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NOVA: State Assignment of Finite State Machines 
for Optimal Two-Level Logic Implementation 
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Abstract-The problem of encoding the states of a synchronous finite 
state machine (FSM), so that the area of a two-level implementation of 
the combinational logic is minimized, is addressed. As in previous ap- 
proaches, the problem is reduced to the solution of the combinatorial 
optimization problems defined by the translation of the cover obtained 
by a multiple-valued logic minimization or by a symbolic minimization 
into a compatible Boolean representation. In this paper we present al- 
gorithms for their solution, based on a new theoretical framework that 
offers advantages over previous approaches to develop effective heu- 
ristics. The algorithms are part of NOVA, a program for optimal en- 
coding of control logic. Final areas averaging 20% less than other state 
assignment programs and 30% less than the best random solutions have 
been obtained. Literal counts averaging 30% less than the best random 
solutions have been obtained. 

I. INTRODUCTION 
HE AUTOMATIC synthesis of a sequential circuit as T a programmable logic array (PLA)-based finite state 

machine (FSM) involves functional design, logic design, 
topological design, and physical design. The step of logic 
design maps the functional description into a logic rep- 
resentation in terms of logic variables. A representation 
of the symbolic states (and also of the proper inputs and 
outputs, if they are symbolic) in terms of Boolean vari- 
ables, called state assignment, is chosen. The complexity 
of the combinational component of the FSM depends 
heavily on the state assignment and selection of memory 
elements. PLA optimization aims at minimizing the area 
occupied by the PLA and the delay through it (propor- 
tional to the number of product-terms, to a first-order ap- 
proximation). The PLA area is proportional to the product 
of the number of rows (product-terms) times the number 
of columns. The optimum state assignment (or encoding) 
problem looks for the assignment corresponding to a PLA 
implementation of minimum area. The (minimum) num- 
ber of rows is the cardinality of the (minimum) cover of 
the FSM combinational component according to a given 
assignment. The number of bits used to represent the states 
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(and the proper inputs and outputs, in case they are sym- 
bolic) is related to the number of PLA columns. There- 
fore, the PLA area depends in a complex way on the state 
assignment. 

There is a rich early literature on the state assignment 
problem. Armstrong [3] was the first to formulate the en- 
coding problem as a graph embedding problem, where a 
graph defines adjacency relations (in terms of Hamming 
distance) between the codes of the states to be preserved 
by a subgraph isomorphism on the encoding cube, with 
the objective to minimize the number of gates of the final 
implementation. Others [ 13, [2], [4], [ 5 ]  proposed alge- 
braic methods based on partition theory and on a reduced 
dependence criterion. In [6] conditions to find a critical 
race free encoding of asynchronous sequential machines 
were reduced to a graph embedding problem. Each input 
defined a partition of the states (or of a subset of the states) 
by the successor relation. The states were assigned to ver- 
tices in the cube so that for each partition the images of 
all states in the same block formed a path (using, if nec- 
essary, states not also included in the partition or unused 
vertices, each for at most one block) disjoint from the 
ones associated to the other blocks. In terms of imple- 
mentations of minimum area, these approches suffered 
from a weak connection with the logic optimization steps 
after the encoding. 

Advances in the state assignment problem [7]-[9] have 
made a key connection with multiple-valued logic min- 
imization: the states of a FSM are represented as the set 
of possible values for a single multiple-valued variable. 
Logic minimization is applied on a symbolic representa- 
tion of the combinational component of the FSM. The 
effect of multiple-valued logic minimization is to group 
together the states that are mapped by some input into the 
same next state and assert the same output. A new com- 
binatorial optimization problem arises (called FACE HY- 
PERCUBE EMBEDDING) of assigning each of these sets 
(called input constraints) to subcubes of a Boolean k-cube, 
for a minimum k, in a way that each subcube contains all 
and only all the codes of the states included in the corre- 
sponding constraint. More recently, symbolic minimiza- 
tion [lo], [17] has been proposed to take into account the 
effect of the encoding on the next state part. Symbolic 
minimization is a technique that yields a minimal encod- 
ing-independent sum-of-products representation of a sym- 
bolic function. It builds up a directed acyclic graph, where 
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the nodes are the next states and an edge (U, U )  corre- 
sponds to the covering constraint (called output con- 
straint) that the code of U covers bit-wise the code of U. 

The translation of the cover obtained by symbolic min- 
imization into a compatible Boolean representation de- 
fines simultaneously a face hypercube embedding prob- 
lem and an output covering problem (called ORDERED 
FACE HYPERCUBE EMBEDDING). 

Ongoing work [ 161, [ 181 is focusing on the output en- 
coding problem defined in the optimal state assignment. 
Output minimization techniques may be seen as setting 
disjunctive constraints on the codes of the symbolic states 
(the code of some states is the logical disjunction of the 
codes of two or more other states). Finding a compatible 
Boolean representation entails solving a difficult encoding 
problem based on input, output, and disjunctive con- 
straints. 

Other recent approaches [ 131 rely on local optimization 
rules defined on a control flowgraph. These rules are ex- 
pressed as constraints on the codes of the internal vari- 
ables and an encoding algorithm tries to satisfy most of 
these constraints. 

In this paper we present algorithms for optimal state 
assignment of FSM’s based on the solution of face hy- 
percube embedding and ordered face hypercube embed- 
ding. We revisit symbolic minimization and describe an 
effective version of it. The proposed theoretical frame- 
work offers substantial advantages over previous ap- 
proaches to develop effective algorithms. The algorithms 
are part of NOVA, a program for optimal encoding of 
control logic, available as a tool of the Berkeley logic syn- 
thesis system [ l l ] ,  [15]. The first three algorithms: iex- 
act-code, ihybrid-code, and igreedy-code, solve face hy- 
percube embedding. The last algorithm, iohybrid-code, 
solves ordered face hypercube embedding. iexact-code is 
an exact algorithm that finds an encoding satisfying all 
input constraints and minimizing the encoding length. 
ihybrid-code and igreedy-code are heuristic encoding al- 
gorithms that maximize input constraint satisfaction, for 
a (user or default)-given encoding length. ihybrid-code, 
based on a polynomial version of iexact-code, yields so- 
lutions of high quality and guarantees the satisfaction of 
all input constraints, for an encoding space large enough. 
iohybrid-code is a heuristic encoding algorithm that max- 
imizes simultaneous input and output constraint satisfac- 
tion, according to an appropriately defined metric. It is 
based on an adaptation of ihybrid-code to deal with both 
input and output constraints. 

We present results over a wide range of benchmarks 
that show that the final areas obtained by the best solution 
of NOVA average 20% less than those obtained by KISS 
[9], and 30% less than the best of a number of random 
state assignments. Final areas obtained by iohybrid-code 
average 30% less than the results reported for Cappuc- 
cino/Cream [ 101. Although NOVA targets two-level log- 
ical implementations, running our examples also through 
MIS-11, a multilevel logic synthesis system developed at 
UCB, we found that the final literal counts in a factored 

form of the logic when encoded by NOVA average 30% 
less than the literal counts obtained by the best of a num- 
ber of random state assignments. Comparisons with 
MUSTANG [12] in the two-level and multilevel case are 
also reported. Even though NOVA was not designed as a 
multilevel state assignment program, its performances 
compare successfully with MUSTANG. 

The paper is organized as follows. Algorithms iexact- 
code, ihybrid-code, igreedy-code and iohybrid-code are 
described, respectively, in Sections 111-VI. Results on the 
benchmark examples are presented in Section VI1 to- 
gether with final remarks and future work. 

11. PRELIMINARIES 
In this section, we introduce some background material 

that is used throughout the paper. The definitions are con- 
sistent with [9]-[lo], to which we refer for details. 

2. I .  Encoding Problems in Logic Synthesis 
Tabular descriptions of logic functions at the structural 

level are transformed into Boolean representations by re- 
placing each symbolic entry by Boolean vectors. An as- 
signment of Boolean vectors to symbolic entries is called 
an encoding. The optimization of logic functions per- 
formed on the Boolean representation is heavily depen- 
dent on the representation of the variables. For instance, 
the complexity of the combinational component of a FSM 
depends on the assignment of Boolean variables to the 
internal states. The following optimal encoding problems 
may be defined, with respect to a proper cost function: 

a) optimal encoding of inputs of a logic function. A 
problem in class A is the optimal assignment of op- 
codes for a microprocessor, 

b) optimal encoding of outputs of a logic function, 
c) optimal encoding of both inputs and outputs (or 

some inputs and some outputs) of a logic function. 
d) optimal encoding of both inputs and outputs (or 

some inputs and some outputs) of a logic function, 
where the encoding of the inputs (or some inputs) is 
the same as the encoding of the outputs (or some 
outputs). Encoding the states of a FSM is a problem 
in class D since the state variables appear both as 
input (present state) and output (next state) vari- 
ables. Another problem in class D is encoding the 
signals connecting two (or more) combinational cir- 
cuits. 

In this paper we study the problem of the optimal state 
(and proper input) assignment of FSM’s, using as a cost 
function the area of a two-level implementation. In Sec- 
tions 111-V we approximate the solution of the state as- 
signment problem by modeling it as a problem in class A, 
i.e., driving the assignment only from information related 
to the optimal encoding of the present states (and the 
proper inputs). The algorithms proposed are applicable to 
any problem in class A. In Section V we model the state 
assignment problem as a problem in class D, using a 
scheme of symbolic minimization [ 101 that captures par- 
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tially the effect of the next states in case of two-level im- 
plementations. 

2 .2 .  Multiple-valued Minimization of FSM’s 
FSM’s can be represented by state transition tables. 

State transitions tables have as many rows as transitions 
in the FSM. The rows of the table are divided into four 
fields corresponding to the primary inputs, present states, 
next states, and primary outputs of the FSM. Each field 
is a string of characters. The primary inputs may be in 
Boolean form or symbolic. We assume that the primary 
outputs of the FSM are always in Boolean form. Note that 
the input and output patterns may contain don’t care en- 
tries. A state transition table defines a symbolic cover of 
the combinational component of a FSM. The rows of the 
state transition table are called symbolic implicants of the 
symbolic cover. The symbolic cover reresentation may be 
seen as a multiple-valued logic representation, where each 
present state mnemonic is one of the possible values of a 
present-state multiple-valued variable. A similar identifi- 
cation holds for the next states (and the proper inputs, if 
they are symbolic). A multiple-valued logic minimizer can 
be used to compute a minimal or minimum multiple-val- 
ued symbolic cover. The effect of multiple-valued logic 
minimization is to determine subsets of states that are 
mapped by some input combination into the same next 
state and assert the same output. These subsets of states 
are called input constraints, because they constrain the 
encoding of the present states (and of the proper inputs, 
if symbolic) when transforming the symbolic representa- 
tion into a compatible Boolean representation. The goal 
of state assignment is to assign each of these subsets of 
states to subcubes of a Boolean k-cube, for a minimum k ,  
in a way that each subcube contains all and only the codes 
of the states included in the corresponding constraint. This 
problem is called face hypercube embedding. 

From now on, algorithms for the satisfaction of input 
constraints are algorithms that can solve any problem in 
class A,  although here we are particularly concerned with 
FSM encoding approximated as a problem in class A ,  by 
means of multiple-valued minimization applied to a sym- 
bolic cover of the FSM. Later, in Section VI, we will 
define other kinds of constraints arising when dealing with 
FSM encoding solved more generally as a problem in class 
D. In the next section we describe a theoretical framework 
and an exact algorithm to solve face hypercube embed- 
ding. 

111. AN EXACT ALGORITHM FOR FACE HYPERCUBE 
EMBEDDING 

In this section we present iexact-code, an exact algo- 
rithm that finds an encoding satisfying all input con- 
straints and minimizing the encoding length. 

3. I Theoretical Background 
Consider the problem FACE HYPERCUBE EMBED- 

DING: given a collection of subsets of states or symbols 
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Fig. 1. Encoding of examples 2 .1  and 3.1. 

(called input constraints and represented as characteristic 
vectors of the subsets), assign each of these subsets to 
subcubes (called faces) of a Boolean hypercube of mini- 
mum dimension in such a way that each face does not 
intersect the Boolean vector (called encoding, code or as- 
signment) assigned to any state not contained in the cor- 
responding constraint. Formally it may be stated as the 
following. 

INSTANCE: Set S = { 1, . . . , n } and a collection IC 
of subsets ic G S .  

QUESTION: Find the minimum k and an injective map 
ffrom the sets E IC U S to B k ,  where B = { 0 ,  1, x } ,  
such that for all subsets ic E IC and singletons s E S :  

f ( i c )  n f ( s )  z ip e s E ic. 

Example 3. I .  I :  Consider IC = { 11 10000, 01 11000, 
0000111, 1000110, 0000011, OOllOOO}: A solution is k 
= 4 and f( 1110000) = ~ 0 x 0 ,  f(OlllOO0) = 1 ~ x 0 ,  
f( 00001 11 ) = x l x l ,  f( 10001 10) = oxxx, f( 000001 1 ) 
= x l l l ,  f(0011000) = 1x00, f( 1000000) = 0000, 
f( 0100000) = 1010, f( 0010000) = 1000, f( 0001000) 
= 1100, f(0000100) = 0101, f(0000010) = 0111, 

f(OOOOOO1) = 1111. Fig. 1 shows the encoding on the 
4-cube. 

To verify the correctness for ic = 1110000, we com- 
pute: 

f ( i i ioo00)  = xoxo nf(1oooooo) = oooo # ip 

f ( i i ioo00)  = xoxo n f(oiooooo) = io10 + ip 

f ( i i i oo00)  = xoxo nf(ooioo0O) = io00 + ip 

f ( i i i oo00)  = xoxo n f(oooio00) = 1100 = ip 

f( i i ioooo) = xoxo n f(oo00ioo) = 0101 = ip 

f ( i i ioo00)  = xoxo nf(oooO0io) = 0111 = ip 

f ( i i ioo00)  = xoxo nf (oooooo i )  = 1111 = ip.  

To capture the inclusion relations among the faces of 
the hypercube, we choose to represent it with its under- 
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Fig. 2. The 3-cube poset. 

Fig. 3. The 3-cube face-poset. 

lying face-poset (partially ordered set), obtained by or- 
dering all faces of all available dimensions according to 
the Boolean inclusion relation. Formally the n-cube face- 
poset (or n-face-poset ) is the set of all sequences of 0, 1, 
x (don’t care) of length rr(cal1ed faces). It is a poset with 
the natural partial ordering defined by f 5 g iff f ( i  ) 5 
g ( i )  forall i I n (0 I x ,  1 I x ) .  Notice that then-cube 
face-poset is completely different from the n-cube poset , 
i.e., the poset structure induced on the n-cube by the nat- 
ural partial ordering on the Hamming codes of the vertices 
and isomorphic to the poset consisting of all subsets of an 
n-element set ordered by inclusion. Fig. 2 shows the 
3-cube poset and Fig. 3 shows the 3-cube face-poset, 
drawn as Hasse diagrams, i.e., directed acyclic graphs 
whose nodes are faces and an arc from node vi to node vj 
denotes inclusion between the corresponding faces. Level 
of a face, level, is the number of x’s contained in the se- 
quence. There are n + 1 levels in a n-face-poset. Cardi- 
nality or dimension of a face is 21ever. We define the inter- 
section of faces, with the usual Boolean rules. 

Also, the collection of constraint relations of the prob- 
lem instance can be seen as a poset by ordering them ac- 
cording to the set inclusion relation and can be drawn as 
an Hasse diagram. We call singleton constraints (or sim- 
ply singletons) the constraints including exactly one ele- 
ment of S, and universe constraint (or simply the uni- 
verse) the constraint including all elements of S. We define 

Closure n [IC ] : 

L s U IC U { icJ:  icJ = icJ, n icJ2, ic,,, icJ2 E I C }  

where fl , U are assumed in a set theoretical sense. 

Example 3.1.2: Consider IC = { 11 10000, 01 11000, 
oooO111, 1o00110, 00OOO11, OOllO00>. Closuren [IC] 
= { 11 1o000, 01 11000, 00001 11, 10001 10, oo00011, 
0011000, OlloooO, OOOOllO, 1000000, 0100000, 
001oo00, o001000, 0000100, 0000010, Oo00001}. 

We say that f preserves set theoretic inclusion when 

icl II ic2 e f(icl)  2 f ( i c 2 )  

and that f preserves set theoretic intersection when 

icl n ic2 = ic3 e) f (ic,) n f ( i c 2 )  = f ( i cg ) .  

We denote the cardinality of set S by # ( S ), and the car- 
dinality of face f( S )  by #( f( s)). Within this setting, 
the optimization version of FACE HYPERCUBE 
EMBEDDING can be stated as SUBPOSET DIMEN- 
SION. 

INSTANCE: Set S = { 1, * * * , n } and a collection IC 
of subsets ic G S. 

QUESTION: Find the minimum k and an injection map 
f from the sets ic E Closuren [IC] to the faces of the 
k-cube, satisfying #(ic) I #( f (ic)) and such that the 
k-cube contains a poset equivalent to the given one, i.e., 
for all elements E Closuren [IC], f preserves the set the- 
oretic operations of inclusion and intersection. 

The decision version can be stated as SUBPOSET 
EQUIVALENCE. 

INSTANCE: Set S = { 1, * * , n }  and a collection IC 
of subsets ic G S, and a positive integer k. 

QUESTION: Does the k-cube contain a poset equiva- 
lent to the given one, i.e., is there an injective map f from 
the sets ic E Closuren [IC] to the faces of the k-cube, 
satisfying #(  ic) I #( f (ic)) and such that, for all ele- 
ments E Closuren [ IC  1, f preserves the set theoretic op- 
erations of inclusion and intersection? 

Figs. 4 and 5 show an example of this decision problem 
reduced to subgraph isomorphism. A restriction to 
subgraph homeomorphism is shown by Figs. 6 and 7. A 
general example is shown by Figs. 8 and 9. We notice 
that this decision problem can always be seen as a special 
instance of subgraph isomorphism into the transitive clo- 
sure of the directed acyclic graph induced by the k-cube 
face-poset . 

3.2. Processing a Problem Instance of SUBPOSET 
DIMENSION 

The input exact encoding algorithm has a preprocessing 
stage that, given the set of input constraints IC, builds a 
representation of the closure of the poset generated by IC. 
We call this closure, augmented by the universe, the input 
poset of the problem. The input poset can be represented 
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Fig. 7 .  3-face poset with subgraph homeomorphic to poset of Fig. 6. 

Fig. 4. Completely leveled input poset 

Fig. 8.  Generic input poset 

Fig. 5 .  3-face poset with subgraph isomorphic to poset of Fig. 4. 

Fig. 9. 3-face poset with subposet equivalent to poset of Fig. 8 .  

include ic, and C ( i c )  is the set of maximal constraints 
included in ic (edges of ZG ). The relations of fathers and 
children, are a succinct representation of the Hasse dia- 
gram arcs, instead of the arcs between all possible com- 
parable constraints. We walk through the input poset from 
a constraint to another, through the edges of ZG. 

Fig. 6. Partially leveled input poset. 

by an Hasse diagram, or by a more compact representa- 
tion, that we call input graph, ZG( V ,  E) .  To every con- 
straint ic in the input poset (nodes of ZG ), we associate 
the set of his fathers F ( i c )  and the set of his children 
C (  ic), where F (  i c )  is the set of minimal constraints that 

Example 3.2.1: Consider I C  = { 1110000, 0111000, 
oo00111, 1000110,0000011,0011000}. V =  { 1111111, 
1110000, 0111000, 0000111, 1000110, 0000011, 
0011000, 01100oc), 0000110, 1000000, 0100000, 
0010000, 0001000, 0000100, 0000010, 0000001 }. 

To compute E, it is sufficient to determine F (  ic) for all 
ic E V. The pairs (ic, iq), for all ici E F ( i c ) ,  represent 
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all the ingoing edges of ic: 

9, F(  111oooo) = F(0111000) 

F ( m 1 1 1 )  = F(1000110) = 1111111, 

01 11000, F( 01 loooo) 

(0111000, l l l m ) ,  F(0000011) 

m 1 1 1 ,  

(oooo111, lo00llO), F(00loooo) 

(001 1o00, 01 loooo), 

001 1o00, F(Ol00000) 

O l l ~ ,  F(oooool0) 

(000001 1, m 1  lo), 

0000011, F(ooool00) 

m 1 1 0 ,  F(  loooooo) 

(1 lloooo, lo001 10). 

Fig. 10 shows the input graph, ZG, associated to the input 
constraints IC. 

3.3. General Scheme of iexuct-code 
The input exact encoding algorithm, iexuct-code, finds 

an answer to SUBPOSET DIMENSION, by answering 
exactly SUBPOSET EQUIVALENCE for increasing di- 
mensions of the hypercube. Solving exactly SUBPOSET 
EQUIVALENCE decides whether the input poset can be 
embedded in a given k-face-poset, and finds a satisfactory 
assignment, ENC, if any. If it exists for dimension k, and 
we already answered “no” for dimensions < k, we have 
an answer to SUBPOSET DIMENSION. The procedure 
mincube-dim computes a lower bound on the 
dimension of the k-face-poset. The procedure subposer- 
equivalence decides SUBPOSET EQUIVALENCE. The 
pseudocode below illustrates the general scheme of the 
algorithm. 

iexuct-code( ZG ) 
{ 

mincube = minimum feasible cube dimension 
ENC = 9 
mincube = mincube-dim(ZG) 
for (k = mincube; k I #(S); k + +) { 

ENC = subposet-equivulence(ZG, k) 
if (ENC # 9) return(ENC) 
1 

1 
1. 

3.3. I Re$ned Scheme of iexuct-code: The general 
scheme of Section 111-3.3 can be refined, replacing a sin- 
gle call to subposet-equivalence with a number of calls to 
a procedure, pos-equiv, that decides a restriction of SUB- 
POSET EQUIVALENCE with fixed #(  f ( i c ) ) ,  for all ic 
E ZG such that F( i c )  is the universe (the constraint in- 

Fig. 10. Input Graph IC (example 2.2.1) 

cluding all elements of S ) .  We recall that an assignment 
of constraint ic of the input poset to face f ( i c )  of the face- 
poset satisfies # ( i c )  I # ( f ( ic) ). For a given dimension 
of the hypercube on which we invoke pos-equiv, in many 
cases a solution exists only when the previous inequality 
is proper for one or more of the constraints. One reason 
may be that some constraints need to be adjacent to many 
others and so they require a large face, i.e., a large 
boundary, to satisfy their numerous intersections. So, for 
a cube of dimension k, we have for every constraint ic the 
choice of different levels of the corresponding face, and 
the choice of different faces of a given level. 

Constraint ic E ZG is classified of category 1 and called 
a primary constraint if # ( F ( i c ) )  = 1 and F ( i c ) )  is the 
universe; of category 2 if # (F( ic ) ) > 1 ; of category 3 if 
# ( F ( i c ) )  = 1 and F ( i c )  is not the universe. We use the 
notation cut( ic)  = i to denote that ic has category i. In 
general if # ( i c )  = c and cut( ic)  = 1 then #(  f ( i c ) )  is 
such that log c I level I k - 1, where 21eve‘ = #( f( i c )  ). 
Noticethatifcut(ic) = 2 , t h e n # (  f ( i c ) )  = # ( n f ( i c j ) )  
for all icj E F ( i c ) .  If cut(ic) = 3, then #(  f ( i c ) )  c 
#(f  ( F ( i c ) ) ) .  

Example 3.3.  I .  I :  Consider the input graph ZG given 
in Example 3.2.1: 
cut ( 11 10000) = cut (01 11000) = cut (00001 11 ) = 
cut(1000110) = 1, cut(0000110) = cut(0110000) = 
cut(0010000) = cut(0000010) = cut(1000000) = 2, 
cut(0011000) = cut(0000011) = cut(0001000) = 
cut(0100000) = cut(0000001) = cut(0000100) = 3. 

The current chosen levels of primary constraints are 
stored in a vector dimvect, called primary level vector. 
The routine face-levels returns at every call a new pri- 
mary level vector. face-levels is invoked when pos-equiv 
answers no to the decision problem on (ZG, k )  restricted 
to dimvect. The primary level vectors are generated in in- 
creasing lexicographic order. If, for a given embedding 
dimension k, all possible primary level vectors have been 
unsuccessfully tried, the main routine updates the hyper- 
cube dimension to k + 1. Notice that # ( S )  is a trivial 
upper bound on the hypercube dimension. 

Example 3.3.1.2. : Continues from Example 3.3.1.1. 
Given the set of ordered primary constraints ( 11 1oo00, 
01 11000, OOOO111, 10001 lo), and cube dimension k = 
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4, the successive values of the primary level vector dim- 
vect are 

level, because it cannot hold for larger levels, if it does 
not hold for the minimum one. Analytically, we look for 
the smallest cube dimension such that the following ine- 

(*, 2 7  *, 2 ) 7  (2 ,  2, 2 y  3 ) 7  (2 ,  2, 3?  2),  ( 2 7  2 7  3 9  3 ) ,  (2 ,  qualities are satisfied: # ( F ( i c ) )  5 # ( S )  - level( f ( i c ) )  
3 9  2, 2) ,  (2 ,  3 9  2 7  3 ) 9  ( 2 7  3 ,  3 ,  2 ) >  ( 2 9  3 ,  3?  3 ) 7  ( 3 ,  2 7  and #(  f ( i c ) )  = # ( i c ) .  
2, 2)7 ( 3 ,  2, 2, 31, ( 3 ,  2, 3 ,  21, ( 3 ,  2, 3, 3 ) ,  ( 3 ,  3, 2, 3.3.2.2. A counting argument based on uneven con- 

straints: A third counting argument, (count_cond3), en- 21, ( 3 ,  3 ,  2, 3 ) ,  ( 3 ,  3,  3,  21, ( 3 ,  3 ,  3 ,  3 ) .  
Since pos-equiv(IG, 4, (2, 2 ,  2, 2 ) )  returns a valid 

encoding, in this example only the first vector (2,  2, 2, 
2 )  is actually generated. 

It is still an open problem how to decide a priori that 
some values of the primary level vector are useless to ob- 
tain a positive answer topos-equiv. A solution to it would 
strongly speed up the running time of iexact-code. The 
following pseudocode illustrates the flow of the algo- 
rithm. 

iexact-code(IG ) 

mincube = minimum feasible cube dimension 
dimvect = vector of face levels 
ENC = 
mincube = mincube-dim(ZG) 
for (k = mincube; k 5 # ( S ) ;  k +  +) { 

dimvect = face-levels(k, dimvect) 
while (dimvect f a) { 

{ 

ENC = pos-equiv(IG, k ,  dimvect) 
if (ENC # a) return(ENC) 
else dimvect = face-levels(k, dimvect) 

1 

3.3.2. Lower Bounds on the Cube Dimension: To save 
some useless calls to pos-equiv, one needs to find good 
lower bounds on the hypercube dimension, as starting 
points of the for outer cycle of iexact-code. The routine 
mincube-dim implements some counting arguments and 
returns mincube, the initial cube dimension passed to 
pos-equiv. Some counting arguments are explained in the 
following. 

mincu b-dim(ZG ) 

min-cube = count-condI(IG) 
min-cube = count-cond2(IG, min-cube) 
min-cube = count-cond3(IG7 min-cube) 

3.3.2.1. Two straightforward counting argu- 
ments: A first counting argument, (count-condl ), en- 
forces the obvious condition that the cube should have at 
least as many faces of a given cardinality as the input 
graph has constraints of a given cardinality. 

A second counting argument, (count-cond2 ), enforces 
the condition that, in a feasible cube, the face assigned to 
any constraint must have as least as many minimal in- 
cluding faces (i.e., faces of the least larger level), as many 
fathers the constraint has. The condition is checked in the 
stronger case that the face is of the minimum feasible 

{ 

1. 

forces the condition that, in a feasible cube of dimension 
min-cube, in case some constraints have a cardinality that 
is not a power of 2 (called uneven constraints), there will 
be enough faces of level 0 to accommodate them, in the 
hypothesis of the densest possible packing of the uneven 
constraints. We can think of the uneven constraints as 
adding new virtual states to S .  The question is: what is 
the minimum number of virtual states introduced by a 
given set of uneven constraints? Two facts must be taken 
into account. 

1) If # ( i c )  = c,  then ic introduces minpow2(c) - c 
virtual states, where minpow2 is the minimum power of 
2 2 c. 

2) At most min-cube constraints may intersect in the 
same virtual state. 

They are used in the algorithm illustrated by the pseu- 
docode given in the following. We keep an array of the # 
of virtual states introduced by each uneven constraint (fact 
l),  and we compute the maximum number of identifica- 
tions between the virtual states introduced by different un- 
even constraints (using fact 2). This is the densest possi- 
ble packing of the uneven constraints. Notice that such a 
packing could be unfeasible, among other reasons, when 
the uneven constraints, completed by the virtual vertices, 
generate new uneven constraints, and all level 0 faces of 
the hypercube are already used. 

count-cond3 (IG, min-cube) 

entry U of array VRT stores the # of virtual 
states introduced by uneven constraint ic, 
for (each uneven ic, E ZG) { 

VRT [ U ]  = minpow2(ic,) - #(ic,) 

{ 

1 
sort VRT in nondecreasing order 
while (a feasible dimension is found) { 

iter-count = 0 
while (VRT # zero vector) { 

decrease by 1 the first min-cube nonzero en- 
tries of VRT in nondecreasing order 
iter-count is increased by 1 

1 
if (2m1n-cube - # ( S I  < iter-count) { 

min-cube is increased by 1 

# ( S )  2 iter-count) { 
if 1 (2min-cube - 

return(min-cube) 
1 

1 
1. 
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Example 3.3.2.2.1: Consider the graph IG( V ,  E )  
given in Example 3.2.1, where V = { 11 11 11 1, 11 10000, 
01 11o00, oo00111, 10001 10, o000011, 001 1000, 
011ooo0, o00Oll0, 1000000, Olooo00, 0010000, 
0001o00, m 1 0 0 , 0 o 0 0 0 1 0 ,  OoOo001}. 

The routines count-condl and count-cond2 return min- 
- cube = 3 ;  count-cond3 returns min-cube = 4, because 
of two virtual states introduced by the uneven constraints 
11 10000, 01 11000, 00001 11, 10001 10. Therefore, 4 is 
the initial cube dimension passed to pos-equiv. 

3.4. Solving Restricted Subposet Equivalence 

The solution to subposet equivalence, restricted to 
a given cube dimension and primary level vector, is 
based on a backtracking scheme. Basic operations of it 
are selecting the nodes (constraints) of the input graph 
(next-to-code), and assigning them to faces of the cube, 
so to preserve intersection and inclusion relations in the 
two posets (assign-face). The selected nodes are inserted 
in a list Sic, ordered by selection time. Notice that next- 
to-code selects only constraints ic such that cat ( i c )  = 1 
orcat ( ic )  = 3, (i.e., # ( F ( i c ) )  = 1). We recall that the 
codes of the constraints ic such that cat ( i c )  = 2 are de- 
termined by the codes assigned to theirs fathers, and 
therefore, they do not need to be selected at this level. A 
selected constraint is given a code consistent with ENC, 
if any. In this way, an assignment, ENC, is built incre- 
mentally and when it cannot be consistently extended to 
a new constraint, because of previous wrong choices, an 
old constraint-face map is undone (next-to-recode), and 
a new one, consistent with the reduced ENC, is at- 
tempted. While a backtracking phase starts or continues, 
next-to-recode chooses the last constraint of Sic, among 
those successfully encoded. While a backtracking phase 
ends, next-to-recode chooses the first constraint in Sic, 
among those whose assignment was undone. In case no 
feasible assignment exists, pos-equiv returns an empty 
encoding. The pseudocode that follows illustrates the 
general scheme of the procedure. 

pos-equiv(IG, k ,  dim-vect) 

ENC = 9 
Sic = 9 
backtrack Boolean flag to signal backtracking 
next-to-code(IG, Sic) returns unencoded ic E V 
first selected constraint ic is stored asfic 
Sic = Sic U ic 
while(there are unencoded constraints) { 

{ 

backtrack set to FALSE 
assign- face(ic, ENC, k ,  dim-vect) returns 
f ( i c )  # 9 iff ic can be encoded consistently 

ENC = ENC U f ( i c )  
while ( f ( i c )  = 9 or backtrack is TRUE) { 

iff(ic) = 9 & backtrack is FALSE) { 

with ENC 

a backtracking phase starts 

backtrack set to TRUE 
if (ic coincides withfic) { 

no feasible assignment exists 
return(+) 

} else { 
next-to-recode(IG, Sic) returns ic E 
Sic 
ENC = ENC - f ( ic )  
assign- face(ic, ENC, k ,  dim-vect) 
returns f ( ic )  
ENC = ENC U f ( ic )  

1 
1 
if ( f ( i c )  = 9 & backtrack is TRUE) { 

the current backtracking phase continues 
if (ic coincides with$c) { 

no feasible assignment exists 
return(@) 

next-to-recode(IG, Sic) returns ic 
E Sic 
ENC = ENC - f ( i c )  
assign- face(ic, ENC, k,  dim- 
- vect) returns f ( ic )  
ENC = ENC U f ( ic )  

} else { 

1 
1 
if ( f ( i c )  # 9 & backtrack is TRUE) { 

a backtracking phase ends 
next-to-recode(ZG, Sic) returns ic E 
Sic 
assign- face(ic, ENC, k,  dim-vect) 
returns f ( i c )  
ENC = ENC U f ( i c )  
if (ic coincides with lic) { 

backtruck set to FALSE 
1 

1 
1 
next-to-code(ZG, Sic) returns unencoded ic E 
V 
last selected constraint ic is stored as lic 
Sic = Sic U ic 

1 
return(ENC) 

1. 

3.4.1. Walking Through the Input Graph: The routine 
next-to-code selects an unencoded constraint according 
to the following priority branching scheme. Recall that lic 
is the last constraint inserted in Sic. 

1) Choose, if any, a constraint of category 1 not al- 
ready coded, mappable to a face of the same level as 
f( l ic) ,  and sharing children with it. 

2) Choose, if any, a constraint of category 1 not al- 
ready coded, mappable to a face of the same level as 
f ( l i c ) .  
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3) Choose, if any, a constraint not already coded, 
mappable to a face of the same level asf(  l ic) ,  and sharing 
children with it. 

4) Choose, if any, a constraint not already coded, 
mappable to a face of the same level a s f (  l ic) .  

5 )  Choose, if any, a constraint of category 1 not al- 
ready coded, mappable to a face of the maximum level 
less thanf( l ic)  s .  

6) Choose, if any, a constraint not already coded. 
mappable to a face of the maximum level less than 
f ( 1 i c ) s .  

The selection mechanism chooses the constraints in or- 
der of decreasing feasible face level, and within it gives 
higher priority to constraints of cardinality 1, and among 
them to those sharing children with constraints already 
coded. The rationale is that we want to first code the con- 
straints needing larger faces, and among them those of 
category 1, and that we exploit a look-ahead of one level 
(sharing of children) to reject encodings at an upper level, 
if they are unable to satisfy face intersections at the next 
lower level. This allows us to discover at an early time 
when an assignment is unfeasible, i.e., cannot be ex- 
tended downwards. 

3.4.2. Walking Through the Face-Poset: The routine 
assign-face walks through the face-poset and assigns 
faces to constraints, if feasible. Faces are generated call- 
ing the routine genface, and verified for consistency with 
the incrementally built encoding ENC by the routine ver- 
i’. A face is accepted if it also the case that, for all the 
children of category 2 of the constraint being encoded, 
the intersection of the faces assigned to their encoded (if 
any) fathers is a feasible code for them. The set of chil- 
dren of category 2 of ic, with some fathers already en- 
coded, is denoted by D (ic). When unable to map the con- 
straint to a face, assign-face returns the empty face. The 
routine genface is invoked for constraints of category 1 
and 3 .  The generation of the faces is based on the pro- 
duction of all combinations of patterns of x ’s ,  according 
to the level of the face, in lexicographic order. 

assign- face(ic, ENC, k ,  dim-vect) 
1 
genfuce(ic, k ,  dim-vect) returns f ( i c )  
while ( f ( i c )  # 9) { 

if (verify(f(ic),  ENC)  succeeds) { 
for (all constraints ic, E D(ic)) { 

if ( n f ( i c j ) ,  icj E F(ic,),f(icj) # 9 w.d. 
& veri fy(nf( ic j ) ,  ENC)  succeeds) { 
ic, is mapped to n f ( i c j )  
} else break from thefor cycle 
return( f ( i c ) )  

1 
1 
genface(ic, k ,  dim-vect) returns f ( i c )  

1 

1. 
return( 9) 

Example 3.4.2. I :  Consider the input graph ZG given 
in Example 3.2.1. The procedure pos-equiv(ZG, 4, (2, 2, 
2 ,  2)) flows as follows. 

Step I :  

next-to-code returns 01 11000 
after assign-face: f(OlllOO0) = ~ 0 x 0 .  

Step 2: 

next-to-code returns 11 10000 (branch n. 1) 
after assign-face: f (  11 10000) = xOOx, f(OllOOO0) = 
xooo . 
Step 3: 

next-to-code returns 10001 10 (branch n. 1) 
face OxxO is generated and rejected 
after assign-face: f( 10001 10) = Oxxl, f( 1000000) = 
0001. 

Step 4: 

next-to-code returns 00001 11 (branch n. 1) 
faces O x l x ,  lxOx, lxlx, OxOx, OOxx are generated and 
rejected 
after assign-face: f(OOOOll1) = Olxx, f(OOOOll0) 
01x1. 

Step 5: 

next-to-code returns 001 1000 (branch n. 6) 
after assign-face: f(OOllOO0) = 00x0, f(OOlOOO0) 
0000. 

Step 6: 

next-to-code returns 000001 1 (branch n. 4) 
after assign-face: f(OOOOOl1) = OlOx, f(OOOOOl0) 
0101. 

Step 7: 

next-to-code returns 0000001 (branch n. 6) 
after assign-face: f(OOOOO0l) = 0100. 

Step 8: 

next-to-code returns 0000100 (branch n. 4) 
face 0101 is generated and rejected 
after assign-face: f(OOOOlO0) = 01 11. 

Step 9: 

next-to-code returns 00010000 (branch n. 4) 
face 0000 is generated and rejected 
after assign-face: f(OOOlOO0) = 0010. 

Step IO:  

next-to-code returns 0100000 (branch n. 4) 
face 0000 is generated and rejected 
after assign-face: f(OlOOOO0) = 1000. 
ENC: 

f( 1111111)  = xxxx 

f(0111000) = xoxo 
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f( 00001 11 ) = Olxx 

f( 1 1  10000) = xoox 

f( 1000110) = Oxxl 

f ( 0 0 0 0 l l O )  = 01x1 

f (Ol lOo00)  = xooo 
f( 001 1000) = 00x0 

f( 000001 1 ) = O l O X  

f(0000001) = 0100 

f (ooOool0)  = 0101 

f (0000100)  = 01 1 1  

f (0001000)  = 0010 

f(OOlO000) = 0000 

partial assignment, so when we are able to extend it to the 
complete input poset, we have a correct solution of the 
problem. 

3.5. Complexity 

Two quantities measure the complexity of iexact-code: 
the number of upper level backtracking trials, #Ulb, and, 
for each of them, the number of lower level backtracking 
attempted assignments of faces to constraints, #Lfb. We 
evaluate first #Ulb. Suppose that from the set of input 
constraints we have the following subset of constraints of 
category 1: { i c ; } ,  i = 1 ,  * - , n.  Call di the minimum 
dimension of a face that can be assigned to ic, and d the 
current encoding length. In the worst case 

i = n  

#Ulb = IT ( d  - d; ) .  
i =  I 

f (0100000)  = 1000 If d - dj  = (d /2 ) ,  we have 

f( 1000000) = 0001. 

3.4.3. Correctness: The correctness of the assignment 
is guaranteed incrementally. We suppose that up to the 
ith step we built a correct partial assignment, i.e., an as- 
signment to a subset of constraints that verifies the sub- 
poset equivalence among the constraints already taken into 
consideration. Coding a new constraint, we want to make 
sure that we still get a correct assignment with respect to 
the enlarged set of encoded constraints and of inclusion/ 
intersection relations holding among them. The verifica- 
tion on the input poset consists of the following checks: 
1) if the new constraint has only one father, the latter's 
face must include the face proposed for the former (inclu- 
sion condition ici 3 icj -+ f( ic;)  3 f( i c j ) ) ;  2) if the new 
constraint has more than one father, the faces assigned to 
the fathers must intersect in the face proposed for the child 
(intersection condition ic, n icj = ick + f( ici)  n f( i c j )  
= f ( i c k ) ) .  On the input poset we limit the checks to the 
fathers of the constraints being encoded, because we build 
the global assignment function incrementally fathers first, 
children after, and so we need to worry only about the 
local fatherdchildren relations. 

The verification on the face-poset consists of the fol- 
lowing checks: 1) the face proposed for the constraint 
being encoded must be different from the faces already 
assigned (the mapping has to be injective); 2a) if an as- 
signed face includes properly the face proposed, the for- 
mer's inverse must be a father of the constraint being en- 
coded; 2b) if the face proposed includes properly a face 
already assigned, the latter's inverse has a to be a child 
of the constraint being encoded (both verify the inclusion 
conditionf(ic,) 3 f ( ic j )  + ici 3 icj); 3) if an assigned 
face has a nonempty intersection with the face proposed, 
their inverses must intersect in a nonempty constraint (in- 
tersection conditionf( i c i )  n f( icj) = f (  i ck )  + ic, n icj 
= ick). On the face-poset the checks are global, because 
a new proposed face may a priori lay anyway in it. In- 
ductively, we can say that we always guarantee a correct 

#Ulb = (:)' 
Now we evaluate #Llb. We have for every constraint of 
category 1 the choice of many possible faces of minimum 
dimension. Constraints of category 2 and 3 are encoded, 
respectively, within the subspace assigned to their father 
and by the intersection of the codes assigned to their fath- 
ers and so their contribution can be neglected. Keeping 
the same notation as before, and noting that one can as- 
sign to ic; at most 2d'($) faces, in the worst case: 

i = n  

#Llb = 2.(:) 
i =  I 

If C di = (nd/2) ,  we have 

#Llb = (2d)"d'2. 

The algorithm iexact-code can be computationally too ex- 
pensive and it is not suggested to be the standard way of 
solving face hypercube embedding. Nevertheless, it al- 
lowed us to find solutions to the majority of the examples 
of our benchmark, producing a set of results against which 
to compare heuristic solutions. Moreover, as we will see 
in Section IV, a computationally bounded version of it, 
semiexact-code is the core of a very efficient approximate 
algorithm, ihybrid-code. 

IV. A HYBRID ALGORITHM FOR FACE HYPERCUBE 
EMBEDDING 

In this section we describe an approximate algorithm, 
called ihybrid-code, that operates on the input con- 
straints. The inputs to the algorithm are: #bits, a user- 
specified code-length and IC, the set of weighted input 
constraints (the weight of an input constraint is propor- 
tional to the number of repeated occurrences of the cor- 
responding product term in the multiple-valued mini- 
mized cover). The algorithm outputs ENC, an encoding 
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that maximizes heuristically the total sum of constraint 
weights satisfied in the given code-length. The rationale 
is that the weight of a constraint is proportional to the 
number of product terms saved in a final implementation 
by satisfying it. The strategy to choose the subset of sa- 
tisfiable constraints is greedy, i.e., constraints are chosen 
one at a time in decreasing order of weight and they are 
accepted or rejected if they can be satisfied together with 
the subset of constraints already chosen. We do not try to 
find the set of constraints that give the minimum product- 
term cardinality for a given code-length, trading-off speed 
versus quality of solution. Since a new constraint is ac- 
cepted or rejected by nonexhaustive simulation of a par- 
tial encoding, the greedy strategy favors the cluster of 
constraints that yield the largest saving of product terms 
in the final implementation. Satisfactory experimental re- 
sults support this conclusion. 

The algorithm is based on two encoding strategies, 
semiexact-code and project-code, the first one invoked 
on the minimum code-length and the second one on the 
successive code-lengths up to #bits. The routine semiex- 
act-code is a modified version of the exact input encoding 
algorithm iexact-code, presented in Section 111. The rou- 
tine project-code is a quick encoding algorithm that even- 
tually guarantees a complete satisfaction of all the input 
constraints. 

The procedure ihybrid-code builds incrementally SIC, 
a set of satisfied input constraints and RIC, a set of un- 
satisfied input constraints. Both SIC and RIC are empty at 
the beginning. In the first part ihybrid-code tries to max- 
imize the total sum of constraint weights satisfied in the 
minimum code-length. To do so it selects ic, the con- 
straint of maximum weight from IC - SIC - RIC and 
invokes semiexact-code on the set of constraints SIC U 
ic. If semiexact-code succeeds in satisfying all constraints 
of SIC U ic, ENC gets updated to the new found encoding 
and ic is added to the set of satisfied constraints, other- 
wise ic is added to the set of rejected constraints. This 
loop is repeated until the sets SIC and RIC become a par- 
tition of IC. If semiexact-code fails always, as it may 
happen in rare pathological situations, ENC gets a random 
encoding to guarantee that there is always a starting en- 
coding for project-code to work properly. If RIC is not 
empty and #bits is larger than the minimum code-length, 
the embedding cube is increased by unitary steps and for 
each increase the encoding strategy project-code is in- 
voked. For each dimension added to the cube, project- 
-code is guaranteed to satisfy at least one more constraint 
from RIC, while still satisfying all constraints of SIC. So 
project-code adds at least (in general more than) one con- 
straint to SIC and deletes it from RZC; ENC gets updated 
to the new found encoding. This is repeated until there 
are no more unsatisfied constraints and there is no more 
unused encoding space. At the end SIC and RIC are a new 
partition of IC, and they contain, respectively, the satis- 
fied and unsatisfied constraints of IC. It is fairly obvious 
that project-code, if given an encoding space large 
enough, is guaranteed to satisfy completely any set of in- 

put constraints. The pseudocode that follows illustrates 
the steps of the algorithm. 

ihybrid-code(IC, #bits) 

cube-dim = minimum encoding length 
SIC = 9 
RIC = 9 
while ( (IC - SIC - RIC) # 9 ) { 

{ 

selects ic, the constraint of maximum weight in 

if semiexact-code(SIC U ic, cube-dim) SUC- 
ceeds { 

(IC - SIC - RIC)  

ENC gets a new encoding 
SIC = SIC U ic 

else RIC = RZC U ic 
1 

1 
if (ENC = 9) ENC gets random encoding 
while ( RIC # 9 and cube-dim < #bits ) { 

cube-dim is increased by 1 
project-code(ENC, SIC, RIC, cube-dim) 
i.e. ENC gets a new encoding 

NC = { new constraints satisfied by project- 
- code } 
SIC = SIC U NC 
RIC = RIC - NC 

1 
1. 

Example 4 .1 :  Consider IC = (1110000, 0111000, 
00001 11, 10001 10, 000001 1, 001 IOOO}. The weights of 
the constraints are, respectively, 4, 2, 3, 5, 1, 1. A con- 
straint has a 1 in the ith position if the ith state belongs 
to it. The bounded backtracking coding algorithm flows 
as follows. 

Step I :  

ic = 10001 10; semiexact-code satisfies the constraints 
in SIC U ic; 
SIC = { 1000110 }; RIC = 9. 

Step 2: 

ic = 11 10000; semiexact-code satisfies the constraints 
in SIC U ic; 
SIC = { 10001 10, 11 10000 }; RIC = 9. 

Step 3: 

ic = 00001 11; semiexact-code fails to satisfy the con- 
straints in SIC U ic; 
SIC = { 10001 10, 11 10000 }; RIC = { 00001 11 }. 

Step 4: 

ic = 01 11000; semiexact-code fails to satisfy the con- 
straints in  SIC U ic; 
SIC = { 1000110, 1110000 }; RIC = { 0000111, 
0111000 }. 
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Step 5.  

ic = 000001 1; semiexact-code satisfies the constraints 
in SIC U ic; 
SIC = { 1000110, 1110000, 0000011 }; RIC = 

Step 6: 

ic = 001 1000; semiexact-code satisfies the constraints 
in SIC U ic; 
SIC = { 1000110, 1110000,0000011,0011000 }; RIC 

ENC = { 000, 101, 100, 110, 010, 011, 111 }.  

{ 0000111,0111000 }.  

= { 0000111,0111000 }; 

The projection coding algorithm raises the codes of states 
5 ,  6, 7 into the added fourth dimension and so it is able 
to satisfy, in one last step, both constraints left in RIC. 

Step 7: 

NC = { 0000111,0111000 }; 
SIC = { 10001 10, 11 10000, 00001 11, 01 11000, 

1. 

0000011, 0011000 }; RIC = +; 
ENC = { 0000, 1010, 1000, 1100, 0101, 0111, 1111 

Fig. 1 shows ENC computed after Step 7. 

4.1. The Bounded Backtrack Coding Algorithm 

The routine semiexact-code is a modified version of the 
exact input encoding routine iexact-code, presented in 
Section 111. In iexact-code there are two sources of com- 
binatorial explosion. 

1) At the upper level backtracking, for a fixed embed- 
ding dimension, we have for every constraint of category 
1 the choice of many possible cardinalities of the face to 
which it can be assigned. 

2) At the lower level backtracking, we have for every 
constraint of category 1 the choice of many possible faces 
of minimum sufficient dimension. Constraints of category 
2 and 3 are encoded, respectively, within the subspace 
assigned to their father and by the intersection of the codes 
assigned to their fathers and so their contribution to the 
cost of the lower level backtracking can be neglected. 

The routine semiexact-code copes with the previous 
problems as follows. 

1) A modified version of the routine faces-dim-set is 
used, which assigns to the constraints of category 1 only 
faces of the minimum possible dimension. It is well 
known that with such a limitation an existing solution is 
not guaranteed to be found, but we want to cut on the 
explosive number of possible face configurations assign- 
able to constraints of category 1. The rationale of the 
choice is that in a cube whose dimension is the minimum 
encoding length, most constraints can only obtain the 
minimum face dimension, so it is not a dramatic loss of 
optimality to limit ourselves as was done. 

2) At the lower level backtracking, we stop the search 
when the number of partial encoding assignments already 
tried surpasses a fixed number, ma-work, set conven- 

tionally in the program. This magic number has been de- 
termined by an average analysis of the complexity of the 
lower level backtracking mechanism on the set of data of 
our benchmark. A useful improvement would be to have 
the program adapt this parameter to the current input in- 
stance. 

4.2.  The Projection Coding Algorithm 

After semiexact-code has completely partitioned the 
constraints in the set of those satisfied and the set of those 
unsatisfied, the routine project-code is invoked until there 
are no more unsatisfied constraints and there is no more 
unused encoding space. At each call, project-code en- 
larges by one the dimension of the encoding space and 
produces ENC, an encoding that satisfies at least one more 
constraint from the set of constraints left unsatisfied by 
semiexact-code, while it still satisfies all constraints al- 
ready satisfied. At the end of each call SIC and RIC are 
updated. The routine project-code is well defined because 
of the following proposition. 

Proposition 4.2.1: Given an encoding of length 1 that 
satisfies a set of constraints C,  there always exists an en- 
coding of length 1 + 1 that satisfies all constraints of C ,  
and moreover satisfies at least another arbitrary constraint 
not in C. 

Proof: By construction. Suppose we have an encod- 
ing satisfying C and consider any constraint c not in C. 
Increase the codes of the states by 1 b, according to the 
following rule. If a state belongs to c, pad its code with a 
1, otherwise pad it with a 0. In the first case we say that 
the state has been raised in the (1 + 1 )-st dimension. This 
moves the states belonging to c onto the added 
I-dimensional cube, where they occupy exactly the same 
positions that they had in the original I-dimensional cube. 
The constraint c becomes surely satisfied, because in the 
worst case it can span the whole added I-dimensional 
cube. Every constraint in C is still satisfied. Indeed con- 
straints in C involving only states assigned all together 
either to the original I-dimensional cube or to the added 
one, remain the same as before (in the respective 
1-dimensional cubes). Constraints in C involving states 
distributed between the two 1-dimensional cubes are still 
satisfied because no spurious constraint could be in the 
face they span, unless it was already intersecting it when 
restricted to the first 1 dimensions, against the 
hypothesis. Q.E.D. 

Proposition 4.2.1 guarantees that one can always sat- 
isfy at least one more constraint. In the actual implemen- 
tation of project-code we try to minimize the number of 
states that need to be raised in order to satisfy a given 
constraint. One implemented heuristic is to raise first the 
states that appear more often in the unsatisfied con- 
straints. This makes it more likely that more than one con- 
straint will be satisfied in the enlarged encoding space. 
The constraints are selected in decreasing order of weight, 
as it was the case with semiexact-code. It is fairly obvious 
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that project-code, if given an encoding space large 
enough, is guaranteed to satisfy completely any set of in- 
put constraints, at least at the pace of one more constraint 
for each unitary increase of the dimension. We emphasize 
that project-code plays the role of a quick encoding rou- 
tine that guarantees eventually a complete satisfaction of 
all the input constraints, while semiexact-code is a more 
expensive computational step, aimed to find an optimal 
encoding (heuristically speaking) on the minimum encod- 
ing length. We chose to concentrate the computing efforts 
on the minimum encoding length, because it is where we 
can get the maximum benefit in terms of final area. The 
combination of semiexact-code and project-code com- 
pares very favorably with the exact solution in terms of 
minimum encoding length needed to satisfy all con- 
straints. This measure is off the optimum by 10% on the 
benchmark reported in Section VII. 

4.3. Complexity 
The computational complexity of ihybrid-code is linear 

in the number of constraints, but we point out that the 
linearity in semiexact-code depends on a hidden constant 
proportional to the magic number ma-work which bounds 
the semi-exact search. The running times of hybrid-code 
on the benchmark reported in Section VI1 range from a 
few seconds on most examples to 1310 s for a very com- 
plex example on a VAX 11/8650. 

V. A GREEDY ALGORITHM FOR FACE HYPERCUBE 
EMBEDDING 

In NOVA, it is implemented also igreedy-code-an ap- 
proximate algorithm for input constraint satisfaction (de- 
tails are in [20]). It tries heuristically to satisfy as many 
constraints as it can, for a given code-length. The code- 
length may be specified by the user, otherwise the mini- 
mum one is assumed by default. Since we kept it simple 
and very fast, igreedy-code is especially tailored for short 
code-lengths (close to the minimum one). Indeed its heu- 
ristic encoding strategy does not undo previous subopti- 
mal choices, and so it may leave unused some potentially 
useful encoding space, even when it is made available by 
the encoding length. The algorithm computes all the in- 
tersections of the input constraints and starts the encoding 
going upwards from the deepest of them. So doing, it 
gives priority to the satisfaction of common subcon- 
straints, i.e., proper subsets of at least two input con- 
straints. This is a suboptimal strategy, but an effective 
one. It is equivalent to replacing the original constrained 
embedding problem by an easier one, by simplifying the 
information produced by the multiple-valued logic min- 
imization. 

The running times of igreedy-code are not more than a 
few seconds of VAX 11/8650 even in the most complex 
examples where other encoding algorithms fail to com- 
plete. 

VI. ENCODING BASED ON SYMBOLIC MINIMIZATION 
In this section we present an encoding algorithm based 

on symbolic minimization [lo], [17], a technique that 

yields a minimal encoding-independent sum-of-products 
representation of a symbolic function. The minimal sym- 
bolic representation has to then be encoded into a com- 
patible Boolean representation. This is achieved by sat- 
isfying associated sets of input constraints and output 
covering relations. The symbolic minimization algorithm 
builds up a directed acyclic graph where a node is a next 
state and an edge ( U ,  U )  corresponds to the covering con- 
straint that U bit-wise covers U ,  i.e., the Boolean code 
assigned to U must be 1 where the Boolean code assigned 
to U is 1, and in at least one position the codes of U and 
U are 1 and 0, respectively. These covering relations are 
called output constraints (OC) .  They are related to a 
companion set of input constraints ( IC ) that we get from 
the final cover obtained from the symbolic minimization 
procedure. In Section VI-6.1 we present a modified ver- 
sion of the symbolic minimization algorithm, and in Sec- 
tion VI-6.2 we present iohybrid-code, an algorithm to 
satisfy both input and output constraints. 

6.1. Symbolic Minimization Revisited 
We use the same definitions and notations as given in 

[lo], to which we refer for a full-fledged description. The 
symbolic minimization algorithm builds up a directed 
acyclic graph where an edge (U, U )  corresponds to the 
covering constraint that U bit-wise covers U .  Our version 
of symbolic minimization differs in two respects from the 
symbolic minimization loop in presence of binary outputs 
described in [ 101. We refer to the pseudocode that follows 
for the discussion. We assume that the input cover C is 
the result of a disjoint minimization step and that the sym- 
bolic cover does not have any unspecified next states. The 
cardinality of a set S is denoted by #(S). The first mod- 
ification is that in the minimization of step 7 we carry a 
complete description of the binary outputs, by explicitly 
putting in the don't care-set of the i next state all the prod- 
uct-terms of C not already committed to its on-set or off- 
set. This ensures that both the on and off conditions for 
the binary outputs are taken into account in any stage of 
the minimization process, in the same way as they will be 
in the final compatible encoded Boolean representation. 
The second modification is that in step 9 we accept the 
covering relations of the ith minimization stage only when 
the minimization of step 7 decreases the cardinality of the 
on-set of next state i. The reason is that we want to ex- 
clude from G output covering relations that do not con- 
tribute to the decrease of the final cover cardinality. In 
this way the successive encoding problem is also eased. 

1. 

2. 

3 .  

Finite State Machine cover C with q next states, 
optional binary outputs, 
empty weighted acyclic graph G 

(edge (i, j )  with weight w is denoted ( i ,  j ,  w) ) 
and empty cover FinalP 
Output is the graph G and the minimal cover FinalP 
Onk = on-set implicants of the kth next state 
with the corresponding binary outputs unchanged 
Repeat Steps 4 through 9 q times 
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4. 
5. 

6 .  

7.  
8 .  

9. 

10. 

i = select a symbol 
Dc; = U Onj, 
for all j for which there is no path from vertex i 
to vertex j in G 

for all j for which there is a path from vertex i 
to vertexj in G 
MB, = minimize(On;, Dc,, O$i) 
Mi = implicants of MB, 
that are in the on-set of next state i 
if ( #(Mi) < #(On;) ) { 
w, = #(On,) - #(Mi) 
G = G U { ( j ,  i ,  w;) such that Mi intersects Onj 

Ofi, U ONj, 

P = P U MB; 
1 

1 
else P = P U Oni 
FinalP = minimize(P). 

6.2. Algorithms for Satisfaction of Input and Output 
Constraints 

The symbolic minimization algorithm builds up a di- 
rected acyclic graph defining output constraints (OC) on 
the set of next states. They are associated to a companion 
set of input constraints ( IC)  that we get from the final 
cover FinalP. Indeed, FinalP is a multiple-valued logic 
cover and its translation to a compatible Boolean repre- 
sentation defines a face hypercube embedding problem. 
Therefore, to obtain a Boolean representation of FinalP 
of the same cardinality, we need to satisfy simultaneously 
the pair of input and output constraints sets ( IC ,  OC), 
that we define as an ordered face hypercube embedding 
problem. Notice that, in general, the input constraints ob- 
tained by the symbolic minimization procedure are differ- 
ent from those obtained by a multiple-valued output-dis- 
joint minimization. Any variation of the symbolic 
minimization procedure, e.g., in the selection of step 4, 
determines a different pair (IC, OC ). Output-disjoint 
minimization is a special case where OC = 9. Ordered 
face hypercube embedding is a very hard combinatorial 
problem. One cannot guarantee the unconditional exis- 
tence of a solution to it, and not much is known about the 
conditions of existence of an encoding that satisfies a pair 
( IC,  OC). When a solution does not exist, the problem 
arises of which constraints to relax. 

6.2. I. An Algorithm Biased Toward Satisfaction of In- 
put Constraints: The encoding algorithm that we imple- 
mented in iohybrid-code is an adaptation of the encoding 
technique described in Section IV. There are three stages 
to it. The first two are invoked on the minimum code- 
length and the third one on the successive code-lengths up 
to #bits. In the first stage, we try to satisfy as many con- 
straints from IC as possible, by a cycle of calls to semiex- 
act-code as done in ihybrid-code and so we get the en- 
coding ENC satisfying the input constraints of SIC. In the 
second stage, we look for an encoding that maximizes 
heuristically the total weight of the clusters of output con- 

straints satisfied and still satisfies SIC. Let i vary in I, the 
set of indexes of the next states. A cluster, OC,, is defined 
as the set of edges of G going into the next state i .  The 
set of output constraints OC can be seen as partitioned in 
clusters: OC = U OC,, where i varies on the number of 
next states. Each OC, has associated a weight w,. Since a 
gain of w, product-terms is achieved only by satisfying all 
output constraints of OC,, we try to satisfy an increasing 
collection, SOC, of sets of clusters selected greedily in 
decreasing order of weight. The encoding is attempted by 
the routine io-semiexact-code, which succeeds when it 
finds an encoding satisfying the constraints of SIC and 
SOC U OC,, in which case OC, is added to SOC. The 
routine io-semiexact-code is a modified version of semi- 
exact-code, with an added mechanism of rejecting as- 
signments of faces to states if some active output covering 
relation is violated. The third stage is a cycle of calls to 
project-code as described in Section IV, which guaran- 
tees the eventual satisfaction of all input constraints. No- 
tice that in the unusual case that IC = +, i.e., there are 
only output constraints, an algorithm specialized in output 
constraint satisfaction, out-encoder, is invoked. We refer 
for out-encoder to [14]. As a summary, our encoding 
strategy gives higher priority to input constraints over 
output constraints. The pseudocode that follows illus- 
trates the steps of the algorithm. 

iohybrid-code(lC, OC, #bits) 

cube-dim = minimum encoding length 
SIC = 9 
RIC = 9 
SOC = 9 
i f ( I C =  9) { 

out-encoder( OC)  
return 

{ 

1 
while ( (IC - SIC - RIC) # 9 ) { 

selects ic, the constraint of maximum weight in 

if semiexact-code(SIC U ic, cube-dim) suc- 
ceeds { 

(IC - SIC - RIC) 

ENC gets a new encoding 
SIC = SIC U ic 

else RIC = RIC U ic 
1 

1 
all OC, are labeled unused 
while ( there are unused OC, ) { 

selects unused OC, of maximum weight 
if io-semiexact-code(SIC, SOC U OC, , 
cube-dim) succeeds { 

ENC gets a new encoding 
SOC = SOC U oc, 

I 
OC, is labeled used 

I 
if (ENC = 9) ENC gets a random encoding 



919 VILLA AND SANGIOVANNI-VINCENTELLI: NOVA: ASSIGNMENT OF FSM'S FOR LOGIC IMPLEMENTATION 

while ( RIC # 9 and cube-dim < #bits ) { 
cube-dim is increased by 1 
project-code(ENC, SIC, RIC, cubedim) 
i.e., ENC gets a new encoding 

NC = { new constraints satisfied by project- 
- code } 
SIC = SIC U NC 
RIC = RIC - NC 

1 
1. 
6.2.2. An Algorithm Based on Clusters of Input and 

Output Constraints: We noticed already that the set of 
output constraints OC can be seen as partitioned in clus- 
ters: OC = U OC,, where i varies on the number of next 
states and each OC; has associated a weight wi. It is true 
that also IC can be seen as clustered, although in this case 
the clusters are not a partition. Precisely, each OC; has a 
companion set ICi of input constraints associated to next 
state i in FinalP (some input constraints are not associ- 
ated to any next state, but they are related to proper out- 
puts and are denoted here by IC,). To achieve a gain of 
w, product-terms, it is necessary not only to satisfy the 
output constraints of OC;, but also the associated input 
constraints of IC,. The algorithm iohybrid-code disre- 
gards this fact, putting higher priority on the satisfaction 
of the input constraints, independently from the eventual 
satisfaction of the companion output constraints. We de- 
vised also an algorithmic variant, iovariant-code, where 
the ith call to io-semiexact-code succeeds only if both IC; 
and OC, happen to be satisfied. The constraints in IC, are 
dealt with at the beginning by a cycle of calls to semiex- 
act-code. It turns out that iohybrid-code has a better per- 
formance than iovariant-code. One can argue that it is in 
general more profitable to satisfy as many input con- 
straints as possible, because the output covering relations 
are a weak way of modeling the effects of output encod- 
ing. Satisfying as many input constraints as possible may 
lead to convenient product-terms sharing between the dif- 
ferent output functions. The following pseudocode illus- 
trates the steps of the algorithm. 

SIC = SIC U ic 

else RIC = RIC U ic 

all OC, are labeled unused 
while ( there are unused OC, ) { 

3 

1 

selects unused OC, of maximum weight 

if io-semiexact-code(SIC U IC,, SOC U OC,, 
cube-dim) succeeds { 

IC, = IC, - SIC 

ENC gets a new encoding 
SIC = SIC U IC, 
SOC = SOC U oc, 

1 
RIC = RIC - IC, 

else RIC = RIC U IC, 
OC, is labeled used 

1 
if (ENC = 9) ENC gets a random encoding 
while ( RIC # 9 and cube-dim < #bits ) { 

cube-dim is increased by 1 
project-code(ENC, SIC, RIC, cube-dim) 
i.e. ENC gets a new encoding 

NC = { new constraints satisfied by proj- 
ect-code } 
SIC = SIC U NC 
RIC = RIC - NC 

1 
1. 

Example 6.2.2.1: Consider the following clustered 
sets of input and output constraints (IC,; OC,; w,) for I = 
1, * - .  , 8. Notice that i > j means that state i must cover 
state j ;  input constraints and weights are interpreted as 
usual. 

(IC,; W O )  = (01010101; 1 )  

( IC, ;  OCI; w l )  = (9; 2 > 1, 3 > 1, 4 > 1, 5 > 1, 6 

> 1 , 7  > 1 , 8  > 1; 4 )  

(IC2; OC,; ~ 2 )  = (0011oooO; 6 > 2; 1)  

(IC,; oc,; w,) = (oooOl loo; 7 > 3; 2 )  

iovariant-code(IC, OC, #bits) 
{ 

(IC4; oc,; w4) = (ooooooll; 8 > 4; 1)  

(IC6; oc,; W 6 )  = (0011oooo; 9; 3 )  

(IC5; OC,; w5)  = (9; 6 > 5, 7 > 5, 8 > 5 ;  1 )  
cubedim = minimum encoding length 
SIC = 9 
RIC = 9 
SOC = 9 
if ( I C  = 9 ) { 

out-encoder (OC)  
return 

1 
while ( (IC, - SIC - RIC) # 9 ) { 

(IC7; OC,; w7)  = ( ~ 1 1 0 0 ;  9; 1)  

( ICx;  oc,; w*) = (ooooooll; 9; 1). 

A solution (#bits = 3 )  to such encoding problem, as 
found by iohybrid-code and iovariant-code, is ENC = 
(000,010, 100, 110,001,011, 101, 111). 

selects ic, the constraint of maximum weight in 6.3. complexity 
(IC, - SIC - RIC) 
if semiexact-code(SIC U ic, cubedim) SUC- 
ceeds { 

The computational complexity of ihybrid-code is linear 
in the number of input constraints and next states. The 
warning of Section IV-4.3 also holds here. ENC gets a new encoding 
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TABLE 1 
STATISTICS OF BENCHMARK EXAMPLES 

EXAMPLE I #inP I loul I #states 
&I4 I 8. I 5 I 1 

--,- , 
Ibk 1 6  1 3 1  32 

minll I 2 I 1 I 11 

: 8 dl*k iDplu 

VII. RESULTS AND FUTURE WORK 
We have run more than 50 benchmark examples (which 

have been obtained from various university and industrial 
sources and include the MCNC benchmark set) repre- 
senting a wide range of finite state automata on different 
state assignment programs as well on our two algorithms. 
The size statistics of 30 significant examples (including 
all the largest ones) are given in Table I.  The product- 
term cardinality of the 1-hot encoding is given under the 
column 1-hot in Table 11. 

Tables 11-IV summarize the results obtained running 
the algorithms of NOVA, the program KISS, and random 
state assignments. The results were obtained running ES- 
PRESSO-MV in order to obtain the input constraints and 
our symbolic minimizer built on top of ESPRESSO-MV 
to obtain the mixed input/output constraints, by running 
NOVA to encode the states and the symbolic inputs (if 
any), and by running ESPRESSO again to obtain the final 
area of the encoded FSM. The areas under random as- 
signments are the best and the average of a statistical 
average of a number of different (number of states of the 
FSM plus the number of symbolic inputs, if any) random 
state assignments on each example. The final areas ob- 
tained by the best solution of NOVA average 20% less 
than those obtained by KISS, and 30% less than the best 
of a number of random state assignments. 

Tables VI11 and IX show plots summarizing the most 
important data of Tables 11-IV. On the x-axis the 30 ex- 
amples of Table I are ordered by increasing number of 
states, on the y-axis ratios of the areas of different algo- 
rithms over the best results of NOVA are plotted. The 
examples, tabulated by increasing number of states, are 
dk15, bbtas, beecount, dk14, dk27, dkl7,  ex6, scud, 

TABLE I1 
COMPARISONS OF iexact, ihybrid, igreedy 

TABLE 111 
COMPARISONS OF ihybridhgreedy W I T H  KISS A N D  RANDOM 

shifreg, ex5, bbara, ex3, iofsm, physrec, trainll, dk512, 
markl, bbsse, cse, ex2, keyb, exl ,  SI, donjile, dkl6,  styr, 
sand, tbk, planet, and scf. 
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TABLE IV 
COMPARISONS O F  roh\hrid rh\hrrd/rgrred\ BFST OF NOVA WITH 

RANDOM 

Table V shows that the final areas obtained running the 
algorithm iohybrid-code (symbolic minimization fol- 
lowed by ordered face hypercube embedding) average 
30% less than the data reported for Cappuccino/Cream. 
Table VI reports statistics of the algorithm hybrid-code. 

Table VI1 reports the number of literals after running 
through the standard Boolean optimization script in the 
multilevel logic synthesis system MIS-I1 with encodings 
obtained by NOVA, MUSTANG, and random state as- 
signments. In the case of NOVA only the best minimum 
code-length two-level result was given to MIS-11. MUS- 
TANG was run with -p, -n, -pt, -nt options, and minimum 
code-length. The final literal counts in a factored form of 
the logic encoded by NOVA average 30% less than the 
literal counts of the best of a number of random state as- 
signments. The best (minimum code-length) two-level re- 
sults of MUSTANG with -p, -n, -pt, -nt options versus 
the best (minimum code-length) two-level results of 
NOVA are also reported. Notice that in the case of MUS- 
TANG the run that achieved the minimum number of 
cubes is not necessarily the same that achieved the mini- 
mum number of literals. In the case of NOVA we fed into 
MIS-I1 only the best two-level result, so the data reported 
refer to the same minimized cover. 

MUSTANG heuristically maximizes the number and 
size (fan-in and fan-out oriented algorithms, respectively) 
of common cubes in the encoded network to minimize the 
number of literals in the resulting combinational logic net- 

TABLE V 
COMPARISONS OF iohyhrid WITH CAPPUCCINO~CREAM 

TABLE VI 
STATISTICS OF ihjbrid 

work after multilevel logic optimization. No tradeoff is 
made between the fan-in and fan-out oriented algorithms. 
Even though NOVA was not designed as a multilevel 
state-assignment program, its performances compare suc- 
cessfully with MUSTANG. Table X shows a plot sum- 
marizing the data of Table VII. On the x-axis the 30 ex- 
amples of Table I are ordered by increasing number of 
states (as in Tables VI11 and IX), on the y-axis the ratios 
for the cubes and the literals of MUSTANG over NOVA 
are plotted. The plot shows that a state assignment that 
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TABLE VI1 

OBTAINED BY MUSTANG A N D  NOVA 
COMPARISONS OF TWO-LEVEL AND MULTILEVEL LOGIC IMPLEMENTATIONS 

EXAMPLE MUSTANG+ I NOVA++ I MUSTANG+++ I NOVA*++ I RANDOM@ 
#Cuba I #Cuba I #lit I #lit I #lit 

TABLE VI11 
SUMMARY OF NOVA 

Ratio of area 

I IhybndlNova ohybnd/Nova ____...............________ 2.60 

2.50 
I 

2.40 

2.30 

2.20 

2.10 

2.00 

1.90 

1.80 

1.70 

1.60 

1 .so 

1.40 

1.30 

1.20 

1.10 

I I I I 

0.00 10.00 20.00 30.00 
Examples 

gives a good two-level implementation also gives a good 
multilevel implementation. This is consistent with the ex- 
periments reported in [19]. We expect that real wins in 

state assignment for multilevel implementations will be 
achieved by programs detecting multicube common fac- 
tors (kernels). 
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1.40 

1.30 
1.20 

TABLE IX 
KISS, BEST RANDOM, A N D  NOVA 

Ratio of area 

~- ~ 

- .  
I --? . . ' I 

0 .  

0 .  " 0 
--___-- , 

1 kiss/Nova ~ . .  . .. .. . . . . . . . . .. ... .. . . . . . ..... 
est Randodova 

3.00 ' 
~- 

I 
2 80 

2 70 

2 60 

2.50 
2 40 
2.30 

2 20 

2 10 

200 
190 

1.80 

1 70 

160 

1.50 

. . a  

1.10 

1 .00 
I I I 0.90 I Examples 

0.00 5.00 10.00 15.00 20.00 25.00 30.00 

TABLE X 
MUSTANG A N D  NOVA 

Ratio Mustang/Nova 

#cubes 
#literals 
__.,.________..__... 2.40 

2.30 

2.20 

2.10 

2.00 

1.90 

1.80 

1.70 

1.60 

1.50 

1.40 

1.30 

1.20 ::r-*Ti 
0 80 

0 70 

Examples 
000 500 10.00 15 00 20 00 25.00 

923 
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NOVA can use any number of encoding bits greater than 
or equal to the minimum. The best results on the bench- 
mark of Table I have been obtained with a minimum en- 
coding length, but this is not always the case. Table I1 
shows that although iexact achieves a number of product 
terms smaller than ihybrid, its final areas are always 
larger. This indicates that (at least in the case of input 
encoding only) increasing the code-length to satisfy all 
the constraints does not pay in terms of area. This ex- 
plains why NOVA, even restricted to the algorithms that 
use only input constraints, achieves smaller areas than 
KISS does. KISS guarantees the satisfaction of all input 
constraints by an heuristic algorithm that does not always 
achieve the minimum necessary code-length. However, 
as noticed previously, even satisfying all input constraints 
with the exact code-length does not win in terms of area 
of a two-level logic implementation. Notice that in two 
cases (ex2 and ex5 ) the number of cubes reported for ihy- 
brid are fewer than those for iexact. The reason is that the 
codes found by ihybrid satisfy implicitly some conjunc- 
tive output relations [ 181 that help to achieve a better final 
cardinality of the product terms. 

The issue of forecasting the effect on the encoding of 
conjunctive relations in the output part is being fully ad- 
dressed in [ 181. The code-length/product-terms tradeoff, 
when both input and output constraints are present, re- 
quires more powerful heuristics than currently imple- 
mented and we will experiment to find better ones. We 
plan also to analyze the variations of the basic scheme of 
symbolic minimization to characterize the pair ( IC ,  OC ) 
that translates into the best upper bound in the shorter en- 
coding length. An extension of our algorithms to the case 
when the proper output part is given symbolically will be 
investigated. 
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