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ABSTRACT
The task of an engineering change order (ECO) is to update the cur-
rent implementation of a design according to its revised specification
with minimum modification. Prior studies show that the amount of
design modification majorly depends on the selection of rectification
points, i.e., the input pins of gates whose functionality should be
rectified with some patch circuitry. In realistic ECOs, as the netlist
of the current implementation has been heavily optimized to meet
design objectives, it is usually structurally dissimilar to the netlist
of a revised specification, which is synthesized only by lightweight
optimization. This paper proposes an ECO solution for optimized de-
signs, which is robust against structural dissimilarity caused by design
optimization. It locates candidate rectification points in a sampling
domain, which significantly improves the scalability of rectification
search. To synthesize the circuitry of patches, a structurally indepen-
dent rewiring formulation is proposed to reuse existing logic in the
implementation. Based on the proposed method, a newly developed
engine is evaluated on the engineering changes arising in the design
of microprocessors. Its ability to derive patches of superior quality
is demonstrated in comparison to industrial tools.

1 INTRODUCTION
The engineering change order (ECO) is an important practice in the
design methodology of modern semiconductor chips which incre-
mentally updates the current implementation relative to a revised
specification. The changes in the specification are often due to a
functional bug or the design’s evolved functionality. When the ECO
is applied in a late design stage, close to chip tape-out for manu-
facturing, its incrementality of updates prevents the potential mask
re-spinning and thereby avoids extra manufacturing costs. An incre-
mental update is also common in a typical chip development cycle,
driven by design closure and the often-cited behavioral instability of
modern automation tools. Rather than re-running the entire tool-chain
as the design evolves, the functional rectification through ECO is
realized in the current implementation. It saves on the design effort
and avoids dealing with unpredictable tool outcomes.

By the time design reaches sign-off, its structural properties have
been aggressively tuned to meet the fed-forward constraints and to
find sufficient trade-off among optimization objectives, including tim-
ing, area, power dissipation, and routing congestion. The objectives
are met much due to the logic transformations performed prior to
placement as well as the later downstream physical optimization of a
given technology. Thus the restructuring effects of logic sharing and
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Figure 1: Selection of rewiring sink pins for a solution. Reconnecting all
but one sink of nets b and d to c and ¬c respectively rectifies the design.

duplication complicate the isolation of functional updates as design
may have multiple outputs and include logic paths that are not part of
the ECO. The rectification points must be chosen carefully in such
path-entangled designs to avoid unnecessary increase of patch sizes.

The potential significance of accurately identifying candidate rec-
tification points is illustrated in Figure 1, where only a partial design
is shown. The depicted implementation at its left-hand side contains
two nets b and d , each with an arbitrary, and potentially large, number
of fanouts (sinks). The revised specification creates a new signal c
by and-ing signals a and b, and redefines functions of the single-
bit multi-sink signals v(0) with sinks q0,q1, . . . and v(1) with sinks
qn ,qn+1, . . .. However, the revision does not affect another signal
d that depends on b, and thus the signal must be preserved during
rectification. Choosing all but one sink of nets b and d as candidate
rectification points enables correction of v(0) and v(1) while protect-
ing the logic at a remaining sink of each net. Overlooking such a
solution and selecting candidate rectification points past the sinks of
v(0) and v(1) would make the rectification costlier.

The difficulty to incrementally update intensively optimized de-
signs motivates an approach that is (i) robust to the structural dis-
similarity between heavily restructured existing implementation and
lightweight synthesized specification, and (ii) powerful to derive
patches with a minimal impact on the already attained quality of
the current implementation. We postulate that rather than explic-
itly synthesizing the rectification logic to perform the design correc-
tion, the current implementation and the intermediate representation
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of a revised specification already contain logical structures needed
to achieve high-quality updates. Thereby we propose a systematic
approach that enumerates functionally (in contrast to structurally)
derived candidate rectification points and matches them implicitly
against already existing logic to produce updates of the current im-
plementation. The scalability of the proposed method is attained by
casting its computations to a symbolic sampling domain in which
candidate rectifications are analyzed and produced. To demonstrate
the value-add of the developed formulation, it is implemented and
tuned in new ECO engine, dubbed syseco (for symbolic sampling
in ECO). It is evaluated on the realistic ECOs arising in the design
of microprocessors, with no restriction to an error model.

The main results of this paper include:
• A new rectification flow for optimized designs: It finds recti-

fication points functionally to achieve resilience to structural
dissimilarity, and performs ECO reusing existing logic from ei-
ther current implementation or an intermediate representation
of new specification.

• A scalable symbolic sampling technique: It is applied to sym-
bolically pose and solve Boolean reasoning queries that are
relevant to the rectification flow, thereby making the solution
search more comprehensive and scalable.

• A thorough experimental evaluation in an industrial setting:
The ECO patches generated using the new techniques measure
5x smaller on average, compared to a modern industrial tool.
The multiple output patches are obtained on a diverse variety of
real ECOs. The patch quality also meets a designer’s estimate
for an ideal update to the current implementation.

The remainder of the paper is structured as follows. Section 2
gives an account of prior work, relevant to ECO. The terminology
and formalism of studied problem are given in Section 3. The choices
in computing an ECO patch are stated in Section 4. Section 5 in-
troduces the notion of symbolic sampling and describes its use in
the search for a design update. Experimental results are given in
Section 6. Finally, Section 7 concludes this paper and highlights
potential future directions.

2 PRIOR WORK
Given a netlist C representing the current implementation, which is
synthesized from the original specification S, the functional revisions
considered in this work, which modify S to the revised specification
S′, are restricted to changing the combinational logic of the design
only, in contrast to sequential rectification [10]. Such (combinational)
ECOs, as we shall assume in the sequel, are of significant relevance
to industrial practice. Their automated solutions have been actively
researched since mid 1980s. Prior ECO solutions vary considerably
in the way of locating the rectification points and how their update
logic is determined. They can be roughly classified into two fashions:
structural and functional approaches. We remark that, however, these
two fashions are not orthogonal to each other and can be exploited
at the same time for a hybrid approach.

Structural approaches update C using a form of signal correspon-
dence derived from structural similarity between C and the netlist C′

synthesized from S′. In [2], the process that incrementally updates
C is supplemented with the original specification S in addition to
the revised specification S′. The proposed solution detects structural
difference between S and S′, and then updates C by relating it to
S. Its drawback is that the quality of patches hinges on the extent of
functionally equivalent signals between S and C. It also presumes
the sufficiently low-level representation of specifications S and S′

for the accurate isolation of their structural differences. The approach
in [8] emphasizes structural similarities between C and C′. It derives

a patch boundary matching signals of C and C′ from both primary
inputs and outputs, thus making the logic implementation of an up-
date readily available. Such an approach however, places a stability
burden on synthesis tools to retain the structural similarity of func-
tionally unchanged portions in the specification, making the process
volatile in practice. The authors in [14] make the process more sta-
ble using the concept of a hint, which is supplemented manually to
deduce a difference between S and S′. A hint is then synthesized
into C′, annotating functionally changed signals to limit the matching
search between C and C′. The work in [7] enhances the matching
procedure by introducing a new “lock-step" upstream traversal of
structurally similar current and revised implementations. In contrast,
our proposed approach is structure independent, that is, it does not
rely on structure-driven traversal that attempts to match candidate
rectification points against the specification. Hence our method is
more robust against structural dissimilarity.

Functional approaches are based on rigorous Boolean reasoning
and impose no assumption on structural similarity between C and C′

in identifying rectification points and constructing patch logic. One
early formulation [9] relies on the Boolean equation solver to rectify
a design implementation under a single-fault assumption modifying a
gate function. The work in [11, 18] places the update logic on exterior
of the current implementation, thus preserving its already generated
layout. The approach in [6] addresses the multiple error ECOs, in-
crementally correcting a failing output using a pruning heuristic to
locate candidate rectification points and binary-decision diagrams
(BDDs) [3] to synthesize an update. Although effective on the studied
test-cases, the heuristic could be overly conservative when handling
diverse ECOs arising in practice, leading to needlessly large patches.
A formulation based on satisfiability (SAT) to diagnose rectification
points is studied in [15], and further explored in the context of recti-
fication logic synthesis by [12]. The approach relies on the explicit
netlist replication to model possible assignments to input signals,
thus creating a conjunction of SAT instances. The theory of Craig
interpolation [4] was popularized to derive the patch logic from a
companion SAT formulation. The use of Craig interpolation in ECO
was first introduced in [19] to perform a single fault rectification,
and then later extended to iterative concretization of a patch over the
provided set of multiple rectification points [5, 17, 20]. The construc-
tion of patches with interpolation-based approaches benefits from
the conjunctive normal form (CNF) representation of a revised spec-
ification. Methods that are not restricted by an ECO type and are
independent of a revised specification representation are still the area
of on-going research. The work in [13] gives a brief overview of the
relevant efforts, and studies synthesis of a single-point rectification
using Boolean learning in the exists-forall (EF) formulation.

Apart from functional ECO for logic rectification, there are prior
efforts that focus on other ECO issues, such as timing and spare cell
usage, which are out of the scope of this paper.

3 RECTIFICATION FORMULATION
The ECO problem statement and the proposed rewire-based recti-
fication formulation are given in this section.

3.1 Design representation
An informal terminology is provided below, to facilitate the presen-
tation of the studied problem. The combinational logic of a design
is implemented by a Boolean circuit C, whose outputs are computed
as a function of its input values at the moment. Individual inputs and
outputs have unique labels that are used to establish the behavioral
correspondence between two circuits C and C′. The logic operations
in a circuit are modeled using gates. These operations are performed
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on a gate’s binary inputs, producing a single binary output. A net in
the circuit connects gates at their input and output pins, and may also
connect to the input or output pins of a circuit itself. A net carries
information from its single source pin to the downstream sink pins.
We assume that a circuit remains well-formed, i.e., all of its pins are
connected to a net, and it has no topological cycles.

3.2 ECO problem statement
Consider the combinational logic of a design with n inputs and k
outputs, whose behavior is described by a multi-output Boolean
function f ≡ (f1, . . . , fk ) : Bn → B

k . For a changed specifica-
tion f ′ ≡ (f ′1 , . . . , f

′
k
), the ECO problem asks to rectify the circuit

implementation C of f to meet the changed specification. To solve the
ECO problem, it suffices to search for a vector of pins (p1, . . . ,pm )

at gate inputs or possibly at circuit outputs in C, and change the
functions of their driving nets. Let h ≡ (h1, . . . ,hk ) denote the com-
position function that is computed at outputs of C while treating the
pins (p1, . . . ,pm ) as free circuit inputs. The ECO problem is then
stated in the form of a functional decomposition as:

Find h and r such that f ′ = h(r), (1)

where h composes individual functions of r ≡ (r1, . . . , rm ) at the in-
puts that correspond to pins (p1, . . . ,pm ). We refer to r as a rectifica-
tion function, highlighting the behavioral change in the specification
that it captures. The pins (p1, . . . ,pm ) are referred to as rectification
points.

3.3 Rewire-based rectification formulation
To minimize the design perturbation and hence realize high-quality
ECO, instead of synthesizing the rectification function r from scratch,
we restrict the search space of r to existing nets within the current
implementation C and synthesized specification C′, and rectify the
design by replacing the driving nets of rectification points by other
nets. This restriction does not affect the completeness: It accom-
modates any revision because a circuit output is also a rectification
point, with its rectification function r being the revised function f ′,
realized at the corresponding output in C′. The rewire-based rec-
tification is formally stated as follows.

The rewire operation R disconnects a vector of pins (p1, . . . ,pm )

from their driving nets and connects them to the corresponding nets
(s1, . . . , sm ). The operation is denoted as R ≡ p1/s1, . . . ,pm/sm .
A topological constraint is imposed on pins involved in the rewire
operation: No path should connect any pair of the pins. This re-
striction simplifies the rectification analysis and retains well-formed
(acyclic) structure of the current implementation. The incremental
update through rewiring leads to the formulation that is central to the
algorithmic flow of design rectification described in this paper.

Proposition 1. Given a current implementation C and a new synthe-
sized specification in the form of a circuit C′, for every corresponding
pair of outputs, the rewire-based rectification finds the rectification
points p1, . . . ,pm such that their individual rectification functions
r1, . . . , rm are realized by corresponding nets s1, . . . , sm of either C
or C′.

When the rewire-based rectification produces a rewire operation
R ≡ p1/s1, . . . ,pm/sm , we say R rectifies logic of C. We note that,
if a net s belongs to circuit C′, then its logic copy is instantiated in C

and the rewire operation is performed by connecting a clone of s.

4 COMPREHENSIVE RECTIFICATION
SEARCH

This section provides a computational rigor for achieving the rewire-
based rectification in three steps: identifying feasible rectification

x
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t20t21∨

t30t31
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(t20t21 → y2)∧
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=⇒

x

1 0

Figure 2: Parameterized selection of a rectification point using binary
expansion encoding of a pin index: t2

i
≡ t i0ti1 encodes the decision of

choosing pin q2 as i-th rectification point, 1 ≤ i ≤ 3.

point-sets, selecting their candidate rewiring nets, and combining
thereof into rewiring choices that rectify a circuit output.

4.1 Boolean constructs notation
The following terminology is introduced to describe the rewire-based
rectification. The vector x ≡ (x1, . . . ,xn ) denotes variables at circuit
inputs. As rectification points are treated as free circuit inputs, they
are associated with variables y ≡ (y1, . . . ,ym ). The composition
function at each output of the circuit is denoted as h(x, y). A cube
is a conjunction of literals, each being a variable or the negation
(complement) of a variable. If removing any literal from a cube voids
its containment by some given function, it is prime relative to that
function. A minterm with respect to a variable vector v is a cube
with the presence of a literal of every variable in v. We denote the
binary code of integer i with variables v = (v1,v2,v3) as vi , assuming
the “big endian" ordering of i’s bits, e.g., v3 refers to v1v2v3. An
assignment to the variable vector v is denoted as v̂. A truth (satisfying)
assignment is an assignment to the variables of a cube/function that
evaluates the cube/function to true.

4.2 Feasible rectification point-sets
To rectify an output of the circuit, we wish to select at mostm rectifica-
tion points out of a set of M sink pins {q0, . . . ,qM−1} of the circuit. A
technique to implicitly enumerate all subsets of {q0, . . . ,qM−1} that
are feasible rectification point-sets with maximum sizem, is instru-
mented as follows:

(1) For each rectification point yi , the parametric variables ti are
allocated. The truth assignment to a minterm t

j
i then selects pin

qj identified by j for rectification point yi . One possible way to
encode the selection of a pin is to use the binary representation
of its identifier, although other encodings are possible.

(2) For a pin qj , the expression t
j
1 ∨ · · · ∨ t

j
m determines whether

the pin is selected for any rectification point or not. If a term
t
j
i in the expression is true, then qj gets disconnected from its

original net and is connected to the free input yi . (Multiple
selections of qj are merged into a single rectification point.)
On the other hand, if the above expression is false, the pin is
not selected for any rectification point, and retains its existing
connection.

This parameterized selection is realized within the current implemen-
tation netlist using the multiplexer logic. A multiplexer is introduced
for each pin, with the selection signal being t

j
1 ∨ · · · ∨ t

j
m , the data-0

input being the original net of the pin, the data-1 input being the
expression (t

j
1 → y1) ∧ · · · ∧ (t

j
m → ym ), and the output connected

to the pin. Figure 2 shows an example of how the circuitry is mod-
ified to realize the parameterized selection for a given pin q2 when
three rectification points are considered.
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The parameterized function h(x, y, t) is then computed on the aug-
mented netlist, encompassing diagnostics for rectification points. The
characteristic function H(t) of all feasible rectification point-sets of
maximum size m can be expressed as

H(t) ≡ ∀x∃y(h(x, y, t) = f ′(x)) (2)

With Eq. (2), we enumerate prime cubes of H(t) and use them as
seeds to construct an explicit list of candidate rectification point-sets.
If a selected prime cube depends on variables ti and it contains tji ,
then rectification point yi admits choice of pin qj .

Example 1. Let the specification in Figure 1 be extended with

wout := GATE(win1,v(0)) ∨ GATE(win2,v(1)),

where GATE denotes the bitwise and-ing of a word with a single-bit
signal; the logical ∨ is bitwise. We assume that win1 and win2 are n-
bit words, wout ≡(w0, . . . ,wn−1) are circuit outputs, and an output
wk (0 ≤ k ≤ n − 1) depends on sinks qk and qn+k , which carry
the k-th bit value of win1 and win2, respectively. Suppose that the
rectification points are to be chosen from the circuit pins {q0, . . . ,qn ,
. . . ,q2n−1, . . . }. The decision variables ti for each rectification point
i (1 ≤ i ≤ m) select one of these pins based on the truth assignment
that represents the binary code of a pin subscript. Whenm = 2, the
existence of rectification for an output wk is established by Eq. (2),
which yields:

Hk (t1, t2)≡ t
k
1 t
n+k
2 ∨ tn+k1 tk2

The two product terms in the expression provide identical solutions:
Both encode the same pair of indices {k,n+k} that represent rectifi-
cation points (p1,p2)≡(qk ,qn+k ) for a given output wk .

As the number of variables required to identify a pin among M pins
is 
log2M�, the total number of newly allocated variables when using
binary representation of a pin index ism · 
log2M� form rectification
points.

4.3 Candidate rewiring nets
For a candidate rectification point associated with some pin q, a set
of candidate rewiring nets is also determined. A candidate rewiring
net s is chosen from both the current implementation and the syn-
thesized specification. We rely on structural filtering, followed by
a functional heuristic to find candidate rewiring nets. If structural
input dependence at output of f ′ contains transitive fanins of net
s, then net s is chosen as a candidate rewiring net. The functional
heuristic assesses behavioral difference between functions of the orig-
inal net at pin q and candidate rewiring net s in the error domain
E ≡ {x̂ | f (x̂) � f ′(x̂)}. Specifically, for a pin q in the logic of
f from C, the rectification utility of a candidate rewiring net s is
computed as |{x̂ | x̂ ∈ E ∧ q(x̂) � r (x̂)}|/|E|, where q(x) and r (x) are
functions of the original net at pin q and candidate rewiring net s, re-
spectively. This ratio exploits the heuristic that the more pronounced
difference between functions of a candidate rectification point and
a rewiring net is more likely to rectify the errors of E.

4.4 Candidate rewiring choices
A method that finds a rectification function r≡ (r1, . . . , rm ), whose
components represent functions of the rewiring nets (s1, . . . ,sm ), is
described below. According to the statement in Eq. (1), the rewire
operation p1/s1, . . . ,pm/sm rectifies the current implementation of
f if and only if f ′ and h(r) are consistent. The consistency can be
checked by directly applying the rewire operation and evaluating the
equivalence, or analytically as stated below.

We denote the consistent assignments induced by r for input vari-
ables x and rectification point variables y by:

R(x, y) ≡ (y1=r1(x)) ∧ · · · ∧ (ym =rm (x))

The necessary and sufficient condition for the existence of a rectifi-
cation function r is stated in the following theorem.

Theorem 1. The function r rectifies the implementation at an output
if and only if its composition function h(x, y) satisfies both of the
implications below:

L(x, y) ⇒ h(x, y) (3)
h(x, y) ⇒ U (x, y) (4)

where L(x, y)≡ f ′(x) ∧ R(x, y) and U (x, y)≡ f ′(x) ∨ ¬R(x, y).

We examine possible rectification choices by matching rectifica-
tion points to the candidate rewiring nets. Suppose that a rectification
point yi is allocated an ordered set of candidate rewiring nets Si ≡
(si0, si1, . . . ). The choices of candidate rewiring nets are encoded us-
ing decision variables c ≡ (c1, . . . , cm ), which parameterizes R(x, y)
as:

R(x, y, c) ≡
∧

i
(c0i → yi =ri0(x)) ∧ (c1i → yi =ri1(x)) ∧ · · ·

Note that ri0, ri1, . . . are the functions of candidate rewiring nets
si0, si1, . . . , respectively. The selection of a candidate rewiring net
from Si is induced by an assignment to ci . Substituting R(x, y, c) in
Eq. (3) and (4), and universally quantifying x and y, we obtain a
characteristic function of all valid rewire operations:

Ξ(c) ≡ ∀x, y(L(x, y, c) ⇒ h(x, y) ∧ h(x, y) ⇒ U (x, y, c))

An assignment to c determines a choice of a rewire operation that
changes f (x) to f ′(x).

Example 2. We extend Example 1 to illustrate the selection of rewiring
nets for pins {qk ,qn+k } to rectify the logic of output wk . Let S1 ≡

(v(0), c,¬c) and S2 ≡ (v(1), c,¬c) be rewiring candidates for qk and
qn+k , respectively. The function of rewiring choices R is then

(c01 → y1=rv(0)) ∧ (c11 → y1=rc ) ∧ (c21 → y1=r¬c )∧

(c02 → y2=rv(1)) ∧ (c12 → y2=rc ) ∧ (c22 → y2=r¬c )
Substituting it into the computational form of Ξ(c), and universally
quantifying out the input and rectification variables we obtain

Ξk (c1, c2) ≡ c11 ∨ c22

which represents rewiring R≡qk/c,qn+k/¬c that rectifies wk .

5 APPLICATION OF SYMBOLIC SAMPLING
The computational efficiency of the proposed symbolic approaches in
Section 4 is potentially hindered by design complexity. This section
introduces a scalable implementation for the proposed computations,
based on the notion of symbolic sampling, and outlines the full al-
gorithmic flow for design rectification.

5.1 Casting computation to symbolic sampling
domain

Given a circuit C with input variables x ≡ (x1, . . . ,xn ), a sampling
domain is a set of assignments to variables x. The number of sampled
assignments in a domain trades off the desired degrees of precision
versus computational complexity. Given a sampling domain with N
assignments {x̂1, . . . , x̂N }, a set of z variables of size 
log2 N � is
introduced to encode those assignments. A sampling function g ≡

(д1, . . . ,дn ) : {ẑ} → {x̂} is used to capture the sampling domain,
and is computed as the matrix product:

[
z0, . . . , zN−1

]
⎡⎢⎢⎢⎢⎢⎢⎢⎣

x̂1
x̂2
...

x̂N

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= [д1(z), . . . ,дn (z)]
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z

sampling function g(z)

current
implementation

revised
specification

c

x

f ′(g(z))h(g(z), y)

(L ⇒ h) ∧ (h ⇒ U )

F (z, y, c)

Figure 3: Computation of Ξ(c) ≡ ∀z, yF (z, y, c) in the sampling domain.
The original domain x is overloaded with the sampling function g(z).

where the multiplicand is an N×n binary matrix comprised of the sam-
pling domain assignments. The input variables x of circuit C are then
overloaded with the sampling function g(z) to cast the original circuit
operation from its exact domain of x to the sampling domain of z.

Although reasoning in the sampling domain yields a super-set of
candidates and hence require a validation step, it makes the compu-
tation robust for the designs of high complexity. The accuracy of
computations in the domain benefits from selecting samples carefully.
For design rectification, the computation yields fewer false positives
when sampled assignments are from the error domain E. Figure 3
illustrates the working of symbolic sampling, casting the computation
of feasible rewire operations from Section 4.4 to the sampling domain.

For implementation, we use BDDs to represent the sampling do-
main, which offers efficient operations for abstracting variables and
counting assignments. The judicious choice of total variables used to
represent the domain leads to the reduced complexity of the abstrac-
tion operations, as well as to efficient counting of consistent value
assignments to inputs. The contained memory footprint of the domain
makes computations robust and independent of the design size and
its logical complexity. The choices of rewire operations computed
in the sampling domain are subsequently validated with a resource-
constrained SAT solver during the search for a preferred solution.

5.2 Overall algorithmic flow
The proposed rewire-based design rectification algorithm RewireRec-
tification casts computation steps from Section 4 to a sampling
domain. Its working is summarized as follows. Given the current
implementation C and the revised specification C′, RewireRecti-
fication iterates over the corresponding output pairs (po ,p

′
o ) that

remain non-equivalent, and:
(1) selects error samples to construct a sampling domain (Sec-

tion 5.1)
(2) enumerates feasible rectification point-sets (Section 4.2)
(3) assigns candidate rewire nets for each rectification point (Sec-

tion 4.3)
(4) finds choices of rewire operations R for each feasible rectifica-

tion point-set (Section 4.4)
(5) uses SAT solving to validate R constructed in the sampling

domain
The process finds candidate rectification points (p1, . . . ,pm ) for the
individual output pairs (po ,p′o ), sorted in the increasing order of their
logical complexity. Such local context ensures that the computation
scales well with the design size increase, although the single-output

view may occasionally overlook candidates that are more economical
for multiple outputs. In contrast to the rectification points, the selec-
tion of candidate rewiring nets (s1, . . . , sm ) is done in the global con-
text, across all the outputs that depend on the constructed rectification
R ≡p1/s1, . . . ,pm/sm : (i) the candidate rectification is pruned if it
“damages” already rectified outputs, and (ii) the rectification is favored
if it corrects the largest number of outputs. Thus, in spite of candidate
rectification points being discovered for a single representative output,
the impact of a constructed R is assessed on all its depending outputs.

Since for a given m the derived R may over-approximate the
number of needed rectification points, a net that is already con-
nected to each candidate pin pj is also included as a trivial rewiring
candidate when computing Ξ(c) (Step 3). As an additional post-
processing step, the patch inputs are refined through a sweeping
technique that reuses already existing current implementation logic,
thereby reducing the patch size.

6 EXPERIMENTAL RESULTS
The presented concepts and algorithms were used to implement a
design rectification engine syseco. The engine is written in C++,
and its source code has about 30,000 lines in total length. The line
count excludes implementation of the internal data model to rep-
resent a design logic, the satisfiability solver MiniSAT [16], and
the in-house BDD package.

To assess the benefits of the developed engine, we obtained a
suite of 11 test cases comprised of real ECOs in industrial designs.
Each of the designs comes with an optimized implementation of the
original specification, and VHDL description of the revised specifi-
cation. We synthesize the netlist C′ from the revised specification,
producing its technology-independent representation. An ECO up-
date is then realized on C relative to C′.

Table 1 lists characteristics of the derived combinational netlists
for the test cases, identified numerically in the first column of the
table. For each of the representatives, the table gives counts for the
following attributes of their logic: input and output ports; gates, nets,
and net sinks in the original implementation. The number of outputs
affected by the revised specification, and their percentage relative to
the total outputs in the design, are in the last two columns of the table.

Table 2 gives a broader characteristic of the test cases in the suite.
We consulted designers to obtain an expected patch size for each of the
representatives; column 2 provides the advised measurements in terms
of a modern library cell count. The data is helpful as it gives a practical
goal that may go beyond what a known automated solution achieves.
For a wider variety of reference points, we also compute patches
for each of the test cases using the default setting of a commercially
available tool. The attributes of generated patches are in columns 3-6
of the table, they count the patch inputs, outputs, gates, and nets. They
offer guidance and are not meant to conclude optimization quality of
the tool, as we did not seek technical advice from its vendor.

Table 1: Characteristics of ECO test cases.
Design implementation Revised part

inputs outputs gates nets sinks outputs %
1 21047 11811 238961 260008 473008 1344 11.3
2 66 37 313 384 735 25 67.5
3 25124 23404 379784 404910 815995 1920 8.2
4 4836 1071 49941 54778 81962 158 14.7
5 524 296 2607 3131 6063 136 45.9
6 11721 3956 82872 94595 163066 15 0.3
7 5472 3655 59993 65466 123852 350 9.5
8 2541 1106 24302 26844 46737 220 19.8
9 651 530 4923 5574 10114 27 5.0

10 2157 1666 15827 17984 33877 108 6.4
11 6941 3930 53052 59993 104375 128 3.2
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Table 2: Comparison of the patch attributes from four different sources: a designer’s estimate, a commercial tool, DeltaSyn and syseco.
Designer’s estimate Commercial tool DeltaSyn syseco

technology cells inputs outputs gates nets inputs outputs gates nets time, h:m:s inputs outputs gates nets time, h:m:s
1 800 2210 2113 5992 8204 7397 6328 9417 16816 >92:00:00a 1117 367 1025 1945 01:20:09
2 30 62 162 243 308 50 39 129 180 00:00:20 32 32 15 41 00:00:39
3 300 2620 2324 5371 7994 5070 4789 6117 11188 >92:00:00a 358 115 177 457 00:11:44
4 15 75 58 137 214 56 11 62 118 00:12:06 34 8 26 54 00:02:14
5 10 70 38 309 38 25 9 15 40 00:00:23 0 12 0 1 00:01:24
6 50 68 17 71 14 164 20 139 387 02:26:09 106 9 76 175 00:06:05
7 1000 97 235 212 311 1837 994 4502 6341 06:33:34 189 85 163 277 00:42:03
8 100 249 289 215 467 341 365 315 658 01:09:36 244 237 32 256 00:01:33
9 100 120 79 203 326 447 183 570 1019 00:27:18 62 17 56 111 00:00:23

10 20 113 102 81 195 240 116 240 480 00:00:31 190 108 95 213 00:00:16
11 20 194 150 325 522 320 347 513 835 00:19:24 9 3 3 11 00:02:23

average reduction ratios relative to DeltaSyn: 0.35 0.47 0.17 0.21
a The test case timed out after 92 hours of execution. The patch was then created using the tool’s lightweight setting.

In Table 2, patches generated by syseco are compared against
the DeltaSyn tool. The implementation of the core reasoning engine
invoked in the DeltaSyn experiments is based on the patent descrip-
tion in [1]. The columns 7-10 characterize DeltaSyn patches using
the same attributes as the four columns for the "commercial tool";
similarly, attributes of the syseco patches are given in columns
12-15. The averages of reduction ratios achieved by syseco over
DeltaSyn for each of these attributes are at the bottom of the table.
The runtime consumed by the rectification in both of the engines is
also provided in columns 11 and 16 of the table. On the two larger
test cases, DeltaSyn exceeded the allocated time, and their rectifi-
cation was achieved with a lightweight, based on [8], setting of the
tool that tends to produce an inferior solution. The results in the
table convey following observations:

• Syseco-generated patches have fewer gates and nets, with
the average reduction ratios being 0.17 and 0.21. The tool’s
patches are superior to those generated by DeltaSyn on all of
the test cases.

• The number of patch outputs in the syseco-generated patches
is twice fewer than in those produced by DeltaSyn. The reduc-
tion points to the benefits of the implemented rewire-based
rectification.

• Despite the minimal performance tuning invested in syseco
implementation, its runs consume less time overall when com-
pared to DeltaSyn. The tool scales well on the larger test cases,
where DeltaSyn times out.

The sizes of generated patches also conform to the designer’s estimate,
conveyed in terms of patch size in the second column of Table 2.
Benefits of the syseco are further apparent when comparing its
patches to the results of a commercial tool (columns 3-6 in the table).

The syseco tool has been used in the timing closure loop of high-
performance designs whose functional specification undergone a revi-
sion. Table 3 illustrates the impact of DeltaSyn and syseco patches
on the timing of several of those designs. The table compares the tools
in terms of the gate count in the produced patches, and their impact on
the design slack, measured after each design is placed and routed. The
observed timing improvements (i.e., increased slack) with syseco
are a result of the level-driven optimization decisions that the tool uses
as an additional qualitative measure when selecting rewire operations.

Table 3: Rectification impact on design slack.
DeltaSyn patch syseco patch
gates slack,ps gates slack,ps

12 268 -27 47 -14
13 208 -44 207 -36
14 640 -100 236 -66
15 378 0.11 244 1.43

7 CONCLUSIONS AND FUTURE WORK
The rewire-based rectification studied in this work offers a robust
platform to perform incremental design updates and assumes no re-
striction on the error type. Its novel symbolic formulation derives
from functional decomposition and is equipped with the domain
sampling technique that makes comprehensive solution search scal-
able. For future work, further improvements to the presented flow
lie in rectification logic synthesis and in sampling domain selection.
The concept of symbolic sampling has potential application to other
problems, e.g., to post-silicon debug.
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