
Towards Automated ECOs in FPGAs

Andrew Ling
Electrical and Computer

Engineering
University of Toronto

aling@eecg.toronto.edu

Stephen Brown
Toronto Technology Center

Altera Corporation
sbrown@altera.com

Jianwen Zhu
and Sean Safarpour
Electrical and Computer

Engineering
University of Toronto

jzhu|sean@eecg.toronto.edu

ABSTRACT
During the FPGA design flow, engineering change orders (ECOs)
have become an essential methodology to apply late-stage spec-
ification changes and bug fixes. ECOs are beneficial since they
are applied directly to a place-and-routed netlist which preserves
most of the engineering effort invested previously. Unfortunately,
designers often apply ECOs in a manual fashion which has an un-
predictable impact on the design’s final correctness and end costs.

As a solution, we introduce an automated method to tackle the
ECO problem. Specifically, we introduce a resynthesis technique
which can automatically update the functionality of a circuit by
leveraging the existing logic within the design; thereby removing
the inefficient manual effort required by a designer. Our technique
is robust enough to handle a wide range of changes. Furthermore,
our technique can successfully make late-stage functional changes
while minimally perturbing the place-and-routed netlist: something
that is necessary for ECOs. When applied to several benchmarks
on Altera’s Stratix architecture, we show that our approach can au-
tomatically apply ECOs in over 80% of the cases presented. Fur-
thermore, our technique does this with a minimal impact to the
circuit performance where on average over 90% of the placement
and routing wires remain unchanged.

Categories and Subject Descriptors
B.6.3 [Hardware]: Logic Design - Automatic synthesis

General Terms
Algorithms, Design, Verification

Keywords
Boolean Satisfiability, Resynthesis, Optimization, FPGA, PST

1. INTRODUCTION
As FPGA design complexity increases, achieving tight timing

and area constraints is becoming very challenging and often re-
quires several design iterations as shown at the top of figure 1.
Here, a design described in a Hardware Description Language (HDL)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FPGA’09, February 22–24, 2009, Monterey, California, USA.
Copyright 2009 ACM 978-1-60558-410-2/09/02 ...$5.00.

is passed to an FPGA CAD flow such as Quartus II. If design con-
straints are not met after the CAD flow finishes, the designer must
modify their existing HDL code and rerun the CAD flow. To com-
plicate things, even if performance constraints are met, bug fixes
or feature changes may still be required. Applying these changes
directly at the HDL and using a “from scratch” FPGA recompile is
often not an option since this does not guarantee that circuit perfor-
mance will be maintained. To avoid this problem, designers typi-
cally handle late-stage changes through a process known as engi-
neering change orders (ECOs). ECOs are small functional changes
applied directly to a place-and-routed netlist such as the rewiring of
LUTs or changing LUT implementations. As a result, ECOs have a
very predictable impact on the final performance of the circuit and
preserve much of the engineering effort previously invested in the
design.

In a design flow where almost all tasks are automated, ECOs
remain a primarily manual process. As a result, applying ECOs
is very error-prone and can require several iterations to correctly
modify a design. This is shown in figure 1 through the path labeled
as Original Flow. The feedback process shown in Original Flow
can often tie up a designer for several months [1, 2, 3, 4] which
leads to missed project deadlines. With very short design cycles
demanded today, this is very detrimental to a product’s success.

module foo (…)
always @ (…)
begin

…
end
…
… ��������������	
��
�	

����	� 
 ��
�	� ���	��
����� ���������		����������������������	 �		������	�����
�������
������

�����	�� ��������!"#$#%&' (')*+,* (')*
Figure 1: Generalized flow using ECOs.

To avoid the expensive and error-prone nature of ECOs, we in-
troduce a resynthesis approach that is able to automatically update
the behavior of a circuit by using existing logic within the design.
This is beneficial since it requires no manual intervention. This can
potentially reduce the time spent on ECOs from weeks to a few
hours.

3



The proposed flow is shown at the bottom of figure 1 labeled as
New Flow. Unlike the Original Flow, the New Flow does not re-
quire an iterative approach. During New Flow, the circuit behavior
is updated using two steps. First, the proposed algorithm applies a
localization step which isolates nodes within the netlist which need
to be changed. For example, during bug-fixes, the localization step
will isolate nodes which are the source of the erroneous behavior of
the circuit. Following this, the proposed algorithm applies a resyn-
thesis step to alter the circuit. The resynthesis step first defines the
function that will replace the existing nodes found in the localiza-
tion step. Next, the proposed algorithm uses a SAT-based decom-
position to break our necessary changes into a set of subfunctions.
During decomposition, subfunctions must exist within the place-
and-routed netlist. This ensures that the proposed algorithm has
a predictable impact on the final performance of the circuit. By
using a SAT-based approach, we will show that unlike previous
approaches, we can handle multiple changes and do not require a
formal verification step to ensure that our modifications are correct.

The ultimate goal of this work is to create an ECO flow which
can automatically update the behavior of a circuit in a manner which
preserves as much as possible the placement and routing of the cir-
cuit while maintaining timing. This can be achieved by satisfying
the following three criteria: a) be minimally disruptive to an exist-
ing place-and-routed circuit; b) have little or no impact to the per-
formance of a circuit; c) be robust enough to handle a wide range of
changes. In later sections, we will show that our approach does in-
deed satisfy the previous three criteria. In particular, when applied
to Altera’s Stratix architecture using several benchmarks from the
Altera QUIP [5] and the ITC benchmark suite we will show our
technique on average leaves over 90% of a place-and-routed circuit
unchanged; has a marginal impact to circuit performance where we
reduce the frequency by less than 3% on average; and is robust
enough to handle over 80% of the changes presented. In all cases,
we require no manual intervention by the user.

The rest of the paper is organized as follows: section 2 discusses
the background and related work; section 3 describes the proposed
algorithm in detail; section 4 shows experimental results; and sec-
tion 5 concludes the paper.

2. BACKGROUND AND RELATED WORK

2.1 Terminology
The combinational portion of a LUT network can be represented

as a directed acyclic graph (DAG). A node in the graph represents
a LUT, primary input (PI), or primary output (PO). An edge in the
graph with head v, and tail u, represents a signal in the logic circuit
that is an output of node u and an input of node v. Primary inputs
(PIs) are nodes with no inputs, and primary outputs (POs) are nodes
with no outputs.

A node u is a transitive fanout (fanin) of v if there exists a path
between an input (output) of u and an output (input) of v. In this
paper, we will often use the term transitive fanout or transitive fanin
of a node v to refer to all nodes which are a transitive fanout or
transitive fanin to node v.

When defining a function at a node v, it is termed a global func-
tion if the function support set consist of only PIs. Conversely, a
local function is a function whose support set consists of variables
which may not be PIs. A support set of a function is the set of vari-
ables that directly determine the output value of a function and the
size of the support set is the number of variables in the set.

2.2 Related Work
ECOs covers a wide range of work which is either used to in-

crementally improve the performance of a design [6] or help mod-
ify the behavior of a design such that circuit performance is main-
tained [7, 8, 9, 10, 11, 12]. Our work falls in the latter category
where we focus on late-stage ECOs which are applied directly to
a place-and-routed netlist. Late-stage functional changes often oc-
cur due to last minute feature changes or due to bugs which have
been missed in previous verification phases. The most recent steps
toward the automation of the ECO experience include [8] and [9].
Here, using formal methods and random simulation, the authors
in [8, 9] show how netlist modifications can be automated. To apply
modifications, the authors use random simulation vectors to stim-
ulate the circuit. Using the resulting vectors at each circuit node,
they are able to find suggested alterations to their design to match
a specified behavior. Following their modifications, they require a
formal verification step to ensure that their modification is correct.
The results of their work is promising where they can automatically
apply ECOs in more than 70% of the cases they present.

The technique in [9, 8] requires an explicit representation of any
modification, which does not scale to large changes. This is not
a problem in ASICs since ECOs requiring major changes are not
desired since they are difficult to implement; however in FPGAs,
where we can reprogram individual logic cells, large changes can
be implemented while maintaining circuit performance. Our ap-
proach improves on this where we can handle much larger changes
by using a SAT-based approach shown in the following sections.

2.3 Boolean Satisfiability (SAT)
Given a Boolean expression F (x1, x2, ..., xn), Boolean satisfi-

ability (SAT) seeks an assignment to the variables, x1, x2, ..., xn,
such that F evaluates to true. If this is possible, F is said to be
satisfiable, otherwise, it is unsatisfiable. SAT solvers are tools that
serve to find if a Boolean formula is satisfiable or not. For practi-
cal reasons, modern day SAT solvers work on Boolean expressions
in Conjunctive Normal Form (CNF). An example of a Boolean ex-
pression is shown in equation FAND in figure 2

Recent advancement in SAT solvers [13] have improved their
runtime performance by an order of magnitude, thus several prob-
lems in EDA can be practically solved using SAT. In order to solve
circuit problems with SAT, often the circuit needs to be converted
into a Boolean expression which is then input into the SAT solver.
This Boolean expression [14] is known as a characteristic function
for the circuit. The characteristic function of a circuit evaluates to
true if all variable assignments of the wires, inputs, and outputs of
the circuit have a feasible assignment. For example, consider the
AND gate shown in figure 2. The table to the left gives the truth ta-
ble for the AND gate characteristic function which can be converted
to CNF using any standard minimization technique. Figure 3 shows
how to derive the characteristic function of larger circuits by con-
joining the characteristic functions of individual gates within the
circuit.

After deriving the characteristic function of a circuit, we can use
it in conjunction with SAT solvers to examine logical properties of
the circuit for various CAD problems. For example, in section 3.1,
we will show a SAT-based technique using the characteristic func-
tion to isolate errors within a design.

In this paper, we will often refer to a circuit as being satisfiable
without explicitly showing its characteristic function. We define a
circuit as being satisfiable if there is a satisfying assignment to the
characteristic function of the circuit. The circuit is unsatisfiable if
no such assignment exists. Furthermore, a satisfying assignment
to a circuit is an assignment which is consistent with the circuit’s

4



A
Z

B

A B Z FAND

0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

FAND = (A + Z)
| {z }

·(B + Z) · (A + B
|{z}

+Z)

clause literal

Figure 2: Characteristic function derivation for 2-input AND
gate.

Y
C

B
Z

A

F =(A + Z) · (B + Z) · (A + B + Z) ·

(Z + Y ) · (C + Y ) · (Z + C + Y )
(1)

Figure 3: Cascaded gate characteristic function: top clauses
from AND gate; bottom clauses from OR gate.

characteristic function. For example, one possible satisfying as-
signment to the circuit in figure 3 is ABCZY = 01101.

3. AUTOMATED ECOS: GENERAL
TECHNIQUE

Netlist Localization

MAX-SAT

based

Netlist Modification

Derive

Suitable Global

Function F
c

SAT-based

Derivation

F
c
=h(g

1
,g

2
,…,g

k
)

More

Focal Points

?

Changes to

Place & Routed

Netlist

NO

YES

Focal Points

Figure 4: Automated ECO flow.
The goal of our work is to incrementally modify an existing

place-and-routed circuit in a minimally disruptive manner such that
its new behavior matches a given reference specification. The ref-
erence specification is often defined by a reference model netlist or
“golden” netlist, where we will use the term model netlist. In order
to automate the modification process, we follow the flow shown in
figure 4. This flow consists of two distinct steps: netlist localization
followed by netlist modification.

Netlist localization finds a set of locations which we will refer
to as focal points. These focal points help isolate regions that need
to be modified. During the netlist modification phase, the proposed
algorithm will leverage existing logic found in the design to help
rewire the nodes at each focal point such that the resulting cir-
cuit will match the behavior of the model netlist. This starts by
first deriving the proper global function Fc to replace the logic at
each focal point. After a new global function is found, a search
of the netlist is conducted to find a proper set of subfunctions,

{g1, g2, ..., gk}, to implement the new global function Fc such that
Fc = h(g1, g2, ..., gk). Since these subfunctions, which we will
refer to as basis functions, already exist in the place-and-routed
netlist, the only required changes to the netlist revolves around the
implementation of the dependency function h. As we will show
in section 3.2, implementing h requires much fewer changes than
implementing Fc from scratch. This makes the proposed algorithm
well suited for ECOs which must preserve the existing place-and-
routed circuit as much as possible.

3.1 Netlist Localization
Netlist localization is the process of identifying which nodes

must be changed in order to change the behavior of the circuit
such that it matches the behavior of the model netlist. The ap-
proach we use to find these nodes is based upon the work presented
in [15]. Here the authors introduce a localization technique based
upon MAX-SAT. Like SAT, MAX-SAT seeks a satisfiable vari-
able assignment to a CNF. However, in the case of unsatisfiability,
MAX-SAT seeks an assignment which maximizes the number of
satisfying clauses. Using the set of unsatisfiable clauses, we can
isolate discrepancies between two netlists.-. /0 1-. /0 123 3 323 3 2

Figure 5: Maximum satisfiability solution to localization.
This process is illustrated in the figure 5. Consider the two cir-

cuits in figure 5. The top circuit is the model netlist while the bot-
tom circuit is the implementation of the original circuit. Under the
input stimulus {a = 0, b = 1, d = 1} the original circuit has a
response of {e = 0} which conflicts with the model response of
{e = 1}. The corresponding CNF for the original circuit and the
input/output vectors are shown below.

(a) · (b) · (d) · (e)·

(a + c) · (b + c) · (a + b + c)·

(c + e) · (d + e) · (c + d + e)

(2)

The above equation is unsatisfiable; however, the MAX-SAT
problem will attempt to maximize the number of satisfied clauses.
One possible solution to this is satisfying all clauses except for
clause (a + c). Since clause (a + c) is derived from the AND-gate,
this indicates that the function output from this gate (i.e. function
on wire c) is the source of the discrepancy. Clause (a) could have
also been identified in the MAX-SAT solution which does not help
identify the discrepancy in our circuit. To avoid fruitless clauses
from being identified, you can adjust the MAX-SAT solver to force
such clauses to satisfiable during the MAX-SAT process.

This type of localization is known as trace-based localization
where a vector set is used to help identify discrepancies between
two netlists. The main limitation with this approach is that if only
a small set of vectors or traces are available, false locations will be
identified. However, assuming that a large enough set of vectors
are available, an iterative approach can be applied to the localiza-
tion process where the number of potential locations are reduced.

In our case, we will often refer to discrepancy points isolated by
the localization point as focal points. Also, in many examples, we
will assume there only exists one focal point, which we will refer
to as single-location modifications.

In the example shown in figure 5, the original circuit and model
netlist exist as a gate-level netlist. This is not necessary, since we

5



are only interested in the characteristic function of the current cir-
cuit and IO response of the model netlist; not their implementation.
This is important in our case where our circuit exists as a netlist of
LUTs on Altera’s Stratix architecture and our model netlist consists
of a netlist of AND and inverter gates (AIG) synthesized from an
RTL netlist.

3.2 Netlist Modification
After netlist localization occurs, the netlist can be modified. Mod-

ifications are centered around the focal points that were identified
during the localization phase. Referring back to figure 4, the pro-
cess of netlist modification requires a series of steps. First, we must
define a global function Fc to replace the existing global function
at each focal point. Following this, we must decompose the re-
placement function Fc such that it leverages existing logic within
the place-and-routed netlist. We will show later on that we use a
specialized circuit construct to define an implicit representation of
the on and offset of Fc. This significantly enhances the scalabil-
ity of our approach. Once we have found a suitable representation
for Fc, we will then decompose Fc into a set of basis functions.
Since our basis functions already exist within the place-and-routed
netlist, we have significant control in how we decompose our func-
tion, which is a requirement if we want to minimally disrupt the
existing plate-and-routed circuit.

4
5

)(xTFO

x67489
)(xTFI

Figure 6: Illustration of localized node ξ. Modification can
be applied by replacing H(Xp) with some arbitrary function
Fc(Xs).

To understand why we need to find a suitable global function to
replace the function at each focal point, consider the circuit illus-
trated in figure 6. Assume node ξ is identified during the localiza-
tion step. The transitive fanin and fanout for node ξ are labeled as
TFI and TFO . The inputs to the circuit are labeled as the vari-
able set X, and the outputs of the circuit are labeled as the variable
set Y. Also, note that we illustrate some of the input branches to the
transitive fanout with dotted lines which will be important later on
in figure 7. Assuming we can change the global function H(Xp)
to any arbitrary function Fc(Xs) where Xp ⊆ X and Xs ⊆ X, we
can alter the circuit behavior to match our model netlist. Thus, the
ECO problem becomes one of finding a suitable global function
Fc(Xs) to replace the existing H(Xp). This leads to the following
definition and lemma.

DEFINITION 3.1. Suitable Global Function: In the case of a
single focal point, ξ, identified during the localization step, a suit-
able global function Fc is defined as a function which can be used
to replace an existing global function H found at ξ such that the re-
sulting circuit matches the input-output behavior of a model netlist.

LEMMA 3.2. For a single-location modification, such as the
one shown in figure 6, the circuit behavior of the original circuit
can be altered to match a model netlist if and only if the global
function located at focal point ξ is replaced with another suitable
global function Fc(Xs).

Our work follows lemma 3.2 where given a set of focal points
returned by the localization step, we attempt to replace the global
function at each location with another global function. This re-
quires us to first find a suitable global function, which we label
as Fc. We do so by deriving an implicit representation of Fc us-
ing a specialized circuit construct. Following this, we search for
a set of basis functions {g1,g2,...,gk} from the existing netlist and
see if they can be used to implement the new function Fc. This re-
quires a SAT-based functional dependency check described later on
in this section. If the basis functions pass the SAT test, we can gen-
erate the decomposition Fc = h(g1, g2, ..., gk) where h is known
as the dependency function between Fc and the basis functions
{g1,g2,...,gk}. To understand this in detail, we will first consider
the simple case of a combinational circuit containing a single focal
point returned from the localization step.

:
;

)(xTFO < =>?@AB@CADEC
FGH

(a) Attaching circuit to model netlist

I
J

)(xTFO K LMNOPQORPSTR
UVWXVY

(b) Attaching observability constraints for CircuitConstrain

Figure 7: Circuit to be modified
Deriving a suitable global function, Fc, can be done through

brute force means where we explicitly create Fc. However, an ex-
plicit representation of Fc, such as a truth table or BDD, will not
scale since Fc may depend on several variables. To avoid this prob-
lem we instead choose to construct an implicit representation of Fc.
We start off with a construction of the circuit shown in figure 7. On
the left side of figure 7(a) we show a circuit we intend to modify,
which looks similar to figure 6. However, in figure 7(a), we replace

6



the focal point ξ with an input pin e. Doing so gives us the freedom
to search for a suitable Fc to replace pin e. Next, we have to con-
strain the input-output behavior of the circuit to match the model
netlist. We do this by attaching the model netlist to our circuit as
shown on the left side of figure 7(a). Here, we tie the circuit inputs
together and connect the outputs with an XOR gate along with an
OR gate at the top. Following this, we force the OR gate output to 0
(q = 0). As a result of these constraints, any satisfying assignment
to the circuit in figure 7(a) will be consistent with the input-output
behavior of the model netlist.

After constraining the circuit to the model netlist behavior, we
seek to remove the “don’t care” space of the suitable function Fc.
This gives us greater flexibility in choosing a proper Fc. We do this
by restricting the input space, X, to values where pin e is observable
at the outputs. Informally, e, is observable at a PO, y, if for a given
assignment, the value of e impacts the value of y. Otherwise, e

is not observable at node y. This is appropriate since pin e will
ultimately be replaced with Fc. This is shown in figure 7(b) which
we will refer to as CircuitConstrain. In CircuitConstrain,
we duplicate the transitive fanout of pin e. When connecting the
duplicated transitive fanout to the original circuit, we complement
input pin e, while all other input branches to the transitive fanout
are kept the same. Also, for each output pair of the duplicated
transitive fanout and original circuit, we add an XOR gate followed
by an OR gate and set the output of the OR gate to 1 (o = 1). The
circuitry added at the outputs along with the duplicated transitive
fanout checks to see if the input pin e is observable at the outputs.
For example, if the output of the OR gate is 0 (o=0), this implies that
the value on pin e does not matter and will not affect the outputs.
Based on the previous description of CircuitConstrain, we find
the following lemma and proposition to be true.

LEMMA 3.3. CircuitConstrain is satisfiable if and only if
the output of the current circuit matches the output of the model
netlist and if pin e is observable at the outputs.

PROPOSITION 3.4. CircuitConstrain is satisfiable if and only
if the assignment to e and the assignment to the input vector X is
consistent with a suitable Fc. In other words, for all satisfying as-
signments to CircuitConstrain, Fc(X) = e.

PROOF. Assume that if we have a satisfying assignment to
CircuitConstrain then the values on e and X do not match any
suitable Fc. In other words, assume that for a given satisfiable as-
signment to e and X then e 6= Fc(X). Thus, this implies that the
output of the current circuit does not match the model netlist by
lemma 3.2. However, this is not possible since any satisfying as-
signment to CircuitConstrain must match the input-output be-
havior of the model netlist by lemma 3.3. Thus, by contradic-
tion any satisfying assignment to e and X implies a match to a
suitable Fc. Now let us assume that if the values on e and X
match a suitable Fc then we do not have a satisfying assignment
to CircuitConstrain. In this case, if e = Fc(X), then the output
response of our circuit will match the model netlist. Also, e must be
observable since we can restrict the inputs space of X to the observ-
able space of Fc. However, these two conditions must imply that
we must have a satisfying assignment to CircuitConstrain by
lemma 3.3. Thus, by contradiction, if the values on e and X match
a suitable Fc then we have a satisfying assignment to Circuit-
Constrain. Hence we have proved that CircuitConstrain is
satisfiable if and only if the assignment to e and the assignment to
the input vector X is consistent with a suitable Fc.

By proposition 3.4, we can use the circuit in figure 7(b) to find
a suitable Fc by exploring all satisfying assignments to e and X.

Doing so will effectively create the entire truth table for function
Fc. For example, we would start by setting X to 000...00. We
would then find a satisfying value for e. This value found for e

would represent Fc(000...00). Next, we would continue for X =
000...01 and so on.

The problem with the previously described approach is that this
requires an exhaustive traversal of the input space X, which does
not scale. Furthermore, implementing Fc directly is not desirable
since this may require significant changes to the existing place-and-
routed netlist. A more practical approach for ECOs would be to
search for a set of basis functions, {g1, g2, ..., gk}, found from the
existing netlist and check if this set of basis functions can be used
to implement Fc such that Fc = h(g1, g2, ..., gk). Informally, this
will be possible if and only if there does not exist a situation where
the basis functions {g1, g2, ..., gk} are equivalent for a given input
pair assignment and Fc is not equivalent for the same input pair.
For example, consider figure 8. Here we show four functions, g1,
g2, g3, and Fc. In this example, all functions are dependent on
three variables x1, x2, and x3. Looking at function g1 and g2, we
see that there exists a given input pair {000, 001} where g1 and g2

are equivalent, but Fc is not equivalent. Thus, it is impossible to
find a function h such that Fc = h(g1, g2). In contrast, if we select
functions g1 and g3, it is impossible to find an input pair where g1

and g3 are equivalent and Fc is not equivalent. Thus, in this case,
there exists a dependency function h such that Fc = h(g1, g3) (in
this case h = g1 · g3 + g1 · g3). The key benefit of this process
is that by leveraging existing logic within the netlist (i.e. the basis
functions gi) we only need to derive the dependency function h,
which has a smaller support set than the global function Fc. This
is ideal for ECOs since implementing the dependency function h

within the existing circuit has a much smaller and predictable im-
pact than implementing the entire global function Fc from scratch.

x1x2x3 g1 g2 g3 Fc

000 0 0 0 1
001 0 0 1 0
010 0 0 0 1
011 0 1 1 0
100 0 0 1 0
101 0 0 1 0
110 1 0 1 1
111 1 1 1 1

Figure 8: Functional dependency example

Z[
\[]^

_[]`
a]`b[]`

cdeZf[gcheZf[g Z d
\d]^

_d]^
bd]`

cdeZfdgcheZfdgijklmjni\opnkqjo[ ijklmjni\opnkqjod
Figure 9: Deriving global function F = h(g1, g2) using depen-
dency check construct.

To formally check the condition described previously we will use
a SAT-based approach [16]. This requires constructing a character-
istic function that checks for the following condition: for a given

7



set of basis functions {g1, g2, ..., gk}, does there exist a minterm
pair where the basis functions are equivalent and Fc is not equiv-
alent. To create this characteristic function, we construct the cir-
cuit shown in figure 9. In figure 9, we have duplicated Circuit-
Constrain and labeled them as CircuitConstrain0 and
CircuitConstrain1. In each duplicated copy, we have simplified
CircuitConstrain and have only shown their duplicated input
and output pins.

To check if there exists a minterm pair where a set of basis func-
tions are equivalent, we can extract a basis function set from each
duplicated circuit and connect them together with an XOR-OR gate
network and set the OR gate output to 0 (d = 0) as shown in
figure 9. Here, we have selected two wires g1 and g2 as the ba-
sis functions. The support set of the basis functions g1 and g2

in CircuitConstrain0 (CircuitConstrain1) are labeled as Xs0

(Xs1) which is a subset of the variable set X0 (X1). Due to these
constraints, a satisfying assignment to figure 9 will find an minterm
pair assignment to variables X0 and X1 where the basis functions
are equivalent.

To check if there exists a minterm pair where Fc is not equiv-
alent, we can also use the circuit construct in figure 9. Here, we
will constrain each duplicated pin e. Since in CircuitConstrain,
only satisfiable assignments to e and X are consistent with a suit-
able global function Fc(X) by proposition 3.4, constraining e to 0
or 1 provides a means to constrain the input X to the offset and on-
set for Fc(X). This is stated more formally in the following lemma.

LEMMA 3.5. In CircuitConstrain of figure 7(b), if pin e is
assigned a value 0, CircuitConstrain is satisfiable if and only
if the input vector X is assigned a value found in the offset of the
function Fc(X). Conversely, if pin e is assigned a value 1, the
circuit is satisfiable if and only if the input vector X is assigned a
value found in the onset of the function Fc(X).

Following from lemma 3.5, the circuit in figure 9 constrains e0

to 0 and e1 to 1 to restrict the possible assignments to X0 and X1.
Specifically, setting e0 to 0 constrains all possible assignments of
X0 to the offset of Fc, while setting e1 to 1 constrains all possible
assignments of X1 to the onset of Fc. Thus, due to these constraints,
a satisfying assignment to figure 9 will find a minterm pair assign-
ment to variables X0 and X1 that respectively map to the offset and
onset of function Fc. Thus, for this minterm pair, Fc is not equiva-
lent.

Using the previous circuit constraints in figure 9, we can create
the characteristic function shown in equation 3.

∃X0∃X1 (CircuitConstrain0 CNF )·

(CircuitConstrain1 CNF )·

(e0 ≡ 0) · (e1 ≡ 1) · (g1(Xs0) ≡ g1(Xs1))·

(g2(Xs0) ≡ g2(Xs1)) · (X0 6= X1)

(3)

In equation 3, assume that CircuitConstrain0 CNF

(CircuitConstrain1 CNF ) represents the clauses derived from
the characteristic function of CircuitConstrain0

(CircuitConstrain1). Equation 3 asks if there exists a minterm
assignment pair to X0 and X1 which map to the off and onset of Fc

respectively (i.e. e0 ≡ 0 and e1 ≡ 1), while the basis functions are
equivalent. This leads to the following proposition.

PROPOSITION 3.6. If equation 3 is satisfiable the basis func-
tions, gi, cannot be used to implement a suitable global function
Fc. If equation 3 is unsatisfiable, the basis functions, gi, can im-
plement a suitable global function Fc.

PROOF. Assume if equation 3 is satisfiable then Fc has a de-
composition h(g1, g2, ..., gk). If equation 3 is satisfiable, this im-

plies that there is a vector assignment C0 to X0 which maps to the
offset of Fc and there exists a vector assignment C1 to X1 which
maps to the onset of Fc, which follows from lemma 3.5. This also
implies that vector C0 and vector C1 map to the same output vector,
K = k1k2...kk in the output space of the basis set {g1, g2, ..., gk}
due to the gi equality constraints in equation 3. However, since
we have assumed Fc = h(g1, g2, ..., gk) in the first statement, this
implies Fc(C0) = h(K) = 0 and Fc(C1) = h(K) = 1, thus
we have a contradiction. Thus if equation 3 is satisfiable then Fc

cannot be decomposed into h(g1, g2, ..., gk). To prove the second
statement in proposition 3.6, we can use a similar argument and
will not show it in detail here.

If equation 3 is unsatisfiable, we can derive the correct depen-
dency function h from the proof of unsatisfiability. This requires
backtracing through the set of clauses are the source of the unsatis-
fiable condition and creating a function based on these clauses. In
our case, if the function h is small enough (its support set size is
less than 20), we create a BDD representation of h. We limit the
variable size to 20 since this minimizes the risk of BDD explosion.
In the cases where the BDD does get very large, we fail to create
a proper implementation of h. Deriving h based on the proof of
unsatisfiability is based on the theorem of Craig interpolation and
will not be discussed here. For a detailed description on deriving h

please refer to [17] and [16].
If the support size of h is less than the number of inputs to a

LUT, we can implement h in a single LUT and the modification
process is complete. However, if the support size of h is larger than
the number of inputs to a LUT, we must decompose and technol-
ogy map h to the circuit architecture. In our case, we decompose
h into a network of LUTs for the Stratix architecture. However,
one can modify their decomposition algorithm to map h into any
technology. During the decomposition, since timing information is
available, we skew the decomposition such that critical wires are
placed near the top of the decomposition tree. This is similar to the
work presented in [18] and reduces the number of logic levels the
critical wires have to go through in order to preserve timing.

3.2.1 Searching for Basis Functionsrstuvwxsyzy{|} x|~s��|zyt ��������� � �sy�|��z���stz|y ���x�y~tz|y�� t| {vt
�������� ~uv~�|y ��������� �� ���������s{{� �s{{���� �s{v��z���stz|y�ztu���������

Figure 10: Searching for basis functions flow.
In the previous description, we assumed that the set of basis func-

tions necessary in our functional dependency check were available.
In practice, we must search the circuit netlist for an appropriate
set of basis functions. This flow is illustrated in figure 10. First
the fanins to the focal point, ξ, are chosen as the basis functions.
Next, we use a random simulation based check to see if this set
can potentially be used as a dependency set to implement the cor-
rective function Fc. If the check fails, we search for additional
functions which exist within the circuit to add to the set of basis
functions. Additional functions are added until our random sim-
ulation based check passes. When searching for additional basis
functions, we first select functions within the transitive fanin of the
focal point ξ. If this fails, we collect the primary outputs found
within the transitive fanout of the focal point ξ and select functions

8



found within the transitive fanins of those primary outputs. Once a
set of basis functions pass the random simulation check, we apply
our SAT-based decomposition technique. This process continues
until we find a suitable set of basis functions to implement Fc such
that Fc = h(g1, g2, ..., gk). Although not shown in figure 10, if
the number of basis functions required grows to more than 20 func-
tions or if the number random simulation calls is more than 10, the
search will terminate.

x1x2x3 e g1 g2 g3

100 0 0 0 1
001 0 0 0 1
010 1 0 0 0
011 0 0 1 1
110 1 1 0 1
101 0 0 0 1

Figure 11: Random simulation example.

The random simulation check shown in figure 10 is used as a
quick check to see if the current basis function set can be used
to implement Fc without going through the more expensive SAT-
based check described in the previous section. Here, using
CircuitConstrain in figure 7(b), we randomly simulate the PIs
X and pin e. Vectors which violate the observability (o = 1) and
equality (q = 0) constraint are discarded. Following this, we search
through the circuit netlist and find a set of nodes whose vectors do
not satisfy equation 3. For example, consider figure 11. Assume
that the circuit PIs are variables x1, x2, and x3 and functions gi

are chosen from the existing circuit. Here we show the value of
the functions, gi, with respect to a random input vector assignment
to the PIs and pin e. Using this sample set, we can see that the set
{g1, g2} cannot be used as our basis set since there exists a primary
input pair, {001, 010}, which satisfies equation 3. In contrast, ba-
sis set {g1, g3} is a possible set since there does not exist any input
pair which satisfies equation 3. Since our random simulation set is
not exhaustive, we must apply the SAT-based check described in
the previous section to cover any input vectors missed during the
random simulation.

If the current basis set fails the random simulation test, we must
add additional functions to build a proper set of basis functions. To
help guide the search, we use a SAT based vector generation to cre-
ate input patterns that can find additional vector pairs that need to be
differentiated. The SAT based vector generation works by duplicat-
ing the circuit and “locking” each pair of duplicated basis functions
to equivalent values and setting the pair of duplicated input pins e

to complemented values. Following this, a SAT solver is run 32
times to find a set of 32 different satisfying values on the other wire
which generates a new vector set. Using these new vector sets, we
search for functions that can differentiate minterms currently differ-
entiated by pin e, but not differentiated by the current basis function
set. Informally, a function set can differentiate a pair of minterms
if their outputs are different for that minterm pair. For example, in
figure 11, {g1, g2} cannot differentiate minterms 001 and 010 since
g1(001) ≡ g1(010) and g2(001) ≡ g2(010). Since pin e differ-
entiates this pair, to create a valid basis set from {g1, g2} for pin e,
we would need to pick an additional function gj that can differen-
tiate vectors 001 and 010 (differentiating pairs {100, 010} and/or
{101, 010} are also possible). Wires whose functions cover the
most vectors not differentiated by the current basis set are chosen
first. This greedy algorithm helps to minimize the size of the basis
function set. The second criteria when choosing basis functions is
their timing criticality: basis functions with non-critical wires are
chosen over basis functions with critical wires.

3.2.2 Partitioning of Circuit and Treatment of
Registers

In order to help reduce the size of equation 3, we can remove
portions of the circuit which do not impact the behavior of the cur-
rent node being modified. This is illustrated in figure 12. Here, we

�
�

)(xTFO

x

(a)
�
�

)(xTFO

x

(b)
 
¡

)(xTFO

x

(c)

Figure 12: Circuit reduction.
are assuming that node ξ was localized in our netlist localization
step. Using node ξ, we collect the set of outputs within the transi-
tive fanout of ξ, as shown in figure 12(a). Following this, we collect
the transitive fanin of each output, as shown in figure 12(b). Since
the POs of the implemented netlist may require that their transitive
fanin PIs be changed during the modification, the transitive fanin
collected in figure 12(b) is defined by the model netlist. Thus, this
requires that our model netlist be a white-box implementation, such
as an gate-level netlist derived from an RTL description. Any node
which is not part of a transitive fanin of a given output can be re-
moved, as shown in figure 12(c). In conditions that the transitive
fanout is excessively large and contains several hundred POs, we
limit the number of POs kept to under 50. Thus, we are able to re-
move a significant portion of the circuit to speed up the SAT-based
functional dependency check. This can potentially create an incom-
plete solution since this heuristics removes some information that
may be needed to derive a corrective function Fc. However, em-
pirically we rarely found this to be a problem where for our circuit
set, 50 outputs were sufficient to find a valid correction.

In the case of sequential circuits, we treat registers as primary
inputs and outputs where the input of a register becomes a primary
output and the output of a register becomes a primary input. This
reduces the complexity of our problem; however, limits the appli-
cation of our algorithm to circuits which have not been retimed.

3.2.3 Multiple Focal Points
In the previous sections, we described the situation when only a

single focal point is returned by the localization step. In the case
of multiple focal points, where we need to find multiple suitable
global functions, we apply a step-by-step approach where we mod-
ify each focal point one at a time. While modifying a given focal
point, ξ, additional focal points are “locked down” such that they
are set to fixed values. For example, one overly simplistic heuristic
would be to set all focal points other than ξ to value 0 (in general,
this would not work since this could make the focal point ξ unob-
servable at the outputs, such as in a case where ξ and another focal
point enter into a single AND gate). This ensures that changes seen
at the output are due to the focal point ξ, and not due to the other
focal points found within the netlist. The locking down of focal
points has the possibility of not converging, particularly for com-
plex changes requiring several modifications. However, in practice
the step-by-step heuristic works in the majority of cases as shown
empirically in section 4 where we have at most 4 focal points into
the design.

9



4. RESULTS
To ensure that the resynthesis technique described in the previous

sections can be applied to late-stage ECOs, we must ensure that our
technique can automatically update the behavior of a circuit while
minimally disrupting the existing place-and-routed netlist and pre-
serve timing. Thus, we evaluate our work based on three criteria:
how disruptive our technique is on a place-and-routed netlist, how
much impact our technique has on performance, and how robust
our technique is in handling changes. Two experiments will be run
to quantify these three criteria. The first experiment models a late-
stage specification change at the RTL, while the second experiment
models a late-stage bug fix. We run our algorithm on circuits from
Altera’s QUIP [5] and the ITC benchmark suite.

All experiments are run on a PentiumD 3.2 GHz processor with
2MB of RAM. Circuits are synthesized using Quartus II 7.1 and for
Altera’s Stratix architecture. To communicate with Quartus II, we
use Altera’s QUIP TCL interface [5].

4.1 Specification Changes
In our first set of experiments, we seek to see how disruptive our

approach is on an existing place-and-routed circuit and its impact
on performance. This is important for late-stage ECOs since we
want to preserve as much as possible the engineering effort invested
previously when applying our changes. During this experiment, we
apply a late-stage specification change both using a full recompile
of the design and using the proposed ECO approach. During the
experiment, we first implement a circuit described in Verilog or
VHDL using Altera’s Quartus II CAD flow. In the initial compile,
we use Altera’s design space explorer to achieve the best possi-
ble timing performance. Next, we modify the original HDL code
and use this modified code as our new specification (this would be
the model netlist as described in section 3). Modifications are pri-
marily constrained to control-path code or modifications to case
and if-else statements where we change less than three lines of
code. An example of such changes is shown in figure 13. After
our code is modified, we perform a full recompile of the modified
HDL code and record the performance impact. For comparison,
we also apply the required HDL changes directly to the optimized
circuit using our ECO approach and record its performance impact
and measure the disruption to the place-and-routed netlist.
//Original //Modification
... ...
if(busreg[j-1] == 1) if(busreg[j-1] == 1)
begin grant = j-1;

grant = j-1; else
lock = hlock[j-1]; grant = inter1;

end if(busreg[j-1] == 0)
else lock = hlock[j-1];
begin else

grant = inter1; lock = inter2;
lock = inter2; ...

end ...
...

Figure 13: Example changes in HDL code.
To quantify the disruption to the existing netlist due to a full

recompile and from the ECO compile, we measure the percent
change in timing and the percentage of LUTs and wires disrupted
in the original place-and-routed circuit. These results are shown in
table 1. The first column shows the circuit name, Circuit, followed
by three major column groups. The first group, Before, reports the
circuit size in terms of LUTs and timing numbers during the initial
compile of the design (i.e. before applying any changes). Timing
numbers report the minimum clock period in terms of nanoseconds.
The next group of columns headed by AfterF ULL shows the num-

ber of LUTs and percent change in timing with respect to Before as
a result of a full compile of the modified HDL code. The final group
headed by AfterECO shows the impact of the proposed approach
on circuit performance. Again, we show the number of LUTs and
percent change in timing with respect to Before after modifying the
design using the proposed ECO approach. Two additional columns,
∆P and ∆R, are shown which respectively show the percent dis-
ruption to the placement and routing after our changes are applied.
This is not shown in the group AfterF ULL since in the full recom-
pile of the circuit, all LUTs and wires will be modified. The last
row shows the average ratio of the percentages shown.

As our results show, the results of a “from scratch” recompile
shown in columns AfterF ULL, are fairly acceptable on average
where performance decreases by 2.70%. However, when examin-
ing the individual performance impact of each circuit, we see that
the results varies by a large amount from -0.62% to 9.95%. This il-
lustrates the unpredictable nature of a full recompile on circuit per-
formance. Furthermore, during a full recompile, the entire netlist
is disrupted, thus all of the placement and routing effort invested
previously is lost. In contrast, the proposed ECO approach has a
much more predictable impact to performance where the perfor-
mance change varies between 0.31% to 4.86%. Also, the average
disruption of our approach is relatively low where we keep over
95% of the placement and routing unchanged. Based on what is
reported in industry [1], we feel that this number is acceptable to
most designers, which is a necessary condition for the practical use
of our approach. In terms of runtime, the proposed ECO approach
is approximately 2x faster than performing a full compile. How-
ever, this discrepancy in runtime has more to do with the internal
algorithms of Quartus II than our work and thus, detailed numbers
are not shown. Furthermore, runtime comparisons would not reflect
the reduction in time from going from a manual process, which of-
ten takes several days, to the proposed automatic ECO approach,
which takes a few hours to complete.

During our experiments, we found that the class of changes we
applied did not create drastic changes to the netlist. Specifically,
during the localization process, all of our HDL changes would re-
sult in less than 5 focal points being returned. In cases where 5 or
more focal points were returned, we found that our approach had
difficulty finding a non-disruptive modification to the place-and-
routed netlist.

We should note that we used Quartus II’s TCL ECO interface
to change and legalize the circuit. Unfortunately, the TCL ECO
interface does not provide an incremental placement flow. Instead,
Quartus II will apply a limited placement algorithm to new or mod-
ified nodes. Here, the ECO placer will only move nodes to existing
free locations within the FPGA and will not displace pre-existing
nodes within the netlist. As a result, this may hurt timing signif-
icantly since circuitous routes can be created by new nodes. To
overcome this limitation, we manually unplace a small region sur-
rounding each new node. This gives the placer much more flex-
ibility in where to place nodes and reduces the impact of newly
introduced nodes. However, if given access to a full incremental
placement algorithm, we feel that our timing and disruptive impact
would be less than what is shown in table 1.

4.2 Error Correction
In our second set of experiments, we apply the proposed ECO

technique to fix errors inserted into a design. Errors include rewiring
of LUTs or changing the LUT functions of various nodes. To stress
the approach, multiple errors are inserted into the design such that
the errors interact with each other. Errors interact when they are
inserted at nodes whose transitive fanouts overlap with each other.

10



Before AfterF ULL AfterECO

Circuit LUTs CLK(ns) LUTs CLK%∆ LUTs CLK%∆ ∆P ∆R

aes_core 5359 7.96 5359 -0.25% 5359 2.26% 0.08% 0.16%
huffman_enc 633 5.12 634 -0.39% 640 4.10% 7.36% 9.32%

usb_phy 177 3.2 180 -0.62% 179 0.31% 9.25% 10.35%
fip_cordic_rca 467 21.6 467 6.39% 470 4.86% 3.54% 5.32%
mux64_16bit 1277 5.86 1277 4.10% 1277 1.37% 2.23% 3.52%
ahb_arbiter 862 9.45 862 9.95% 864 1.16% 2.34% 3.54%
barrel64 1043 8.59 1042 -0.23% 1043 0.81% 1.30% 2.50%

Average 2.70% 2.13% 3.73% 4.95%

Table 1: Impact of modifications on circuit performance on a Stratix chip.

Before AfterECO

Circuit LUTs CLK(ns) LUTs CLK%∆ ∆P ∆R

aes_core 5359 7.95 5359 0.00% 1.12% 1.28%
huffman_enc 633 5.08 633 0.20% 3.16% 3.61%

usb_phy 177 3.13 177 0.00% 13.56% 10.33%
fip_cordic_rca 467 21.6 471 2.31% 12.85% 14.68%
mux64_16bit 1277 5.86 1277 0.51% 4.70% 5.37%
ahb_arbiter 865 8.97 972 16.83% 6.94% 7.93%
barrel64 1041 8.58 1041 -4.66% 5.76% 6.59%

b03 59 3.37 59 0.89% 16.95% 19.37%
b04 184 6.56 184 -9.60% 32.61% 37.27%
b08 58 3.68 58 5.71% 8.62% 9.85%
b09 50 3.97 50 -3.02% 16.00% 11.43%
b10 78 3.79 79 -17.41% 10.26% 11.72%
b11 167 6.68 187 4.64% 9.58% 10.95%
b12 378 6.17 381 3.40% 4.23% 4.84%
b14 3014 8.17 3015 2.57% 1.99% 2.28%
b15 6012 9.17 6023 6.98% 1.00% 1.14%

Average 0.18% 9.33% 9.91%

Table 2: Automated correction results on a Stratix chip.

This is necessary to ensure that the complexity of the correction
increases as more errors are added to the design. After errors are
inserted into the design, Quartus II’s place-and-route is rerun on the
circuit to achieve the best performance possible.

Table 2 shows our results for various circuits when five errors
are inserted into the design. The first column Circuit lists the cir-
cuit name. This is followed by two column groups: Before and
AfterECO. Before lists the number of LUTs and timing numbers
before the application of the ECO fix. Timing numbers report the
minimum clock period in terms of nanoseconds. AfterECO lists
the total number of LUTs after the ECO fix and the relative change
in timing with respect to the the timing reported in the Before col-
umn. Also, additional columns ∆P and ∆R are shown which re-
spectively show the percent disruption of the placement and wires
after the ECO fix is applied. The final row shows the average of the
percentages. Unlike the previous results shown in table 1, compar-
isons with a full recompile is not done in this case since a designer
would be required to fix the error manually by hand, which in many
of the cases could not be practically solved by hand in an efficient
manner. The proposed technique, however, can find a fix automati-
cally.

Table 2 shows that the proposed ECO technique has a marginal
impact to timing where we reduce timing on average by 0.18%.
This is potentially misleading since for some circuits, such as b04
and b10, we improve timing by a large amount. This can occur in
some rare cases since the decomposition of the dependency func-
tion h is timing driven and has the potential to shorten the critical

path. After removing these outliers, the average impact to timing
is 1.72%. Another outlier, ahb_arbiter, proved difficult to cor-
rect where we found that in this circuit, the proper alterations re-
quired more than 15 basis functions to correct it, which ultimately
disrupted its timing significantly. Considering that the proposed
technique applies ECO changes in an automated fashion within
minutes, we feel that 1.72% is an acceptable tradeoff of timing for
improved designer productivity where the designer would manually
fix these problems in a span of several days. Also, we found that
many of the fixes occurred on paths that were critical or near criti-
cal. Thus, without a timing driven decomposition of h and a timing
driven search for basis functions, circuit performance would not be
maintained.

In terms of average disruption to the existing netlist, we dis-
turb approximately 10% of the place-and-routed netlist during our
correction. We should note that this disruption is skewed by the
fact that for smaller circuits, a large relative disruption cannot be
avoided. For example, in the extreme case where a circuit contains
only five LUTs, fixing five errors in the circuit would disrupt 100%
of the netlist. If circuits with less than 200 LUTs are removed from
table 2, the average disruption to the placement and routing drops
to approximately 5%.

When inserting less than five errors into the design, we found
we were able to correct over 80% of the circuits. However, as the
number of errors increased, the circuit correction problem became
significantly difficult. This was primarily due to the localization
step. For complex fixes, the localization step often returns several

11



focal points, which can be much more numerous than the number
of errors injected into the design. This significantly complicates
the correction process both in terms of deriving a suitable global
function Fc and minimizing the disruption to the existing netlist.
Fortunately, the likelihood that large errors are not detected early
in the design flow is low and, as a result, applying large changes
with late-stage ECOs is not a likely occurrence.

0 10 20 30 40 50 60 70 80 90
0

100

200

300

400

500

Percentage of Circuit Outputs Removed

SA
T 

so
lv

er
 ru

nt
im

e 
(s

ec
)

Figure 14: Impact of output removal on SAT solver runtime for
circuit b15.

As a final experiment, we examined the impact of the the primary
output removal heuristic described in section 3.2.2. This is shown
in figure 14 where we show the percentage of outputs removed ver-
sus the runtime of the SAT solver when correcting circuit b15.
During this experiment, we inserted bugs into nodes whose transi-
tive fanouts contained more than 300 primary outputs and registers.
Following this, we removed a percentage of outputs or registers and
attempted to rectify the circuit. After rectification, we recorded the
runtime of the SAT solver. As figure 14 shows, we are able to
reduce the runtime of the SAT solver by more than 10x in some
cases. Also, removing outputs usually did not prevent a valid cor-
rection from being found. Only until more than 95% of the outputs
were removed from the circuit did the correction fail our verifica-
tion check. This was due to a lack of information provided by the
model netlist after pruning most of the outputs.

5. CONCLUSIONS
Improving the ECO experience through automation is necessary

to reduce the complexity of using FPGAs. In this work, we have
shown an approach to automate the ECO experience. We have
shown that our technique is robust and applicable to commercial
FPGAs where we apply our work to Altera’s Stratix architecture.
We have also shown how we can integrate our flow with Altera’s
commercial CAD suite Quartus II. All of these factors provide a
promising foundation toward the full automation of ECOs.

6. ACKNOWLEDGMENTS
The authors would like to thank the help of Tomasz Czajkowski

with the integration of Quartus with our academic tools through
his PST tool kit developed at the University of Toronto. We would
also like to thank Terry Yang from the University of Toronto and
Kevin Chung and Paul Kundarewich from Xilinx for their insightful
comments.

7. REFERENCES
[1] K. Morris, “Time for a change: Mentor mondernizes the

ECO,” FPGA and Structured ASIC, May 2006.
[2] S. Golson, “The human ECO compiler,” Trilobyte Systems,

2004.

[3] R. Goering, “Post-silicon debugging worth a second look,”
EEtimes, 2007. [Online]. Available:
http://www.eetimes.com/

[4] D. Platzker, “FPGA design meets the heisenberg uncertainty
principle,” SOCcentral, 2005.

[5] Altera Corporation, Quartus II University Interface
Program. [Online]. Available:
http://www.altera.com/education/univ/research/unv-
quip.html

[6] J. Cong and M. Sarrafzadeh, “Incremental physical design,”
in International Symposium on Physical Design, 2000, pp.
84–93.

[7] J. C. Madre, O. Coudert, and J. P. Billon, “Automating the
diagnosis and the rectification of digital errors with PRIAM,”
in International Conference on Computer-Aided Design,
1989, pp. 30–33.

[8] K. Chang, I. L. Markov, and V. Bertacco, “Fixing design
errors with counterexamples and resynthesis,” IEEE Journal
on Technology in Computer-Aided Design, vol. 27, no. 1, pp.
184–188, 2008.

[9] Y.-S. Yang, S. Sinha, A. Veneris, and R. K. Brayton,
“Automating logic rectification by approximate SPFDs,” in
Asia-South Pacific Design Automation Conference, 2007, pp.
402–407.

[10] S.-Y. Huang, K.-C. Chen, and K.-T. Cheng, “AutoFix: a
hybrid tool for automatic logic rectification,” vol. 18, no. 9,
pp. 1376–1384, Sept. 1999.

[11] Mentor Graphics, “Precision synthesis: product overview,”
Advanced FPGA Design Synthesis, 2005.

[12] Xilinx Corporation, “SmartCompile technology:
SmartGuide,” Xilinx Press Release, 2008.

[13] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and
S. Malik, “Chaff: Engineering an Efficient SAT Solver,” in
Proceedings of the 38th Design Automation Conference
(Design Automation Conference’01), 2001. [Online].
Available: citeseer.ist.psu.edu/moskewicz01chaff.html

[14] T. Larrabee, “Test pattern generation using Boolean
satisfiability,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 11, no. 1, pp. 4–15,
Jan. 1992.

[15] S. Safarpour, H. Mangassarian, A. G. Veneris, M. H. Liffiton,
and K. A. Sakallah, “Improved design debugging using
maximum satisfiability,” in Formal Methods in
Computer-Aided Design, 2007, pp. 13–19.

[16] C.-C. Lee, J.-H. R. Jiang, C.-Y. R. Huang, and
A. Mishchenko, “Scalable exploration of functional
dependency by interpolation and incremental SAT solving,”
in International Conference on Computer-Aided Design,
2007, pp. 227–233.

[17] K. L. McMillan, “Interpolation and SAT-based model
checking,” vol. 2725, pp. 1–13, 2008.

[18] V. Manohararajah, D. P. Singh, and S. D. Brown,
“Post-placement BDD-based decomposition for FPGAs,” in
Field-Programmable Logic, Aug. 2005, pp. 31–38.

12


