(i c i) n f(icj) = f (i ck) + ic, n icj
= ick). On the face-poset the checks are global, because
a new proposed face may a priori lay anyway in it. In-
ductively, we can say that we always guarantee a correct

#Ulb = (:)'
Now we evaluate #Llb. We have for every constraint of
category 1 the choice of many possible faces of minimum
dimension. Constraints of category 2 and 3 are encoded,
respectively, within the subspace assigned to their father
and by the intersection of the codes assigned to their fath-
ers and so their contribution can be neglected. Keeping
the same notation as before, and noting that one can as-
sign to ic; at most 2d'($) faces, in the worst case:

i = n

#Llb = 2.(:)
i = I

If C di = (nd/2) , we have

#Llb = (2d)"d'2.

The algorithm iexact-code can be computationally too ex-
pensive and it is not suggested to be the standard way of
solving face hypercube embedding. Nevertheless, it al-
lowed us to find solutions to the majority of the examples
of our benchmark, producing a set of results against which
to compare heuristic solutions. Moreover, as we will see
in Section IV, a computationally bounded version of it,
semiexact-code is the core of a very efficient approximate
algorithm, ihybrid-code.

IV. A HYBRID ALGORITHM FOR FACE HYPERCUBE
EMBEDDING

In this section we describe an approximate algorithm,
called ihybrid-code, that operates on the input con-
straints. The inputs to the algorithm are: #bits, a user-
specified code-length and IC, the set of weighted input
constraints (the weight of an input constraint is propor-
tional to the number of repeated occurrences of the cor-
responding product term in the multiple-valued mini-
mized cover). The algorithm outputs ENC, an encoding

VILLA A N D SANGIOVANNI-VINCENTELLI: NOVA: ASSIGNMENT OF FSM'S FOR LOGIC IMPLEMENTATION 91.5

that maximizes heuristically the total sum of constraint
weights satisfied in the given code-length. The rationale
is that the weight of a constraint is proportional to the
number of product terms saved in a final implementation
by satisfying it. The strategy to choose the subset of sa-
tisfiable constraints is greedy, i.e., constraints are chosen
one at a time in decreasing order of weight and they are
accepted or rejected if they can be satisfied together with
the subset of constraints already chosen. We do not try to
find the set of constraints that give the minimum product-
term cardinality for a given code-length, trading-off speed
versus quality of solution. Since a new constraint is ac-
cepted or rejected by nonexhaustive simulation of a par-
tial encoding, the greedy strategy favors the cluster of
constraints that yield the largest saving of product terms
in the final implementation. Satisfactory experimental re-
sults support this conclusion.

The algorithm is based on two encoding strategies,
semiexact-code and project-code, the first one invoked
on the minimum code-length and the second one on the
successive code-lengths up to #bits. The routine semiex-
act-code is a modified version of the exact input encoding
algorithm iexact-code, presented in Section 111. The rou-
tine project-code is a quick encoding algorithm that even-
tually guarantees a complete satisfaction of all the input
constraints.

The procedure ihybrid-code builds incrementally SIC,
a set of satisfied input constraints and RIC, a set of un-
satisfied input constraints. Both SIC and RIC are empty at
the beginning. In the first part ihybrid-code tries to max-
imize the total sum of constraint weights satisfied in the
minimum code-length. To do so it selects ic, the con-
straint of maximum weight from IC - SIC - RIC and
invokes semiexact-code on the set of constraints SIC U
ic. If semiexact-code succeeds in satisfying all constraints
of SIC U ic, ENC gets updated to the new found encoding
and ic is added to the set of satisfied constraints, other-
wise ic is added to the set of rejected constraints. This
loop is repeated until the sets SIC and RIC become a par-
tition of IC. If semiexact-code fails always, as it may
happen in rare pathological situations, ENC gets a random
encoding to guarantee that there is always a starting en-
coding for project-code to work properly. If RIC is not
empty and #bits is larger than the minimum code-length,
the embedding cube is increased by unitary steps and for
each increase the encoding strategy project-code is in-
voked. For each dimension added to the cube, project-
-code is guaranteed to satisfy at least one more constraint
from RIC, while still satisfying all constraints of SIC. So
project-code adds at least (in general more than) one con-
straint to SIC and deletes it from RZC; ENC gets updated
to the new found encoding. This is repeated until there
are no more unsatisfied constraints and there is no more
unused encoding space. At the end SIC and RIC are a new
partition of IC, and they contain, respectively, the satis-
fied and unsatisfied constraints of IC. It is fairly obvious
that project-code, if given an encoding space large
enough, is guaranteed to satisfy completely any set of in-

put constraints. The pseudocode that follows illustrates
the steps of the algorithm.

ihybrid-code(IC, #bits)

cube-dim = minimum encoding length
SIC = 9
RIC = 9
while ((IC - SIC - RIC) # 9) {

{

selects ic, the constraint of maximum weight in

if semiexact-code(SIC U ic, cube-dim) SUC-
ceeds {

(IC - SIC - RIC)

ENC gets a new encoding
SIC = SIC U ic

else RIC = RZC U ic
1

1
if (ENC = 9) ENC gets random encoding
while (RIC # 9 and cube-dim < #bits) {

cube-dim is increased by 1
project-code(ENC, SIC, RIC, cube-dim)
i.e. ENC gets a new encoding

NC = { new constraints satisfied by project-
- code }
SIC = SIC U NC
RIC = RIC - NC

1
1.

Example 4 .1 : Consider IC = (1110000, 0111000,
00001 11, 10001 10, 000001 1, 001 IOOO}. The weights of
the constraints are, respectively, 4, 2, 3, 5, 1, 1. A con-
straint has a 1 in the ith position if the ith state belongs
to it. The bounded backtracking coding algorithm flows
as follows.

Step I :

ic = 10001 10; semiexact-code satisfies the constraints
in SIC U ic;
SIC = { 1000110 }; RIC = 9.

Step 2:

ic = 11 10000; semiexact-code satisfies the constraints
in SIC U ic;
SIC = { 10001 10, 11 10000 }; RIC = 9.

Step 3:

ic = 00001 11; semiexact-code fails to satisfy the con-
straints in SIC U ic;
SIC = { 10001 10, 11 10000 }; RIC = { 00001 11 }.

Step 4:

ic = 01 11000; semiexact-code fails to satisfy the con-
straints in SIC U ic;
SIC = { 1000110, 1110000 }; RIC = { 0000111,
0111000 }.

916 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 9 NO. 9. SEPTEMBER 1990

Step 5.

ic = 000001 1; semiexact-code satisfies the constraints
in SIC U ic;
SIC = { 1000110, 1110000, 0000011 }; RIC =

Step 6:

ic = 001 1000; semiexact-code satisfies the constraints
in SIC U ic;
SIC = { 1000110, 1110000,0000011,0011000 }; RIC

ENC = { 000, 101, 100, 110, 010, 011, 111 }.

{ 0000111,0111000 }.

= { 0000111,0111000 };

The projection coding algorithm raises the codes of states
5 , 6, 7 into the added fourth dimension and so it is able
to satisfy, in one last step, both constraints left in RIC.

Step 7:

NC = { 0000111,0111000 };
SIC = { 10001 10, 11 10000, 00001 11, 01 11000,

1.

0000011, 0011000 }; RIC = +;
ENC = { 0000, 1010, 1000, 1100, 0101, 0111, 1111

Fig. 1 shows ENC computed after Step 7.

4.1. The Bounded Backtrack Coding Algorithm

The routine semiexact-code is a modified version of the
exact input encoding routine iexact-code, presented in
Section 111. In iexact-code there are two sources of com-
binatorial explosion.

1) At the upper level backtracking, for a fixed embed-
ding dimension, we have for every constraint of category
1 the choice of many possible cardinalities of the face to
which it can be assigned.

2) At the lower level backtracking, we have for every
constraint of category 1 the choice of many possible faces
of minimum sufficient dimension. Constraints of category
2 and 3 are encoded, respectively, within the subspace
assigned to their father and by the intersection of the codes
assigned to their fathers and so their contribution to the
cost of the lower level backtracking can be neglected.

The routine semiexact-code copes with the previous
problems as follows.

1) A modified version of the routine faces-dim-set is
used, which assigns to the constraints of category 1 only
faces of the minimum possible dimension. It is well
known that with such a limitation an existing solution is
not guaranteed to be found, but we want to cut on the
explosive number of possible face configurations assign-
able to constraints of category 1. The rationale of the
choice is that in a cube whose dimension is the minimum
encoding length, most constraints can only obtain the
minimum face dimension, so it is not a dramatic loss of
optimality to limit ourselves as was done.

2) At the lower level backtracking, we stop the search
when the number of partial encoding assignments already
tried surpasses a fixed number, ma-work, set conven-

tionally in the program. This magic number has been de-
termined by an average analysis of the complexity of the
lower level backtracking mechanism on the set of data of
our benchmark. A useful improvement would be to have
the program adapt this parameter to the current input in-
stance.

4.2. The Projection Coding Algorithm

After semiexact-code has completely partitioned the
constraints in the set of those satisfied and the set of those
unsatisfied, the routine project-code is invoked until there
are no more unsatisfied constraints and there is no more
unused encoding space. At each call, project-code en-
larges by one the dimension of the encoding space and
produces ENC, an encoding that satisfies at least one more
constraint from the set of constraints left unsatisfied by
semiexact-code, while it still satisfies all constraints al-
ready satisfied. At the end of each call SIC and RIC are
updated. The routine project-code is well defined because
of the following proposition.

Proposition 4.2.1: Given an encoding of length 1 that
satisfies a set of constraints C, there always exists an en-
coding of length 1 + 1 that satisfies all constraints of C ,
and moreover satisfies at least another arbitrary constraint
not in C.

Proof: By construction. Suppose we have an encod-
ing satisfying C and consider any constraint c not in C.
Increase the codes of the states by 1 b, according to the
following rule. If a state belongs to c, pad its code with a
1, otherwise pad it with a 0. In the first case we say that
the state has been raised in the (1 + 1)-st dimension. This
moves the states belonging to c onto the added
I-dimensional cube, where they occupy exactly the same
positions that they had in the original I-dimensional cube.
The constraint c becomes surely satisfied, because in the
worst case it can span the whole added I-dimensional
cube. Every constraint in C is still satisfied. Indeed con-
straints in C involving only states assigned all together
either to the original I-dimensional cube or to the added
one, remain the same as before (in the respective
1-dimensional cubes). Constraints in C involving states
distributed between the two 1-dimensional cubes are still
satisfied because no spurious constraint could be in the
face they span, unless it was already intersecting it when
restricted to the first 1 dimensions, against the
hypothesis. Q.E.D.

Proposition 4.2.1 guarantees that one can always sat-
isfy at least one more constraint. In the actual implemen-
tation of project-code we try to minimize the number of
states that need to be raised in order to satisfy a given
constraint. One implemented heuristic is to raise first the
states that appear more often in the unsatisfied con-
straints. This makes it more likely that more than one con-
straint will be satisfied in the enlarged encoding space.
The constraints are selected in decreasing order of weight,
as it was the case with semiexact-code. It is fairly obvious

VILLA AND SANGIOVANNI-VINCENTELLI: NOVA: ASSIGNMENT OF FSM'S FOR LOGIC IMPLEMENTATION

~

917

that project-code, if given an encoding space large
enough, is guaranteed to satisfy completely any set of in-
put constraints, at least at the pace of one more constraint
for each unitary increase of the dimension. We emphasize
that project-code plays the role of a quick encoding rou-
tine that guarantees eventually a complete satisfaction of
all the input constraints, while semiexact-code is a more
expensive computational step, aimed to find an optimal
encoding (heuristically speaking) on the minimum encod-
ing length. We chose to concentrate the computing efforts
on the minimum encoding length, because it is where we
can get the maximum benefit in terms of final area. The
combination of semiexact-code and project-code com-
pares very favorably with the exact solution in terms of
minimum encoding length needed to satisfy all con-
straints. This measure is off the optimum by 10% on the
benchmark reported in Section VII.

4.3. Complexity
The computational complexity of ihybrid-code is linear

in the number of constraints, but we point out that the
linearity in semiexact-code depends on a hidden constant
proportional to the magic number ma-work which bounds
the semi-exact search. The running times of hybrid-code
on the benchmark reported in Section VI1 range from a
few seconds on most examples to 1310 s for a very com-
plex example on a VAX 11/8650.

V. A GREEDY ALGORITHM FOR FACE HYPERCUBE
EMBEDDING

In NOVA, it is implemented also igreedy-code-an ap-
proximate algorithm for input constraint satisfaction (de-
tails are in [20]). It tries heuristically to satisfy as many
constraints as it can, for a given code-length. The code-
length may be specified by the user, otherwise the mini-
mum one is assumed by default. Since we kept it simple
and very fast, igreedy-code is especially tailored for short
code-lengths (close to the minimum one). Indeed its heu-
ristic encoding strategy does not undo previous subopti-
mal choices, and so it may leave unused some potentially
useful encoding space, even when it is made available by
the encoding length. The algorithm computes all the in-
tersections of the input constraints and starts the encoding
going upwards from the deepest of them. So doing, it
gives priority to the satisfaction of common subcon-
straints, i.e., proper subsets of at least two input con-
straints. This is a suboptimal strategy, but an effective
one. It is equivalent to replacing the original constrained
embedding problem by an easier one, by simplifying the
information produced by the multiple-valued logic min-
imization.

The running times of igreedy-code are not more than a
few seconds of VAX 11/8650 even in the most complex
examples where other encoding algorithms fail to com-
plete.

VI. ENCODING BASED ON SYMBOLIC MINIMIZATION
In this section we present an encoding algorithm based

on symbolic minimization [lo], [17], a technique that

yields a minimal encoding-independent sum-of-products
representation of a symbolic function. The minimal sym-
bolic representation has to then be encoded into a com-
patible Boolean representation. This is achieved by sat-
isfying associated sets of input constraints and output
covering relations. The symbolic minimization algorithm
builds up a directed acyclic graph where a node is a next
state and an edge (U , U) corresponds to the covering con-
straint that U bit-wise covers U , i.e., the Boolean code
assigned to U must be 1 where the Boolean code assigned
to U is 1, and in at least one position the codes of U and
U are 1 and 0, respectively. These covering relations are
called output constraints (OC) . They are related to a
companion set of input constraints (IC) that we get from
the final cover obtained from the symbolic minimization
procedure. In Section VI-6.1 we present a modified ver-
sion of the symbolic minimization algorithm, and in Sec-
tion VI-6.2 we present iohybrid-code, an algorithm to
satisfy both input and output constraints.

6.1. Symbolic Minimization Revisited
We use the same definitions and notations as given in

[lo], to which we refer for a full-fledged description. The
symbolic minimization algorithm builds up a directed
acyclic graph where an edge (U, U) corresponds to the
covering constraint that U bit-wise covers U . Our version
of symbolic minimization differs in two respects from the
symbolic minimization loop in presence of binary outputs
described in [101. We refer to the pseudocode that follows
for the discussion. We assume that the input cover C is
the result of a disjoint minimization step and that the sym-
bolic cover does not have any unspecified next states. The
cardinality of a set S is denoted by #(S). The first mod-
ification is that in the minimization of step 7 we carry a
complete description of the binary outputs, by explicitly
putting in the don't care-set of the i next state all the prod-
uct-terms of C not already committed to its on-set or off-
set. This ensures that both the on and off conditions for
the binary outputs are taken into account in any stage of
the minimization process, in the same way as they will be
in the final compatible encoded Boolean representation.
The second modification is that in step 9 we accept the
covering relations of the ith minimization stage only when
the minimization of step 7 decreases the cardinality of the
on-set of next state i. The reason is that we want to ex-
clude from G output covering relations that do not con-
tribute to the decrease of the final cover cardinality. In
this way the successive encoding problem is also eased.

1.

2.

3 .

Finite State Machine cover C with q next states,
optional binary outputs,
empty weighted acyclic graph G

(edge (i, j) with weight w is denoted (i , j , w))
and empty cover FinalP
Output is the graph G and the minimal cover FinalP
Onk = on-set implicants of the kth next state
with the corresponding binary outputs unchanged
Repeat Steps 4 through 9 q times

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL. 9 NO. 9. SEPTEMBER 1990 918

4.
5.

6 .

7.
8 .

9.

10.

i = select a symbol
Dc; = U Onj,
for all j for which there is no path from vertex i
to vertex j in G

for all j for which there is a path from vertex i
to vertexj in G
MB, = minimize(On;, Dc,, O$i)
Mi = implicants of MB,
that are in the on-set of next state i
if (#(Mi) < #(On;)) {
w, = #(On,) - #(Mi)
G = G U { (j , i , w;) such that Mi intersects Onj

Ofi, U ONj,

P = P U MB;
1

1
else P = P U Oni
FinalP = minimize(P).

6.2. Algorithms for Satisfaction of Input and Output
Constraints

The symbolic minimization algorithm builds up a di-
rected acyclic graph defining output constraints (OC) on
the set of next states. They are associated to a companion
set of input constraints (IC) that we get from the final
cover FinalP. Indeed, FinalP is a multiple-valued logic
cover and its translation to a compatible Boolean repre-
sentation defines a face hypercube embedding problem.
Therefore, to obtain a Boolean representation of FinalP
of the same cardinality, we need to satisfy simultaneously
the pair of input and output constraints sets (IC , OC),
that we define as an ordered face hypercube embedding
problem. Notice that, in general, the input constraints ob-
tained by the symbolic minimization procedure are differ-
ent from those obtained by a multiple-valued output-dis-
joint minimization. Any variation of the symbolic
minimization procedure, e.g., in the selection of step 4,
determines a different pair (IC, OC). Output-disjoint
minimization is a special case where OC = 9. Ordered
face hypercube embedding is a very hard combinatorial
problem. One cannot guarantee the unconditional exis-
tence of a solution to it, and not much is known about the
conditions of existence of an encoding that satisfies a pair
(IC, OC). When a solution does not exist, the problem
arises of which constraints to relax.

6.2. I. An Algorithm Biased Toward Satisfaction of In-
put Constraints: The encoding algorithm that we imple-
mented in iohybrid-code is an adaptation of the encoding
technique described in Section IV. There are three stages
to it. The first two are invoked on the minimum code-
length and the third one on the successive code-lengths up
to #bits. In the first stage, we try to satisfy as many con-
straints from IC as possible, by a cycle of calls to semiex-
act-code as done in ihybrid-code and so we get the en-
coding ENC satisfying the input constraints of SIC. In the
second stage, we look for an encoding that maximizes
heuristically the total weight of the clusters of output con-

straints satisfied and still satisfies SIC. Let i vary in I, the
set of indexes of the next states. A cluster, OC,, is defined
as the set of edges of G going into the next state i . The
set of output constraints OC can be seen as partitioned in
clusters: OC = U OC,, where i varies on the number of
next states. Each OC, has associated a weight w,. Since a
gain of w, product-terms is achieved only by satisfying all
output constraints of OC,, we try to satisfy an increasing
collection, SOC, of sets of clusters selected greedily in
decreasing order of weight. The encoding is attempted by
the routine io-semiexact-code, which succeeds when it
finds an encoding satisfying the constraints of SIC and
SOC U OC,, in which case OC, is added to SOC. The
routine io-semiexact-code is a modified version of semi-
exact-code, with an added mechanism of rejecting as-
signments of faces to states if some active output covering
relation is violated. The third stage is a cycle of calls to
project-code as described in Section IV, which guaran-
tees the eventual satisfaction of all input constraints. No-
tice that in the unusual case that IC = +, i.e., there are
only output constraints, an algorithm specialized in output
constraint satisfaction, out-encoder, is invoked. We refer
for out-encoder to [14]. As a summary, our encoding
strategy gives higher priority to input constraints over
output constraints. The pseudocode that follows illus-
trates the steps of the algorithm.

iohybrid-code(lC, OC, #bits)

cube-dim = minimum encoding length
SIC = 9
RIC = 9
SOC = 9
i f (I C = 9) {

out-encoder(OC)
return

{

1
while ((IC - SIC - RIC) # 9) {

selects ic, the constraint of maximum weight in

if semiexact-code(SIC U ic, cube-dim) suc-
ceeds {

(IC - SIC - RIC)

ENC gets a new encoding
SIC = SIC U ic

else RIC = RIC U ic
1

1
all OC, are labeled unused
while (there are unused OC,) {

selects unused OC, of maximum weight
if io-semiexact-code(SIC, SOC U OC, ,
cube-dim) succeeds {

ENC gets a new encoding
SOC = SOC U oc,

I
OC, is labeled used

I
if (ENC = 9) ENC gets a random encoding

919 VILLA AND SANGIOVANNI-VINCENTELLI: NOVA: ASSIGNMENT OF FSM'S FOR LOGIC IMPLEMENTATION

while (RIC # 9 and cube-dim < #bits) {
cube-dim is increased by 1
project-code(ENC, SIC, RIC, cubedim)
i.e., ENC gets a new encoding

NC = { new constraints satisfied by project-
- code }
SIC = SIC U NC
RIC = RIC - NC

1
1.
6.2.2. An Algorithm Based on Clusters of Input and

Output Constraints: We noticed already that the set of
output constraints OC can be seen as partitioned in clus-
ters: OC = U OC,, where i varies on the number of next
states and each OC; has associated a weight wi. It is true
that also IC can be seen as clustered, although in this case
the clusters are not a partition. Precisely, each OC; has a
companion set ICi of input constraints associated to next
state i in FinalP (some input constraints are not associ-
ated to any next state, but they are related to proper out-
puts and are denoted here by IC,). To achieve a gain of
w, product-terms, it is necessary not only to satisfy the
output constraints of OC;, but also the associated input
constraints of IC,. The algorithm iohybrid-code disre-
gards this fact, putting higher priority on the satisfaction
of the input constraints, independently from the eventual
satisfaction of the companion output constraints. We de-
vised also an algorithmic variant, iovariant-code, where
the ith call to io-semiexact-code succeeds only if both IC;
and OC, happen to be satisfied. The constraints in IC, are
dealt with at the beginning by a cycle of calls to semiex-
act-code. It turns out that iohybrid-code has a better per-
formance than iovariant-code. One can argue that it is in
general more profitable to satisfy as many input con-
straints as possible, because the output covering relations
are a weak way of modeling the effects of output encod-
ing. Satisfying as many input constraints as possible may
lead to convenient product-terms sharing between the dif-
ferent output functions. The following pseudocode illus-
trates the steps of the algorithm.

SIC = SIC U ic

else RIC = RIC U ic

all OC, are labeled unused
while (there are unused OC,) {

3

1

selects unused OC, of maximum weight

if io-semiexact-code(SIC U IC,, SOC U OC,,
cube-dim) succeeds {

IC, = IC, - SIC

ENC gets a new encoding
SIC = SIC U IC,
SOC = SOC U oc,

1
RIC = RIC - IC,

else RIC = RIC U IC,
OC, is labeled used

1
if (ENC = 9) ENC gets a random encoding
while (RIC # 9 and cube-dim < #bits) {

cube-dim is increased by 1
project-code(ENC, SIC, RIC, cube-dim)
i.e. ENC gets a new encoding

NC = { new constraints satisfied by proj-
ect-code }
SIC = SIC U NC
RIC = RIC - NC

1
1.

Example 6.2.2.1: Consider the following clustered
sets of input and output constraints (IC,; OC,; w,) for I =
1, * - . , 8. Notice that i > j means that state i must cover
state j ; input constraints and weights are interpreted as
usual.

(IC,; W O) = (01010101; 1)

(IC, ; OCI; w l) = (9; 2 > 1, 3 > 1, 4 > 1, 5 > 1, 6

> 1 , 7 > 1 , 8 > 1; 4)

(IC2; OC,; ~ 2) = (0011oooO; 6 > 2; 1)

(IC,; oc,; w,) = (oooOl loo; 7 > 3; 2)

iovariant-code(IC, OC, #bits)
{

(IC4; oc,; w4) = (ooooooll; 8 > 4; 1)

(IC6; oc,; W 6) = (0011oooo; 9; 3)

(IC5; OC,; w5) = (9; 6 > 5, 7 > 5, 8 > 5 ; 1)
cubedim = minimum encoding length
SIC = 9
RIC = 9
SOC = 9
if (I C = 9) {

out-encoder (OC)
return

1
while ((IC, - SIC - RIC) # 9) {

(IC7; OC,; w7) = (~ 1 1 0 0 ; 9; 1)

(ICx; oc,; w*) = (ooooooll; 9; 1).

A solution (#bits = 3) to such encoding problem, as
found by iohybrid-code and iovariant-code, is ENC =
(000,010, 100, 110,001,011, 101, 111).

selects ic, the constraint of maximum weight in 6.3. complexity
(IC, - SIC - RIC)
if semiexact-code(SIC U ic, cubedim) SUC-
ceeds {

The computational complexity of ihybrid-code is linear
in the number of input constraints and next states. The
warning of Section IV-4.3 also holds here. ENC gets a new encoding

920 lEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL. 9 NO. 9. SEPTEMBER 1990

TABLE 1
STATISTICS OF BENCHMARK EXAMPLES

EXAMPLE I #inP I loul I #states
&I4 I 8. I 5 I 1

--,- ,
Ibk 1 6 1 3 1 32

minll I 2 I 1 I 11

: 8 dl*k iDplu

VII. RESULTS AND FUTURE WORK
We have run more than 50 benchmark examples (which

have been obtained from various university and industrial
sources and include the MCNC benchmark set) repre-
senting a wide range of finite state automata on different
state assignment programs as well on our two algorithms.
The size statistics of 30 significant examples (including
all the largest ones) are given in Table I. The product-
term cardinality of the 1-hot encoding is given under the
column 1-hot in Table 11.

Tables 11-IV summarize the results obtained running
the algorithms of NOVA, the program KISS, and random
state assignments. The results were obtained running ES-
PRESSO-MV in order to obtain the input constraints and
our symbolic minimizer built on top of ESPRESSO-MV
to obtain the mixed input/output constraints, by running
NOVA to encode the states and the symbolic inputs (if
any), and by running ESPRESSO again to obtain the final
area of the encoded FSM. The areas under random as-
signments are the best and the average of a statistical
average of a number of different (number of states of the
FSM plus the number of symbolic inputs, if any) random
state assignments on each example. The final areas ob-
tained by the best solution of NOVA average 20% less
than those obtained by KISS, and 30% less than the best
of a number of random state assignments.

Tables VI11 and IX show plots summarizing the most
important data of Tables 11-IV. On the x-axis the 30 ex-
amples of Table I are ordered by increasing number of
states, on the y-axis ratios of the areas of different algo-
rithms over the best results of NOVA are plotted. The
examples, tabulated by increasing number of states, are
dk15, bbtas, beecount, dk14, dk27, dkl7, ex6, scud,

TABLE I1
COMPARISONS OF iexact, ihybrid, igreedy

TABLE 111
COMPARISONS OF ihybridhgreedy W I T H KISS A N D RANDOM

shifreg, ex5, bbara, ex3, iofsm, physrec, trainll, dk512,
markl, bbsse, cse, ex2, keyb, exl , SI, donjile, dkl6, styr,
sand, tbk, planet, and scf.

VILLA A N D SANGIOVANNI-VINCENTELLI: NOVA: ASSIGNMENT OF FSM'S FOR LOGIC IMPLEMENTATION 92 I

TABLE IV
COMPARISONS O F roh\hrid rh\hrrd/rgrred\ BFST OF NOVA WITH

RANDOM

Table V shows that the final areas obtained running the
algorithm iohybrid-code (symbolic minimization fol-
lowed by ordered face hypercube embedding) average
30% less than the data reported for Cappuccino/Cream.
Table VI reports statistics of the algorithm hybrid-code.

Table VI1 reports the number of literals after running
through the standard Boolean optimization script in the
multilevel logic synthesis system MIS-I1 with encodings
obtained by NOVA, MUSTANG, and random state as-
signments. In the case of NOVA only the best minimum
code-length two-level result was given to MIS-11. MUS-
TANG was run with -p, -n, -pt, -nt options, and minimum
code-length. The final literal counts in a factored form of
the logic encoded by NOVA average 30% less than the
literal counts of the best of a number of random state as-
signments. The best (minimum code-length) two-level re-
sults of MUSTANG with -p, -n, -pt, -nt options versus
the best (minimum code-length) two-level results of
NOVA are also reported. Notice that in the case of MUS-
TANG the run that achieved the minimum number of
cubes is not necessarily the same that achieved the mini-
mum number of literals. In the case of NOVA we fed into
MIS-I1 only the best two-level result, so the data reported
refer to the same minimized cover.

MUSTANG heuristically maximizes the number and
size (fan-in and fan-out oriented algorithms, respectively)
of common cubes in the encoded network to minimize the
number of literals in the resulting combinational logic net-

TABLE V
COMPARISONS OF iohyhrid WITH CAPPUCCINO~CREAM

TABLE VI
STATISTICS OF ihjbrid

work after multilevel logic optimization. No tradeoff is
made between the fan-in and fan-out oriented algorithms.
Even though NOVA was not designed as a multilevel
state-assignment program, its performances compare suc-
cessfully with MUSTANG. Table X shows a plot sum-
marizing the data of Table VII. On the x-axis the 30 ex-
amples of Table I are ordered by increasing number of
states (as in Tables VI11 and IX), on the y-axis the ratios
for the cubes and the literals of MUSTANG over NOVA
are plotted. The plot shows that a state assignment that

922 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 9 NO. 9, SEPTEMBER 1990

TABLE VI1

OBTAINED BY MUSTANG A N D NOVA
COMPARISONS OF TWO-LEVEL AND MULTILEVEL LOGIC IMPLEMENTATIONS

EXAMPLE MUSTANG+ I NOVA++ I MUSTANG+++ I NOVA*++ I RANDOM@
#Cuba I #Cuba I #lit I #lit I #lit

TABLE VI11
SUMMARY OF NOVA

Ratio of area

I IhybndlNova ohybnd/Nova ____...............________ 2.60

2.50
I

2.40

2.30

2.20

2.10

2.00

1.90

1.80

1.70

1.60

1 .so

1.40

1.30

1.20

1.10

I I I I

0.00 10.00 20.00 30.00
Examples

gives a good two-level implementation also gives a good
multilevel implementation. This is consistent with the ex-
periments reported in [19]. We expect that real wins in

state assignment for multilevel implementations will be
achieved by programs detecting multicube common fac-
tors (kernels).

VILLA A N D SANGIOVANNI-VINCENTELLI: NOVA: ASSIGNMENT OF FSM'S FOR LOGIC IMPLEMENTATION

1.40

1.30
1.20

TABLE IX
KISS, BEST RANDOM, A N D NOVA

Ratio of area

~- ~

- .
I --? . . ' I

0 .

0 . " 0
--___-- ,

1 kiss/Nova ~
est Randodova

3.00 '
~-

I
2 80

2 70

2 60

2.50
2 40
2.30

2 20

2 10

200
190

1.80

1 70

160

1.50

. . a

1.10

1 .00
I I I 0.90 I Examples

0.00 5.00 10.00 15.00 20.00 25.00 30.00

TABLE X
MUSTANG A N D NOVA

Ratio Mustang/Nova

#cubes
#literals
__.,.________..__... 2.40

2.30

2.20

2.10

2.00

1.90

1.80

1.70

1.60

1.50

1.40

1.30

1.20 ::r-*Ti
0 80

0 70

Examples
000 500 10.00 15 00 20 00 25.00

923

924 IEEE TRAN SACTIONS ON COMPUTER-AIDED DESIGN, VOL. 9 NO. 9. SEPTEMBER 1990

NOVA can use any number of encoding bits greater than
or equal to the minimum. The best results on the bench-
mark of Table I have been obtained with a minimum en-
coding length, but this is not always the case. Table I1
shows that although iexact achieves a number of product
terms smaller than ihybrid, its final areas are always
larger. This indicates that (at least in the case of input
encoding only) increasing the code-length to satisfy all
the constraints does not pay in terms of area. This ex-
plains why NOVA, even restricted to the algorithms that
use only input constraints, achieves smaller areas than
KISS does. KISS guarantees the satisfaction of all input
constraints by an heuristic algorithm that does not always
achieve the minimum necessary code-length. However,
as noticed previously, even satisfying all input constraints
with the exact code-length does not win in terms of area
of a two-level logic implementation. Notice that in two
cases (ex2 and ex5) the number of cubes reported for ihy-
brid are fewer than those for iexact. The reason is that the
codes found by ihybrid satisfy implicitly some conjunc-
tive output relations [181 that help to achieve a better final
cardinality of the product terms.

The issue of forecasting the effect on the encoding of
conjunctive relations in the output part is being fully ad-
dressed in [181. The code-length/product-terms tradeoff,
when both input and output constraints are present, re-
quires more powerful heuristics than currently imple-
mented and we will experiment to find better ones. We
plan also to analyze the variations of the basic scheme of
symbolic minimization to characterize the pair (IC , OC)
that translates into the best upper bound in the shorter en-
coding length. An extension of our algorithms to the case
when the proper output part is given symbolically will be
investigated.

ACKNOWLEDGMENT
Thanks are due to Alex Saldanha for lively discussions

on symbolic minimization and providing the code of the
out-encoder routine. The authors also acknowledge Sally
Floyd for a careful reading of an earlier draft of the man-
uscript.

REFERENCES
[I] J . Hartmanis, “On the state assignment problem for sequential ma-

chines-l,” IRE Trans. Elect. Cornput., vol. EC-IO, pp. 157-165,
June 1961.

121 R. E. Steams and J . Hartmanis, “On the state assignment problem
for sequential machines-2,” IRE Trans. Elect. Cornput., vol. EC- 10,
pp. 593-603, Dec. 1961.

[3] D. B. Armstrong, “A programmed algorithm for assigning internal
codes to sequential machines,” IRE Trans. Elecr. Cornput., vol.

141 R. Karp, “Some techniques for state assignment for synchronous se-
quential machines,” IEEE Trans. Elect. Cornput., vol. EC-13, PP.

EC-11, pp. 466-472, Aug. 1962.

507-518, Oct. 1964.

[SI T. A. Dolotta and E. G. McCluskey, “The coding of internal states
of sequential machines,” IEEE Trans. Elect. Cornput., vol. EC-13,

[6] G. Saucier, “State assignment of asynchronous sequential machines
using graph techniques,” IEEE Trans. Cornput., vol. C-21, pp. 282-
288, Mar. 1972.

[7] G. De Micheli, A. Sangiovanni-Vincentelli, and T . Villa, “Com-
puter-aided synthesis of PLA-based finite state machines,” presented
at ICCAD, Sept. 1983.

[SI R. K . Brayton, G . D. Hachtel, C. T . McMullen and A. Sangiovanni-
Vincentelli, Logic Minimization Algorithms for VLSI Synthesis. New
York: Kluwer Academic, 1984.

[9) G. De Micheli, R. K. Brayton, and A. Sangiovanni-Vincentelli,
“Optimal state assignment for finite state machines,” IEEE Trans.
Comnpufer-Aided Design, vol. CAD-4, pp. 269-284, July 1985.

[IO] G. De Micheli, “Symbolic design of combinational and sequential
logic circuits implemented by two-level logic macros,” IEEE Trans.
Compurer-Aided Design, vol. CAD-5, pp. 597-616, Oct. 1986.

[l 11 T . Villa, “Constrained encoding in hypercubes: Algorithms and ap-
plications to logical synthesis,” Memo UCBiERL M87137, Univ.
California, Berkeley, May 1987.

1121 S. Devadas, H . T. Ma, A. R. Newton. and A. Sangiovanni-Vincen-
telli, “MUSTANG: State assignment of finite state machines for op-
timal multi-level logic implementations,” presented at ICCAD, Nov.
1987.

[I31 G. Saucier, M. Crastes de Paulet, and P. Sicard, “ASYL: A rule-
based system for controller synthesis,” IEEE Trans. Computer-Aided
Design, vol. CAD-6, pp, 1088-1097, Nov. 1987.

[14] A. Saldanha, “Pla optimization using output encoding,” U.C. Berke-
ley Master’s Rep., Aug. 1988.

[15] T. Villa. “NOVA,” User’s manual, Univ. California, Berkeley, Oct.
1988.

[I61 S . Devadas and R. Newton, “Exact algorithms for output encoding,
state assignment and four-level Boolean minimization,” Memo UCBi
ERL M8918, Univ. California, Berkeley, Feb. 1989.

[I71 A. Saldanha and T. Villa, “Symbolic minimization revisited,” to be
published.

[I81 -, “Output encoding for optimal state assignment of finite state
machines,” io be published.

(191 W . Wolf, K. Keutzer, and J. Akella, “Addendum to ‘A kemel-find-
ing state assignment algorithm for multi-level logic’,’’ IEEE Trans.
Computer-Aided Design, vol. 8 , pp. 925-927, Aug. 1989.

[20] T. Villa and A. Sangiovanni-Vincentelli, “Algorithms for state as-
signment of finite state machines for optimal two-level logic imple-
mentations,” in Proc. Inr. Workshop on Logic Synthesis. May 1989.

pp. 549-562, Oct. 1964.

*

Tiziano Villa received the Laurea degree in math-
ematics from the University of Milano, Italy, in
1977, the Diploma of the Mathematical Tripos,
Part I11 from the D.A.M.T.P., Cambridge, U.K.
in 1982, and the M.S. degree in computer science
from the University of California, Berkeley, in
1987.

From 1980 to 1985 he was a member of the
technical staff of the C.S.E.L.T. Labs, Torino,
Italy, in the division of computer-aided design of
integrated circuits. Since 1987 he has been a re-

searcher in the Electronics Research Laboratory, University of California,
Berkeley. His research interests include switching and automata theory,
logic synthesis and verification of VLSI circuits, combinatorial optimiza-
tion, and artificial learning.

*

Albert0 Sangiovanni-Vincentelli (M’74-SM’8 1 -F’83), for a photograph
and biography please see page 18 of the January 1990 issue of this TRANS.
ACTIONS.

