
Identifying Transparent Logic in Gate-Level Circuits

Yu-Yun Dai1, Robert K. Brayton2

1,2Department of EECS, University of California, Berkeley, U.S.A.
{1yunmeow, 2brayton} @berkeley.edu

ABSTRACT
Many reasons exist for high-level information to be unavail-
able for a design. Identifying high-level constructs, e.g. control
paths and words, from gate-level circuits, can assist verifica-
tion, equivalence checking, reverse engineering, etc.. Word-level
identification can be done by structural methods, but we focus
on functional approaches because they only depend on depen-
dencies between signals of a circuit. We introduce transparent
logic, based on functional isomorphism, and provide algorithms
to recognize control signals, data paths, internal words, and
boundaries between different types of logic. Experiments show
that the proposed algorithms can re-assemble words effectively
from unstructured or synthesized circuits.

1. INTRODUCTION
In hardware, control logic regulates the data flow and

dictates circuit functionalities. Logic can be classified as
that where data is simply moved from one part of a cir-
cuit to another part without modifying it. Such logic is
referred to as transparent. Another category transforms
data by some word-level operator, e.g. a bit-vector oper-
ator defined in Verilog. A third category, control, deter-
mines which data is moved and when, or which operation
is applied and when. Efficient recognition of such logic
can benefit circuit verification, e.g. [4] as a guide to ab-
straction. To identify word-level operators in a gate-level
circuit, it is crucial to find words and locate the boundaries
(inputs/outputs) of arithmetic operators [10].

The basic example of transparent logic is a multiplexer
(MUX) structure, which selects from several data signals
and forwards it unaltered towards the outputs. Identifi-
cation of MUXes can be performed over gate-level circuits
very quickly using structural matching, but can be unreli-
able, especially if synthesis has been applied.

In this paper, we focus on functional approaches which
do not depend on the actual gate-level structure of the cir-
cuit. These can augment structure methods and provide
a much more reliable technique as we show in the experi-
ments.

In general, functional methods, which rely only on func-
tional dependencies, have been used to augment structural
approaches. Examples are,

• Li and Subramanyan et. al. [6, 11] identified internal
words based on bitslice aggregation (functional ap-
proach) and shapehashing (structural approach.) The
candidate words found were used as boundaries of op-
erators for further recognizing.

• Li et. al. [6,7] identified functional operators in gate-
level circuits, based on an existing library of blocks.
Word-level information at the primary inputs was as-
sumed available, but in many applications this infor-
mation is not known.

• Sterin et. al. [10] extracted word-level operators func-
tionally, given a library of operators and a slice of
logic containing inputs and outputs of such opera-
tors. Word-level information was not required nor
was the possible location and ordering of the inputs
and outputs of an operator.

We present methods to identify functional transparent
logic. This is inherited from functional isomorphism. Us-
ing this, we propose an algorithm to identify words, word-
level operator boundaries, and control logic in gate-level
circuits and apply this to a variety of test cases. Once
operator boundaries are located (roughly), techniques like
those in Sterin et. al. [10] can be used to identify the more
precise location of the operators as well as their function-
alities.

The paper is organized as follows. Section 2 introduces
functional isomorphism. In Section 3, we describe the def-
inition and propagation of transparent logic. Proposed al-
gorithms for identifying transparent logic are given in Sec-
tion 4. Experimental results are shown in Section 5, while
Section 6 concludes this paper.

2. OVERVIEW
Roughly, a transparent path in a circuit has width n and

a set of controls {si}, which when evaluated appropriately
at a minterm si = msi , moves a data-word (width n) from
the beginning of the path to the end. Such paths can fork
and join in the circuit, and can begin and end at a set of
inputs, outputs or internal signals. A path is maximal if
there is no transparent path that can extend it. The termi-
nals of maximal transparent paths are of interest because
they likely delineate the input or output of an operator,
e.g. an arithmetic function.

A sink terminal can have many source terminals. Each
signal in a sink terminal is a Boolean function of a) data

signals Dk = {djk} in the source terminals and b) the set
of associated controls {si} of transparent segments of any
path from source to sink. Such a set of functions at a sink
forms an npn equivalence class (or equivalently an npn
isomorphism class). Each sink bit function typically (with

some exceptions) looks like fk =
∑
j∈Dk

(
∏
i∈pathmsi)d

j
k.

The isomorphism between the inputs of any two signals fp
and fq (where p, q ∈ [1, n]) in the sink terminal is djp ↔ djq
i.e. different bit positions in the same data word are iso-
morphically mapped to each other, while control signals si

are isomorphically mapped into themselves. Each coeffi-
cient (

∏
i∈pathmsi) is the predicate of the control signals

under which a path from source djk to the sink fk becomes
transparent. The predicates are disjoint. It is possible
that some bits of a terminal have been inverted, hence npn
equivalence is considered in the subsequent discussions.

Thus a transparent path’s outputs is a subset of an npn

isomorphism class. The isomorphism helps distinguish be-
tween different data-words by factoring out common pred-
icates (

∏
i∈pathmsi) in the representative function of the

equivalence class.

2.1 Npn Isomorphism
Two graphs, G1(V1, E1) and G2(V2, E2), are isomorphic,

if there exists a bijective mapping, M12: V1 → V2, such
that any two vertices u and v are adjacent in G1, if and
only if M12(u) and M12(v) are adjacent in G2 [2]. Two
circuits, C1 and C2, are isomorphic to each other if their
logic gates and connections form two isomorphic graphs,
while any gate g of C1 and the mapped gate M12(g) in
C2 are the same type. The relation between C1 and C2 is
called structural isomorphism, which has been applied to
reverse engineering [5].

In contrast, functional isomorphism is a relation between
two signals in a circuit. A signal f in a circuit, supported
by a set of other signals, Sf , is a Boolean function of these

inputs: f : B|Sf | → B, for B = {0, 1}.
In the following sections, for a Boolean variable xi with

its polarity pi, (xi)
pi represents the function: pi = 0 →

(xi)
pi ≡ xi and pi = 1→ (xi)

pi ≡ inv(xi).
Definition 1: A pair of Boolean functions f(x1, . . . xn)

and g(y1, . . . , yn) are npn isomorphic1, if there exists a
permutation π of size n and polarities pout and {p1, . . . , pn}
∈ Bn such that

f(x1, . . . , xn) = gpout(xp1π(1), . . . , x
pn
π(n)) (1)

i.e., g can be made equivalent to f by selectively negating
inputs, permuting inputs, and negating the output. The
implied isomorphic mapping between the supports of g and
f is {yi, xpiπ(i)} and pi is said to be the relative polarity

between inputs yi and xπ(i).
A set of signals in a circuit, in which every pair is func-

tionally npn isomorphic is called an npn isomorphism class.

2.2 Composition of Npn Isomorphism
Although improved methods for computing npn equiva-

lence can be found in Soekin et. al. [9], this still can be
time-consuming. This effort can be reduced immensely by
proving npn isomorphism on smaller logic blocks and com-
posing proved classes to obtain larger ones. Larger classes
help extend paths of transparency (discussed in Section 3)
in a circuit and to more reliably find transparency bound-
aries, and hence the input/output boundaries of word-level
operators.

The following discussion details when compositions lead
to larger npn isomorphisms.

Definition 2: (polar consistency) Let (f(s), g(t)) be
a pair of npn isomorphic functions with sets of supports
s = {si} and t = {tj}, respectively. Suppose each pair of
mapped input supports, si ↔ tj , are npn isomorphic func-

tions, i.e. si(x) is npn isomorphic to tj(y). Let pijout be the
relative output polarity between si(x) and tj(y), and pij be
the relative input polarity between inputs si and tj in the
npn isomorphism between f(s) and g(t). The compositions

f(s(x)) and g(t(y)) are polar consistent, if p
iπ(i)
out = piπ(i),

where π is the permutation in the isomorphism mapping
of (f(s), g(t)).

Theorem 1: The compositions of (f(s(x)), g(t(y))) are
polar consistent if and only if f(s(x)) and g(t(y)) are npn
1or Negation-Permutation-Negation (NPN) equivalent

isomorphic.

3. TRANSPARENT LOGIC
As stated identifying maximal transparent logic, can be

used to identify input/output boundaries of arithmetic op-
erators.

3.1 Transparent Words
Intuitively, a transparent word is a set of signals, {wk},

with supports, {Sk}, where under some evaluation of ∩kSk
(common control), {wk} is equivalent to a subset (data-
word) of ∪kSk. In other words, the control evaluation
makes the word transparent from some input data-word.

Example: Outputs of a set of 2-to-1 multiplexers (MUX)
controlled by the same selector signal s,

C[m− 1 : 0] = s?A[m− 1 : 0] : B[m− 1 : 0], (2)

comprises a transparent word C, where ∀j ∈ [0,m − 1],
(C[j] = sA[j] + s′B[j]). For this case, word C is trans-
parent from word A or word B, depending on the value
assigned to s.

Definition 3: Functions W = {wk|k ∈ [1,m]} of an npn
isomorphism class comprise an m-bit transparent word, if:

1. Each function wk : BSk

→ B, has support Sk =
(Control,Datak), (i.e. Control is the set of common
signals), and each bit of Control is isomorphically
mapped into itself.

2. The following formula is True, (wheremc is a minterm
of Control, ≡ denotes functional equivalence, and wkmc

denotes the co-factor of function wk(Control,Datak)
with respect to mc).

(∃mc
∀k∃dki ∈Datak∃pki (wkmc

(Datak) ≡ (dki)
pki)). (3)

3. For any (wx, wy) ∈W , the associated isomorphic sup-
port mapping Mxy, satisfies Mxy(Datax) = Datay.

Thus a transparent word W is conditionally (by mc) equiv-

alent to an input data word [(d1
i)
p1i , . . . , (dmi)p

m
i]. Based

on the above definition, the vector of conditionally equiva-
lent data support bits that have a common condition mc,
Di = {d1

i , . . . , d
m
i } is called an input word.

Given a transparent word, W = {wk}, with the corre-
sponding support partitions {(Control,Datak)}, the en-
tire support set of W can be partitioned into Control and

DataW =
⋃i

Di. The definition of transparent words can
be restated as follows:

Definition 4: A transparent word W is a set of npn
isomorphism functions supported by control Control and

data DataW =
⋃i

Di, such that the following formula is
True:

∀Di∈DataW ∃mc∃Pi(Wmc(DataW) ≡ (Di)
Pi), (4)

where Pi set of polarity bits for Di.
Although, for an input word Di, there could be multiple

minterms of Control satisfying Formula (4), the assign-
ments of mc ∈ Control for different Dis are disjoint.

Example: Consider Equation(1): for each C[j], the sup-
port set {s,A[j], B[j]} can be partitioned into Dataj =
{A[j], B[j]} and Control = {s}, such that (s = 1) ⇒
(C[j] = A[j]) and (s = 0) ⇒ (C[j] = B[j]). Hence a

common (control) assignment applied to all bits of the
transparent word, makes them transparent from the corre-
sponding supports simultaneously. The supports of C can
be partitioned into DataC ≡ {A[m − 1 : 0], B[m − 1, 0]},
and Control ≡ {s}.

Since negations of some bits of transparent words might
occur during synthesis, it seems reasonable to consider
the logic still as ”transparent”. Note that in the exam-
ple: C[j] = sA[j] + s′B[j] the negation of bit C[j] can be
done by negating the data inputs, A[j] and B[j]:

inv(C[j]) = inv(sA[j] + s′B[j])

= s inv(A[j]) + s′inv(B[j]).
(5)

but C (with some phase changes) can still be considered
transparent from A and B because the assignments to the
control bits are unchanged.

In Section 3.2 and 3.3, as we compose transparent sec-
tions to form a larger transparent path, we will need to re-
solve cases where only some bits of a transparent word are
negated. However, for composing transparencies to find
larger ones, it is required that the polarities of the inputs
and outputs are consistent. This can be done by negating
some of the inputs of the path (using npn isomorphism)
to get a compatible polarity at the output that feeds into
another transparent word.

Theorem 2: Given a transparent word W , the negation
of any output bit wk can be done by negating the corre-
sponding input data support bits, without changing any
control assignment.

The upshot is that when finding another transparent sec-
tion of logic and composing it to extend a transparent path,
this can always be done simply by negating the inputs to
get compatible polarities at the point of composition.

3.2 Composition of Transparency
Similar to the composition of npn isomorphism, larger

transparent functions are frequently created by composing
smaller transparent blocks.

Example: In Figure 1, word C is transparent from A
and B under the control of s1, while a second transparent
block consists of word E, transparent from C and D under
the control of s2. Thus (s1 = 1, s2 = 1) → E ≡ A, while
(s1 = 0, s2 = 1) → E ≡ B i.e. transparency of E from
A and B is obtained by composing of smaller transparent
blocks. If some bits of C are negated before feeding into
the MUXes controlled by s2, the composition can be done
by pushing the negation to the corresponding bits of A and
B to maintain the polar consistency.

1

0

1

0

s1

s2
A

B
C

D

E

Figure 1: A transparent word can be implemented by com-

posing smaller transparent words.

Definition 5: Let W = {W k(X)|k = [1, n]} be a set of
n m-bit transparent words, and let Y = {yj |j = [1,m]} be

another transparent word with support DataY = W
⋃
V

and ControlY . Suppose each input word of Y is exactly
one transparent word in W or one word in V . The set of
compositions,

Z = {zj} = {yj(W(X), V, ControlY)} (6)

form a compound word, and are denoted as Z = Y ◦ W.

Theorem 3: Assume Y is a transparent word and W is
a set of transparent words. Let {αki } be the set of minterms
of Controlk, which enable W k to be transparent from an
input word xki ∈ Datak, and {βk} be the set of minterms
of ControlY for (Y ≡W k). Using the notation:

ControlZ = ControlY
⋃

[∪kControlk],
DataZ = V

⋃
[∪kDatak],

a compound word, Z ≡ Y ◦W is a transparent word con-
trolled by ControlZ if

∀k∀i({α̂ki } ∩ {β̂k} 6= ∅) (7)

is True, where {α̂ki } and {β̂k} are {αki } and {βk} extended
to cubes of the larger space of ControlZ , respectively.

Proof

1. Based on Theorems 1 and 2, Z can be an npn isomor-
phism class by flipping the polarities of W kwhenever
its output polarity is not consistent with the input
polarities of yk.

2. Because Y is a transparent word, for each input word
in V , there must exist an assignment of ControlY to
enable the transparency from V.

3. Conditions satisfying Formula 7 imply that for each
input word xki of W k, there exists an assignment of
ControlZ such that a) W k is transparent from xki ,
b) Y is transparent from W k, and c) Y is transpar-
ent from xki . Therefore, Z ≡ Y ◦W is a transpar-
ent word with (ControlZ , DataZ) as control and data
supports.

3.3 Propagation of Transparency
Example: Figure 2 illustrates how a longer transparency

can be composed from non transparent sections of logic. C
is transparent from A when s1 = 1, and D is transparent
from B when s2 = 1, but the logic block from C and D
to E is not transparent (there is no common control sup-
port for each bit of E). However, E is transparent from
A when (s1 = 1, s2 = 0), while (s1 = 0, s2 = 1) makes E
transparent from B.

A

B

n{s }

n{s }

C

D

n

n

n

n

n

n

E1

2

n

Figure 2: A longer transparent word may be composed of

smaller transparent words and an npn isomorphism class.

When a transparent function block is composed of non-
transparent sections, it is called propagation of transparency.

The conditions when this can happen are stated in the fol-
lowing.

Definition 6: (prodeeding word) Let W be a set of n
m-bit transparent words, and let Y (W) = {yj(W)} be an
npn isomorphism class. Suppose each yj is supported by
exactly one bit of each W k, and the isomorphically mapped
supports of yj are always from the same word of W. The
compositions, Z = {zj} = {yj(W(X))} are said to form a
proceeding word.

Theorem 4: Assume Y and W are as in Definition 6
and the supports ofW k are supp(W k) = (Controlk, Datak).
Let {αki } be the set of minterms of Controlk which cause
(W k ≡ xki), and {βk} be minterms of ∪kControlk which
cause (Y ≡ W k). Using ControlZ = ∪kControlk, and
DataZ = ∪kDatak, a proceeding word, Z ≡ Y ◦W, is a
transparent word controlled by ControlZ if

∀k∀i({α̂ki } ∩ {βk} 6= ∅), (8)

where {α̂ki } refers to {αki } extended to cubes of ControlZ .
Proof

1. Similar to the proof of Theorem 3, Z can be an npn
isomorphism class by flipping the polarities of W k if
needed.

2. For each input word xki in DataZ , Formula 8 im-
plies that there exists an assignment of ControlZ ,
such that W k ≡ xki , Y ≡ W k, and thus, Y ≡ xki ,
implying Z ≡ Y ◦ W is a transparent word with
(ControlZ , DataZ) as control and data supports.

Example: In Figure 2, W = (C,D) and {α̂k1} = s1s2 +
s1s2 makes C transparent from A, while {α̂k2} = s1s2+s1s2

makes D transparent from B. {βk} = s1s2 (s1s2) causes
E ≡ C (E ≡ D). Note that {α̂k1} ∩ {βk} = s1s2 6= ∅
and {α̂k2} ∩ {βk} = s1s2 6= ∅. Thus the conditions for
propagation of transparency are met, and therefore E is
transparent from A and B.

4. TRANSPARENCY IDENTIFICATION
The functional approach proposed for transparency iden-

tification relies only on dependencies among signals. It can
be used to complement a structural approach, leading to a
method that is more efficient with more reliable results.

In general, we want to identify transparent logic any-
where it occurs in the circuit - from inputs to internal words
(forward), from internal words to outputs (backward), and
between internal words. Two problems are formulated and
solved in this paper: forward and backward transparency.

Forward Transparency : Given a boundary of input sup-
ports, e.g. primary inputs, find (1) input words, (2) trans-
parent words in the fanout cones, (3) the corresponding
partition of supports for each proved word and (4) partial
assignments of Control for enabling the transparencies.

Backward Transparency : Given an output boundary of
transparent words (candidates), e.g. primary outputs, find
(1) transparent words on the boundary, (2) the boundary
of supports in the fanin cones, (3) the corresponding parti-
tion of the supports and (4) partial assignments of Control
for enabling the transparencies.

In both cases, we want to find the longest path for each
transparency We provide details and discuss the common
sub-problems for both forward and backward transparency
algorithms and the challenges of this approach.

4.1 Proving Transparency of Sub-circuits
Both forward and backward transparency problems have

common sub-problems: given a) the boundaries of sup-
ports b) targets (word candidates), and c) a set of proved
words, find (1) transparent words on the target boundary,
(2) support partitions and (3) partial assignments of Con-
trol for input words on the support boundary. Figure 3
outlines the steps for solving this sub-problem.

Algorithm: Find Transparent Words

Input:
Circuit //one combinational gate-level circuit.

Boundary = (Supports, Targets)

//two sets of signals in the circuit.
ProvedWords // a set of proved words

Output:

NewWords
//a set of newly proved input and output words

01. NewWords = ∅
02. (NpnIsoClasses,SuppMaps) = NpnIsoClasses(Circuit,

... Boundary)

03. For each c in NpnIsoClasses
04. Words = splitClass(c, SuppMaps, ProvedWords)

05. For each w in Words
06. (Control, Data) = classifySupports(w, SuppMaps,

... ProvedWords)

07. If getAssignments(w, Control, Data, ProvedWords)
08. addWords(NewWords, w, Data)

09. Return NewWords

Figure 3: Algorithm for proving transparency of a sub-

circuit.

Given a sub-circuit specified by Circuit and Bound-
ary, the function NpnIsoClasses(...) at Line 2 returns
the npn isomorphism classes among signals in Targets
with their isomorphic support mappings. Each npn iso-
morphism class can contain more than one word, so split-
Class(...) works on those isomorphic signals, analyzes their
supports and splits those signals into different candidate
words. It decomposes each npn isomorphism class into
sub-classes, such that all signals are driven by the same
controls and each contain a bit from each of a common
group of words.

Then classifySupports(...) at line 6 partitions supports
into Data and Control, and groups the bits of each identi-
fied input word together (details are given in Section 4.2).

For each candidate word, the function getAssignments(...)
at Line 7 formulates QBF problems as Equation (5) and
apply a QBF solver to those problems to find assignments
for control supports. Once the QBF solver proves the can-
didate word is indeed a transparent word, this word is kept
in NewWords along with the corresponding assignments
and input words.

For compound words, there exists a complete transpar-
ent block inside the sub-circuit, and all essential supports
can be found on the boundary. Hence the QBF problems
can be formulated only with the signals on the support
boundary. In contrast, for proceeding words, the circuit de-
fined by Boundary might only contain npn isomorphism
classes, but no whole transparent words. Hence the QBF
problems should consider the supports of input words on
the boundary.

To illustrate how this is done for a proceeding word, con-
sider Figure 2. The non-isomorphism class (the logic block

from C and D to E) inside the sub-circuit is not a transpar-
ent block. For this case, the function getAssignments(...)
uses the control supports of the proved words (s1 and s2

for C and D, respectively) to find the feasible assignments
for the transparent condition.

4.2 Support Classification
Classifying supports into control and data types is criti-

cal for proving transparent words. According to Definition
2, all bits of a transparent word must each have support
bits from the same set of input words, while mapped con-
trol supports must be identical, i.e. the same set of control
bits appear in every support of the transparent word bits
and they are mapped isomorphically to themselves.

Finding an ideal mapping cannot fully rely on the map-
pings found for npn functional isomorphism, because a le-
gal mapping for two signals in the same npn isomorphism
class could be illegal for transparent logic (see Figure 4).

B[1]
s 2

A[1]
s 1

E[1]

E[2]

A[2]
s 1

B[2]
s 2

Figure 4: An example with inappropriate support mapping

between signals in the same isormorphism class.

The circuit in Figure 4 is extracted from Figure 2, but
with some input permutations. Given the support bound-
ary, (A[1], A[2], B[1], B[2], s1, s2) and the targets, (E[1],
E[2]), E[1] and E[2] are classified into the same npn iso-
morphism class. Due to symmetry of some Boolean func-
tions, the support mapping is not unique.

For example, the support mapping, (s1, A[1], s2, B[1])E[1]

→ (s2, B[2], s1, A[2])E[2] satisfies the definition of isomor-
phism, i.e. when the same values are applied to the mapped
inputs (i.e. s1 and s2), E[1] and E[2] should evaluate
to the same value. However, this requirement blocks out
any legal assignments of (s1, s2) for E being transpar-
ent from A and B; it conflicts with the control condi-
tion for transparency: (s1 = 1, s2 = 0) ⇒ (E ≡ A) and
(s1 = 0, s2 = 1)⇒ (E ≡ B).

For this case, the mapping of control supports can be re-
vised easily, because the definition of transparent words re-
quires that each control support is isomorphically mapped
to itself. Moreover, if A and B have been proved already
as words, the mapping issue can be resolved by forcing bits
of the same word to be mapped to the same word.

Unfortunately, if input words have not been proved yet,
it is necessary to enumerate all legal isomorphism map-
pings in order to determine correct mappings. This issue
can be moderated by decomposing an input circuit into
several sub-circuits properly. First, input words can be
proved before being considered as supports of others. Also,
as the sizes of the input circuits decrease, the number of
feasible support mappings for npn isomorphism is reduced.

In the experiments for the results shown in Section 5,
support classification only finds isomorphism mappings and
uses the above heuristics, but does not enumerate all fea-
sible mappings. Thus some transparent words could have
been missed in the experiments.

4.3 Forward Transparency Algorithm
With the assistance of the algorithm outlined in Figure 3

, the algorithm for forward transparency is shown in Fig-
ure 5.

Algorithm: Forward Transparency

Input:

Circuit
Output:

ProvedWords

01. ProvedWords= ∅
02. InternalControls = findHighFanoutSignals(Circuit)
03. decideForwardOrder(InternalControls)

04. For each control in InternalControls

05. Fanouts = collectImmediateFanouts(control)
06. Supports = collectSupports(Fanouts,ProvedWords)

07. Targets = collectFanouts(control, Supports)

08. NewWords = findTransparentWords(Circuit,
... Supports,Targets,ProvedWords)

09. ProvedWords
⋃

= NewWords

10. ProceedingWords = propagateWords(ProvedWords)
11. ProvedWords

⋃
= ProceedingWords

12. Return ProvedWords

Figure 5: Algorithm for identifying transparent words in a

gate-level circuit - forward transparency case

The function findHighFanoutSignals(...) in Line 2 uses
the fact that all bits of a transparent word should be con-
trolled by the same condition, so it collects all signals
with more than 3 immediate fanouts as candidate controls.
Also, decideForwardOrder(...), sorts control signals in as-
cending topological order according to its greatest topo-
logically immediate fanout.

Lines 5 to 9, are repeated for all control signals. In Line
5, the function collectImmediateFanouts(...) collects all
immediate fanouts of the current control, while collectSup-
ports(...) decides the boundary of supports for identifying
npn isomorphism classes. In practice, this function back-
tracks from all signals in Fanouts and collects the nearest
bits in ProvedWords or nearest primary inputs. The
support boundary is a subset of the union of proved words
and primary inputs. Then the function collectFanouts(...)
collects all signals only driven by signals in Supports and
saves them as the target boundary.

Based on the support and target boundaries, the func-
tion findTransparentWords(...) applies the algorithm of
Figure 3 to find transparent words in the specified sub-
circuits. Those new words are added to ProvedWords in
Line 9 and utilized in later procedures.

Finally, propagateWords(...) addresses the possible ex-
istence of proceeding words (Section 3.3) to enlarge trans-
parent logic blocks. This searches for npn isomorphism
classes in the fanout cones of the deepest transparent words
and reuses the proved assignments based on Theorem 4.
Those new words will be added to ProvedWords. This
procedure is repeated until no new words are found.

Example: Consider Figure 1 as input Circuit. In the
beginning, s1 and s2 are recognized as high-fanout signals.

The greatest immediate fanout of s2 is greater than that
of s1, hence signals in InternalControl are ordered as
s1 → s2. Based on controls in InternalControl, all bits
of C are considered as isomorphism targets first, and C is
proved as a transparent word from A and B, under the con-
trol of s1. Here A, B, and C are added to ProvedWords.
Then all immediate fanouts of s2, bits of E, are identi-
fied as an isomorphism class, with the support boundary
(s2, C, D). The function getAssignments(...) finds assign-
ments for (s1, s2), such that E is conditionally equivalent
to C and D, and hence to A and B. The proved words,
A,B,C,D,E, are returned as ProvedWords.

4.4 Backward Transparency Algorithm
The main differences between the forward and backward

algorithms are (1) how to define support boundaries, (2)
the challenge of classifying supports for sub-circuits and
3) all proved bits in the forward algorithm are transparent
from certain primary inputs, but in the backward algo-
rithm, only parts of the proved bits are transparent to the
primary outputs. The proposed algorithm for backward
transparency is shown in Figure 6.

Algorithm: Backward Transparency

Input:
Circuit

Output:

ProvedWords, TransBits

01. ProvedWords= ∅
02. InternalControls = findHighFanoutSignals(Circuit)
03. decideBackwardOrder(InternalControls)

04. For each control in InternalControls
05. Fanouts = collectImmediateFanouts(control)

06. Supports = collectFanins(Fanouts)

07. Targets = collectFanouts(Supports)
08. NewWords = findTransparentWords(Circuit,

... Supports,Targets,ProvedWords)

09. ProvedWords
⋃

= NewWords
10. ProceedingWords = propagateWords(ProvedWords)

11. ProvedWords
⋃

= ProceedingWords

12. TransBits = finalizeBackward(ProvedWords)
13. Return (ProvedWords, TransBits)

Figure 6: Algorithm for identifying transparent words in a

gate-level circuit.

As in the forward algorithm, all high-fanout signals are
collected and sorted by their greatest immediate fanouts,
but sorted in descending topological order.

The immediate fanouts of each control signal are saved
temporarily as Fanouts, while their immediate fanins form
the support boundary. This is different than in collectSup-
ports(...) in Figure 5, which traverses circuits until reach-
ing primary inputs or proved words. At Line 7, all signals
driven only by signals in Support are regarded as the
target boundary. When collectFanouts(...) traverses for-
ward from signals in Support, it might reach some signals
which have been proved as input words for other transpar-
ent words. Those signals are included in Targets, while
the traversal stops moving forward from them.

Lines 4 to 9 prove a set of disconnected transparent
words, because they are proved in reverse topological or-
der. Since there are no proved words in the support bound-
aries, when findTransparentWords(...) works on each sub-
circuit, the functions splitClass(...) and classifySupports(...)

in Figure 3 only can use data dependencies and control
signals inside the sub-circuit. In this case, the issues men-
tioned in Section 4.2 would arise.

Like the forward algorithm, propagateWords(...) enlarges
the proved transparent blocks. Finally, the function fi-
nalizeBackward(...) at Line 12 composes the whole set
of proved words into larger transparent logic blocks and
saves those bits which are transparent to primary outputs
as TransBits.

Example: Consider Figure 1 using the backward algo-
rithm. Signals in InternalControls are ordered as s2 →
s1. Under control s2, E is proved first as a transparent
word from C and D. Then C is proved to be condition-
ally equivalent to A and B under control s1. The function
finalizeBackward(...) verifies the composition of assign-
ments for (s1, s2), and hence the two proved words are
concatenated into a larger transparent function block.

Example: When the backward algorithm is applied to
the circuit in Figure 2, it can find (s1 = 1)→ (C ≡ A) and
(s2 = 1) → (D ≡ B) first. Then propagateWords(...) will
do the same thing as in the forward algorithm. In the end,
the function finalizeBackward(...) finds all proved words
can be transparent to primary outputs.

1

0

1

0

s1

s2
A

B
C

D

E

Adder
C

F G

Figure 7: An example with disjointed transparent logic

blocks.

Before finalizeBackward(...), the proved words can be
disjoint, and are not guaranteed to be reachable from the
primary outputs. In the circuit in Figure 7, the backward
algorithm finds two disconnected transparent words: G =
s2?F : D and E = s1?A : B, which are separated by
an adder. propagateWords(...) will confirm that there is
no way to connect the two words with transparent paths.
Hence finalizeBackward(...) only returns one transparent
word G = s2?F : D, which is reachable from primary
outputs.

5. EXPERIMENTAL RESULTS
The proposed algorithms were implemented in ABC [3].

All experiments were performed on a 16-core 2.60GHz In-
tel(R) Xeon(R) CPU with no time limit. All cases were
processed as AIGs and analyzed for forward and backward
transparency. Sequential circuits were converted into com-
binational designs by replacing flip-flops inputs and out-
puts with primary outputs and inputs respectively.

As a reference for the functional approach, we imple-
mented a pure structural approach: 1) structural match-
ing is used to locate all 2-to-1 MUXes in the AIGs, 2) sig-
nals with the same control are grouped into one word, and
these connected words are collected into larger transpar-
ent blocks, and 3) words which are reachable from primary
inputs (outputs) for forward (backward) transparency are
returned.

We wanted to compare the efficiency and effectiveness of
the structural algorithms versus our functional algorithms
applied to highly-transparent cases. To select these, the
functional forward algorithm was applied to all 230 cases
of the single-output track in the Hardware Model Check-
ing Competition 2014 [1]. For each case, some POs were
proved conditionally equivalent to certain primary inputs.
We computed the proportion of those POs to all POs and
ran experiments on the top 10 cases with the highest per-
centages of transparent POs. Among the 230 cases, there
are 20 cases with more than 50% transparent POs, while
another 38 cases have more than 25% transparent POs.
Table 1 shows the statistics of the selected cases after they
were converted to combinational circuits. The last col-
umn of Table 1 indicates the percentages of transparent
POs over all POs. The 6sxxx cases are industrial prob-
lems from IBM and the beem examples come from differ-
ent applications areas like protocols, planning, scheduling,
communication, or puzzles.

Table 1: Statistics of the selected benchmarks from

HWMCC’14 [1].
Case PI PO AND Trans. PO
Name # # # %

6s195.aig 1344 1258 8046 87.1
beemfrogs1b1.aig 323 159 8493 86.0

6s171.aig 1357 1263 8074 84.6
beemloyd3b1.aig 237 118 3970 82.1

6s282b01.aig 1977 1934 10264 81.2
6s384rb024.aig 22367 14953 47933 79.0
6s206rb103.aig 37847 28644 103375 71.4
6s302rb09.aig 36962 27777 100571 70.3
6s348b53.aig 15797 15561 89567 70.1

beemldelec4b1.aig 2559 1215 34252 67.5

5.1 Experiments for Structural Approach
Table 2 shows the results for the structural approach

coded for the experiments. Column 2 indicates the total
number of signals, i.e. AIG nodes or primary inputs, that
were classified as belonging to words. Column 3 lists the
total number of structural MUXes recognized. Columns 4-
7 (labeled Forward Transparency) give the statistics of the
transparencies found using the forward algorithm. Column
4 shows the total number of transparent words reachable
from primary inputs (including input words); Column 5
lists the number of AIGs plus inputs covered by all the
transparent logic blocks found; Column 6 gives the (mini-
mum, maximum) widths (the number of MUXes grouped
together as a word) of found words, and Column 7 shows
the (minimum, maximum) depths of transparent words on
boundaries. The depth of each word is the total number of
AIG nodes between itself and the primary inputs, where
one MUX is counted as depth 2.

Columns 8-11 (labeled Backward Transparency) show
similar statistics for the backward case: Column 8 lists the
total number of transparent words reachable from the pri-
mary outputs. Depth here is the number of AIGs between
internal transparent words on boundaries and the primary
outputs. The last column shows the combined run-time
for the forward and backward structural approaches. Here
we only identify 2-to-1 MUXes and MUXes with negation
on outputs or inputs. We omit counting words with less
than 4 bits

Discussion of Structural Results
Table 2 shows that most benchmarks contain wide trans-

parent words. Some contain very deep transparent paths

as well as some with only 1 or 2 levels of MUXes. The run-
times show that this approach is very efficient as expected.

Although these cases have high percentages of transpar-
ent POs, for some cases the structural approach cannot
find any transparent words. Many MUXes are recognized
but there are several reasons why the structural approach
misses many transparent words:

1. structural matching only considers standard 2-to-1
multiplexers, while there are other types of transpar-
ent functions.

2. Many of the identified MUXes are controlled by dif-
ferent selection signals, and thus lead to words of less
than 4 bits, which are excluded in the analysis.

3. Transparent words are required to be reachable from
primary inputs through fully transparent paths. If a
transparent word originates from the output word of
an arithmetic operator (e.g. word G and F in Fig-
ure 7), it would not be reported, yet many MUXes
would be involved in such a transparency.

Although quite fast, this approach itself is not enough for
finding many of the whole transparent blocks that exist in
these benchmarks as shown in the following section which
shown the total words found by the functional approaches.

5.2 Experiments for Functional Approach
In the experiments for the functional approach, the func-

tion NpnIsoClasses(...) is created as an ABC command,
&iso [8]. Table 3 shows the experimental results for both
the forward and backward cases. The columns are similar
Table 2.

Comparing Functional and Structural
We observe for the forward case:

1. The functional approach finds many more and wider
transparent words in all cases. For example, in the
last case, beemldelec4b1.aig, the functional approach
finds many transparent words, while the structural
approach finds none. One reason is the functional
approach addresses all isomorphism classes and tries
to prove transparency for them, while the structural
method only considers 2-to-1 MUX cases.

2. The functional approach finds much more logic in-
volved in transparent paths than the structural ap-
proach, on average about 2x more signals.

3. The functional approach finds deeper words than the
structural method. As mentioned, the current struc-
tural approach cannot find any depth-1 transparent
logic (a MUX has depth 2).

4. The runtime of the functional approach increases with
circuit size, while the structural approach is much
faster. The functional approach requires many cir-
cuit traversals and manipulations. In contrast, the
structural approach only goes through an entire cir-
cuit once to collect MUXes, and then works on groups
of MUXes as candidate words.

For backward transparency, we observe the following:

1. For the three cases where the structural approach
cannot find any words, the functional approach finds
several depth-1 transparent words.

Table 2: Experimental results of the structural approach on ten selected cases from HWMCC’14 [1]. N/A here means no

transparent word found.
Case Total MUX Forward Transparency Backward Transparency Runtime(s)
Name Sig. # # Words# Sig.# Widths Depths Words # Sig. # Widths Depths

6s195.aig 9390 2357 18 4552 8, 512 2, 12 287 5005 4, 72 2, 6 0.056
beemfrogs1b1.aig 8816 2016 33 520 8, 8 32, 32 0 0 N/A N/A 0.056

6s171.aig 9431 2362 11 4413 16, 512 2, 12 289 5034 4, 73 2, 6 0.058
beemloyd3b1.aig 4207 985 23 352 8, 8 22, 22 0 0 N/A N/A 0.049

6s282b01.aig 12241 2472 65 1803 6, 66 2, 6 31 3643 6, 1031 2, 4 0.056
6s384rb024.aig 70300 14492 889 21278 4, 64 2, 4 992 45174 4, 4250 2, 8 0.122
6s206rb103.aig 141222 28684 2083 56295 4, 193 2, 4 2456 96678 4, 1398 2, 8 0.238
6s302rb09.aig 137533 27818 2054 55274 4, 191 2, 4 2421 94243 4, 1061 2, 8 0.235
6s348b53.aig 105364 28775 484 28850 4, 262 2, 12 304 58875 4, 734 2, 16 0.458

beemldelec4b1.aig 36811 8458 0 0 N/A N/A 0 0 N/A N/A 0.591

Table 3: Experimental results of the functional approach on ten selected cases from HWMCC’14 [1]
Case Forward Transparency Backward Transparency
Name Words# Sig.# Widths Depths Runtime(s) Words# Trans. W # Trans. S # Widths Depths Runtime(s)

6s195.aig 1003 7921 4, 512 3, 14 3.106 352 242 5025 4, 72 2, 6 4.130
beemfrogs1b1.aig 622 4153 6, 8 9, 40 3.753 464 19 151 7, 8 1, 1 2.689

6s171.aig 490 8036 4, 512 3, 14 3.471 407 190 4641 4, 67 1, 7 3.100
beemloyd3b1.aig 89 712 8, 8 2, 26 1.815 231 12 96 8, 8 1, 1 1.390

6s282b01.aig 268 6996 4, 966 2, 10 2.623 205 20 2744 4, 999 3, 4 2.989
6s384rb024.aig 2587 48311 4, 2308 3, 7 66.533 2295 1336 40036 4, 3338 1, 9 99.395
6s206rb103.aig 6552 105493 4, 1042 3, 12 297.935 6076 3472 79660 4, 305 1, 8 471.489
6s302rb09.aig 6583 103437 4, 872 3, 12 295.97 6071 3493 78696 4, 296 1, 8 451.814
6s348b53.aig 1879 58874 4, 367 3, 18 72.454 2644 715 57521 4, 598 1, 11 238.205

beemldelec4b1.aig 574 2688 4, 8 2, 3 27.368 2183 43 223 4, 21 1, 1 17.976

2. Although the functional backward algorithm spends a
lot of time proving internal transparent words, many
are unreachable from the primary outputs.

3. Unlike the forward case, the functional backward ap-
proach seems to miss some words. The reason is that
the present implementation of NpnIsoClasses(...) (&iso
in ABC) only reports isomorphism classes in which
the polarities of one word must be all the same. The
backward case is more likely to have mixed polarity
npn isomorphism classes, because some bits of input
words for transparent logic blocks might have been
synthesized with their supports, which are parts of
operators. Therefore, some bits are excluded from
our current implementation and this can have a more
significant effect on the backward case.

Comparing the forward and backward functional approaches,
we observe:

1. Due to the difficulties of support classification (men-
tioned in Section 4.2), the backward algorithm misses
some transparent paths proved by the forward algo-
rithm. We need to understand this better and im-
prove the backard strategies.

2. For large cases, the backward algorithm takes much
more time than the forward one because:

• For some backward cases, there is no proved word
on the support boundary that would be useful
for classifying supports. Then it takes more time
to prove transparent words. In contrast, the for-
ward algorithm collects and proves candidate words
in a topological order and the proved words can
be used to prove candidates in their fanout cones.

• The forward algorithm only checks each signal
once, but the backward one needs to revisit some
target signals to consider different support bound-
aries. The reason is, if the support boundary de-
fined earlier cannot be used to prove transparent

words (due to the support classification issue),
those signals will be re-visited when a different
support boundary is proposed.

Table 3 shows that the proposed algorithm finds a sig-
nificant number of transparent words in the selected cases,
even though the isomorphism algorithm used in these ex-
periments is an early version largely limited by the struc-
ture of the circuit [8]. This may cause larger words to
be broken down into smaller sub-words. A better isomor-
phism method, using npn isomorphism, has been devel-
oped but not yet integrated into the present implementa-
tion [9]. Also, run-time performance should improve as the
implementation matures, e.g. run-time might be improved
by skipping some intermediate levels of words, but then
intermediate words might be missed. Also structural and
functional methods can be inter-mixed. For real applica-
tions, the particular final usage of the found words will
dictate a suitable balance between performance and the
number of proved words.

6. CONCLUSIONS
This paper presented algorithms for finding transparent

logic, which can be used to highlight word-level informa-
tion in gate-level circuits. A functional approach was pro-
posed to identify transparent logic in combinational cir-
cuits. Experimental results demonstrated that the pro-
posed algorithms can be very effective in extracting words
as well as some control logic.

Future work will include:

• new npn isomorphism functional methods will be in-
tegrated into the current approach,

• experiments will be conducted on examples from un-
rolled sequential circuits to try deeper circuits,

• a composite method combining both structural and
functional approaches will be developed to achieve
efficiency and effectiveness at the same time,

• an algorithm will be developed for finding internal
transparency blocks, not just forward or backward
transparencies, and appropriate examples will be cre-
ated to measure its effectiveness,

• the method will be used to find all word -> opera-
tor and operator -> word boundaries in a gate-level
design and integrated with reverse engineering func-
tional approaches that can identify the operators.

The final goal is a fully functional approach to the reverse
engineering of gate-level designs.

7. ACKNOWLEDGEMENTS
This work is supported in part by SRC contract 2265.001

and by the NSA via the TRUST grant. We also thank
industrial sponsors of BVSRC, Altera, Atrenta, Cadence,
Calypto, IBM, Intel, Mentor Graphics, Microsemi, Synop-
sys, and Verific for their continued support.

8. REFERENCES
[1] Hardware Model Checking Competition 2014.

http://fmv.jku.at/hwmcc14cav/.

[2] S. Awodey. Category theory. Clarendon Press Oxford University
Press, Oxford Oxford New York, 2006.

[3] R. Brayton and A. Mishchenko. Abc: An academic
industrial-strength verification tool. In Computer Aided
Verification, pages 24–40. Springer, 2010.

[4] Y.-Y. Dai, K.-Y. Khoo, and R. Brayton. Sequential equivalence
checking of clock-gated circuits. In Design Automation
Conference. ACM, 2015.

[5] M. C. Hansen, H. Yalcin, and J. P. Hayes. Unveiling the iscas-85
benchmarks: A case study in reverse engineering. IEEE Design &
Test of Computers, (3):72–80, 1999.

[6] W. Li. Formal methods for reverse engineering gate-level netlists.
Master’s thesis, 2013.

[7] W. Li, G. Adria, P. Subramanyan, W. Y. Tan, A. Tiwari, S. Malik,
N. Shankar, and S. Seshia. Wordrev: Finding word-level structures
in a sea of bit-level gates. In Hardware-Oriented Security and
Trust (HOST), 2013 IEEE International Symposium on, pages
67–74. IEEE, 2013.

[8] A. Mishchenko, N. Een, R. Brayton, M. Case, P. Chauhan, and
N. Sharma. A semi-canonical form for sequential aigs. In
Proceedings of the Conference on Design, Automation and Test
in Europe, pages 797–802. EDA Consortium, 2013.

[9] M. Soeken, A. Mishchenko, A. Petkovska, B. Sterin, P. Ienne, R. K.
Brayton, and G. D. Micheli. Heuristic npn classification for large
functions using aigs and lexsat.

[10] M. Soeken, B. Sterin, R. Drechsler, and R. Brayton. Reverse
engineering with simulation graphs. In Formal Methods in
Computer-Aided Design, 2015.

[11] P. Subramanyan, N. Tsiskaridze, W. Li, A. Gascon, W. Y. Tan,
A. Tiwari, N. Shankar, S. Seshia, and S. Malik. Reverse engineering
digital circuits using structural and functional analyses. Emerging
Topics in Computing, IEEE Transactions on, 2(1):63–80, 2014.

