
Chapter 2
Basic Arithmetic Circuits

This chapter is devoted to the description of simple circuits for the implementation
of some of the arithmetic operations presented in Chap. 1. Specifically, the design
of adders, subtractors, multipliers, dividers, comparators and shifters are studied,
with the objective of providing the design guidelines for these specific application
circuits. The arithmetic circuits presented will be used in the next chapters for the
implementation of algebraic circuits.

2.1 Introduction

This section presents the previous aspects related to the arithmetic circuits: dif-
ferences between serial and parallel information, pipelining, or circuits multi-
plicity for increasing performance. Although these concepts will be probably
known by the reader, they are included in order to provide an immediate reference.

2.1.1 Serial and Parallel Information

When transmitting or processing information, two extreme structures can be
considered: serial and parallel information. Briefly, we have serial information
when the bits integrating each of the information blocks are transmitted or pro-
cessed at different times. On the contrary, we have parallel information when the
bits composing each information block are transmitted or processed
simultaneously.

The clearest example for discriminating between serial and parallel information
resides on information transmission. Assuming the design of a system for per-
forming some numerical calculations formed by several subsystems, and being
each data 8-bit wide (i.e., 8-bit words must be processed), the information among
the different subsystems can be transmitted using 8 wires. In this case, the 8 bits
are transmitted simultaneously, at the same time, thus being parallel information.
But this information can be also transmitted using only 1 wire, sending the 8 bits of

A. Lloris Ruiz et al., Algebraic Circuits, Intelligent Systems Reference Library 66,
DOI: 10.1007/978-3-642-54649-5_2, ! Springer-Verlag Berlin Heidelberg 2014

71

http://dx.doi.org/10.1007/978-3-642-54649-5_1
http://dx.doi.org/10.1007/978-3-642-54649-5_1

a data block bit by bit, with a predetermined order and at 8 different times,
constituting serial information. When using serial information, usually the first bit
being transmitted and/or processed is the less significant one, but it could be also
the most significant one.

Intermediate situation between serial and parallel structures can be considered.
Each word can be divided into blocks (known as digits), being processed in
parallel the bits corresponding to each digit, but being the different digits trans-
mitted or processed in a serial way. As an example, a 64-bit word can be processed
or transmitted in serial (taking 64 cycles), in parallel (taking only one cycle by
using a 64-wire bus), in 16-digit of 4 bits (taking 16 cycles by using a 4-wire bus),
in 8-digit of 8 bits (taking 8 cycles by using a 8-wire bus), etc.

2.1.2 Circuit Multiplicity and Pipelining

Every digital circuit C (Fig. 2.1a) establishes a correspondence between the inputs,
E, and the outputs, S, S = F(E). Given an input at a given time, the most efficient
circuit in terms of temporal response will be the combinational circuit capable of
generating the output in the same cycle when the input has arrived. The complexity
of this circuit depends mainly on the number of the input bits (input size). If the
output is not needed in the same cycle, probably a simpler sequential circuit can be
built generating the output S some clock cycles later from the input E arrival.
However, in the case of a continuous input data flow, and being necessary gen-
erating a result in each cycle, the complexity of a circuit can produce large delays,
preventing the output being generated in the same cycle than the input arrival. For
maintaining a continuous data flow at the output, two alternatives can be con-
sidered: circuit multiplicity and pipelining, as detailed in the following.

Circuit multiplicity (Fig. 2.1b) consists on using m identical circuits (as many
as the delay introduced by each one of the circuits), working in parallel. The inputs
of the m circuits are connected to the outputs of a 1-to-m demultiplexer whose input
is E. The function of the demultiplexer consists on driving the data to the circuit Ci

being available in each time for starting the calculation. The outputs of the m cir-
cuits are connected with the inputs of an m-to-1 multiplexer, with output S. The
function of the multiplexer consists on selecting at each time the output of the
circuit being finished the calculation. In this way, during the first m cycles no result
is generated, and from this moment, a calculation result will be generated at each
cycle. Note that the result collected at the output in a given time corresponds to the
inputs introduced m cycles before. This delay between input and output sequences
is known as the latency of the system. Circuit multiplicity presents the advantage of
simplicity because the design is reduced to placing as many circuits in parallel as
indicated by the latency. As a drawback, the cost of the system can result excessive.

The pipelining of a combinational circuit (Fig. 2.1c), in their simplest version,
consists on modifying the original circuit dividing it into n segments, each one
completing the corresponding processing in one clock cycle. Each of the segments

72 2 Basic Arithmetic Circuits

includes a register storing its output, making it available for the next segment. The
registers at the different segments are controlled by the same clock signal. The
pipelined circuit allows a continuous data flow at the input E, and after the initial
n cycles delay due to the different segments (the latency of the pipelined circuit), a
continuous data flow at the output S, is obtained. Thus, the output at a time
corresponds with the input introduced into the pipelined circuit n clock cycles
before. Each segment executes one part of the complete calculation, being then
n data sets computed in parallel, each one with a different phase and at a different
segment. Note that this structure is similar to the assembly line of a factory, where
the global task is decomposed into simpler tasks, in such a way that each assembly
machine (with the corresponding workers) performs only one of these elementary
tasks.

When using pipelined circuits with the structure presented in Fig. 2.1c, each
segment generates correctly its output in one cycle, and is used only once for
generating each result. More complex circuits can be used where some or all of the
segments are used more than once for generating each result. Also, pipelined
circuits with each segment consisting on a sequential machine needing more than
one clock pulse, can be defined.

Circuit multiplicity and pipelining can be combined, creating mixed solutions.
Parallel units in the structure presented in Fig. 2.1b can be pipelined, generating a
result every m clock cycles. Some of the segments in Fig. 2.1c structure can
include element multiplicity.

Fig. 2.1 a Circuit. b Multiplicity. c Pipelining

2.1 Introduction 73

2.2 Binary Adders

In this section, elementary circuits for adding two summands, using information in
parallel or in series, are described. Also a pipelined adder is presented. First, half-
adders are introduced, together with the full-adders, which will be the basic blocks
for building adder circuits, and also will be widely used in the remainder of
arithmetic circuits.

2.2.1 Parallel Adders

In the following, simplest binary adders are described. Thus, it will be assumed the
situation of adding two positive numbers without sign bit. As an example, let
consider the addition:

Aþ B ¼ 1011þ 0011

Arranging these two summands as usual, one below the other, as it is done in
the Fig. 2.2a, first the two bits corresponding to the position 20 are added,
obtaining the bit of the result at the same position. For obtaining the bit at position
2i (i = 1,…, n) of the result, the two bits at this position are added together with
the precedent carry. Partial sums and the carry for the next stage are obtained from
addition tables (Table 1.1a), which are repeated in Fig. 2.2b, c using other
arrangement. In our example, the result is: 1011 ? 0011 = 1110.

The functions corresponding to the partial sum, s, and to the carry, a, are:

s ¼ !xyþ x!y ¼ x# y; a ¼ x $ y

Synthesizing these two functions as a combinational block (using two AND-
OR gate levels or using XOR gates), in the way represented in Fig. 2.3a, it results
the circuit known as half-adder. This block, represented in Fig. 2.3b, allows the
less significant bit of a sum to be obtained, while the remainder of the bits require
two half-adders to be calculated. Connecting in cascade several half-adders in the
way represented in Fig. 2.3c, binary numbers with an arbitrary number of bits can
be added. For obtaining the carry in a given stage, the OR operation must be
performed over the carries generated by the two half-adders, because the two

1001 xy 0 1 xy 0 1

+0101 0 0 1 0 0 0

1110 1 1 0 1 0 1

(a) (b) (c)Fig. 2.2 a Addition
examples. Two bits addition
tables: b Sum. c Carry

74 2 Basic Arithmetic Circuits

http://dx.doi.org/10.1007/978-3-642-54649-5_1

half-adders in a same stage cannot produce simultaneously carry ‘1’, as can be
easily proved.

The calculation of sum and carry at each position can be also performed by
means of a combinational block known as full-adder, with three inputs (the two
summand bits at this position, x and y, plus the previous carry, a-) and two
outputs, S and a+. From the truth table of the two functions (Fig. 2.4a) to be
synthesized by this block, it results:

S ¼ !x!ya% þ !xy!a% þ x!y!a% þ xya% ¼ x# y# a%; aþ ¼ xa% þ ya% þ xy

The full-adder block can be implemented using AND-OR synthesis (Fig. 2.4b)
or using an XOR gate for the sum S (Fig. 2.4c), a+ can be synthesized as shown in
Fig. 2.4b or concatenating two adders plus an OR gate (Fig. 2.4d), and it is
represented in Fig. 2.4e.

For adding n-bit numbers with parallel information, simply connect n full
adders in cascade (Fig. 2.4f). The parallel n-bit adder resulting is known as ripple
carry adder. This adder presents the drawback of the delay introduced by the
carry propagation through the successive stages. In fact, the result at the carry
output of the most significant bit of the sum must wait for any change at the carry
input of the less significant bit being propagated. When the size of the summands
(number of bits) is not excessive (from 4 to 16), or the circuit’s performance is not
relevant, this drawback has no impact. However, when the size of the operands is
large or a high operation speed is required, it may be that the result of the addition
can not be generated correctly in one cycle. In this situation, alternative solutions
accelerating carry propagation should be used, leading to carry look-ahead adders,
or special procedures for adding. Pipelining of circuit detailed in Fig. 2.4f, the
addition of more than one bit in each stage, and the addition of more than two
summands at a time, are among the options for speeding up the adders operation.

Fig. 2.3 Half-adder:
a Circuit. b Representation.
c Cascading

2.2 Binary Adders 75

xya- Sa+

000 00

001 10

010 10

011 01

100 10

101 01

110 01

111 11

(a)

(b) (c)

(d)

(g)

(e) (f)

Fig. 2.4 Full adder: a Truth table. Synthesis: b AND-OR. c With an XOR gate. d With half-
adders cascading. e Representation. f Ripple carry adder. g Pipelined ripple carry adder

76 2 Basic Arithmetic Circuits

When using biased representation, as shown in Sect. 1.4.3, and making D =
2m-1, the same adders presented here can be used appending an inverter for the
less significant bit. Similarly, if D = 2m-1 - 1, in addition to complementing the
most significant bit, the initial carry must be 1.

2.2.2 Pipelined Adders

In several applications, like those involved in digital signal processing, a
continuous data flow with multiple additions must be made. In this situation, the
ripple carry adder results unsuitable because of its excessive delay, but it can be
easily pipelined introducing registers in the appropriate locations. Assuming r is
the delay corresponding to a full adder, and f is the clock frequency, then the
maximum length m of the adder providing the result in each of the cycles will be:

m& 1
r $ f

For building an n-bits adder, it must be divided into s segments, being:

s' n
m

Obviously, if n = m $ s, then one of the segments (usually the first one or the
last one) can be shorter than the rest.

Each segment will be separated from the following by a D flip-flop in order to
store the carry between stages. The inputs and outputs will be separated, in ge-
neral, by means of register stacks (FIFO registers). All of the registers will have so
many bits as the corresponding segment length (in the previous example, m bits),
and the size or depth of each one of the stacks (i.e., the number of registers
stacked) will depend on the segment position, with the objective of properly
synchronizing inputs and outputs, as represented in Fig. 2.4g for an adder com-
posed by four m-bits segments. The depth of each FIFO is indicated in Fig. 2.4g
by the first digit in their name. The latency of these adders is 4.

2.2.3 Serial Adders

When the summands (X and Y) are serially available bit by bit (being the first bit
the less significant one), they can be added using a full adder and a D flip-flop in
order to store the carry generated for the next stage, as shown in Fig. 2.5a. For a
correct operation, the D flip-flop must be initialized to 0. At the output S, the
addition is obtained serially. The final carry will remain at D, but it can be
transferred to S introducing one ‘0’ into each input after the most significant bits of
both summands.

2.2 Binary Adders 77

http://dx.doi.org/10.1007/978-3-642-54649-5_1
http://dx.doi.org/10.1007/978-3-642-54649-5_1

For Serial operands digit by digit (the first digit is the less significant one,
again) a parallel digit adder and a D flip-flop (initialized to ‘0’) are required, as
shown in Fig. 2.5b. The digit adder can be built using as many full adders as the
size of the digit. Again, the final carry remains in the D flip-flop, but it can be
transferred to S introducing one digit will all zeros into each input after the most
significant digits of both summands.

Comparing serial processing with parallel processing, it is clear that the series
circuits are simpler than the parallel, both in number of gates (less full adders in
this case) and the number of inputs and outputs. With regard to the processing
time, with serial structures as many computation cycles as blocks forming each
word are required, whereas with parallel information only one cycle is sufficient.
However, the serial adder, because it is simpler than the parallel, withstands higher
speeds than parallel, i.e. the serial adder will require more cycles, but each cycle
can be of shorter duration.

2.3 Binary Subtractors

Subtraction tables (Table 1.1b, and repeated in Fig. 2.6a) implementing the
functions corresponding to the partial difference r, and the borrow, d, are:

r ¼ !xyþ x!y ¼ x# y

d ¼ !xy

Synthesizing r and d functions (r fits with the partial sum S from the half-
adder), half-subtractors are obtained, which can be cascaded in a similar way to
that shown in Fig. 2.3c for half-adders, allowing the subtraction of binary numbers
with any number of bits, as shown in Fig. 2.6b.

Also full-subtractors can be designed for 1-bit characters. In this case, the truth
table corresponding to x - y, including the previous borrow, is given in Fig. 2.6c,
resulting the following functions:

R ¼ !x!yd% þ !xy!d% þ x!y!d% þ xyd% ¼ x# y# d%
dþ ¼ !xd% þ !xyþ yd%

For subtracting unsigned binary n-bit numbers, X - Y, the ripple-borrow
subtractor of Fig. 2.6d can be used. When X C Y, this subtractor generates the

Fig. 2.5 Serial adder: a Bit
by bit. b Digit by digit

78 2 Basic Arithmetic Circuits

http://dx.doi.org/10.1007/978-3-642-54649-5_1

correct result being the final borrow 0, as can be easily checked by the reader.
When X \ Y, the final borrow is 1, and the result is not correct. Thus, the result
generated is correct only when it is positive. For taking into account negative
results with this subtractor, a comparator must be included for detecting which
operand is the greatest one, as was shown when introducing the SM representation.
Other alternative is the use of complement adders/subtractors, as detailed in the
following.

Because of the common part of the full-adder and the full-subtractor, are often
built as a single adder/subtractor block, with a control input for selecting between
the two operations.

As shown in Sect. 1.4.3, when using biased representations and making D =
2m-1, the same subtractors described for SM can be used, adding an inverter for

Difference Borrow

xy 0 1 xy 0 1

0 0 1 0 0 1

1 1 0 1 0 0

(a)

(b)

(d)

(c)

(e) (f)

Fig. 2.6 a Subtraction table.
b Half-subtractors cascading.
c Full-subtractor table. d Full-
subtractors cascading. Adder/
subtractor: e Two’s
complement. f One’s
complement

2.3 Binary Subtractors 79

http://dx.doi.org/10.1007/978-3-642-54649-5_1
http://dx.doi.org/10.1007/978-3-642-54649-5_1

the most significant bit. In a similar way, if D = 2m-1 – 1, an inverter must be
added, with an initial borrow of 1.

About the subtraction using complement representations, when using two’s
complement, subtraction consists of adding to the minuend, the two’s complement
of the subtrahend. On the other hand, the complementation is performed by
complementing all bits and adding 1 to the result. Joining these ideas, the circuit of
Fig. 2.6e can be carried out for implementing a two’s complement adder/sub-
tractor. The control signal !s=r must be 0 for adding, and 1 for subtracting (the
detailed analysis of the circuit is left as an exercise for the reader). In this circuit,
making X = xn-1 … x0 = 0 … 0, and !s=r ¼ 1, the two’s complement of Y is
obtained. With a similar idea, the Fig. 2.6f shows a one’s complement adder/
subtractor, as can be easily checked. In this situation, the end-around carry must be
included, using the carry out as input carry. This end-around condition makes the
two’s complement advantageous with respect to one’s complement representa-
tions, as seen comparing Fig. 2.6e, f.

2.4 Multipliers

In the following, some simple circuits for multiplication, both combinational and
sequential, for integer binary numbers will be described. Also, the design of cir-
cuits for multiplying by a constant and for raising to an integer power will be
approached.

2.4.1 Combinational Multipliers

To give an idea of how to build these circuits, without too much detail, we will first
consider multipliers for binary coded positive integers (without sign bit). Such
multipliers are widely used in signal processing applications and can be the core of
multipliers when using signed binary numbers.

When multiplying an m-bit number A by an n-bit number B (both unsigned
positive numbers), the product P will take m ? n bits. In fact:

A& 2m % 1

B& 2n % 1

thus P = A $ B B (2m - 1)(2n - 1) = 2m+n - 2m - 2n ? 1. Then, except in the
situations m = 1 or n = 1, m ? n bits are required for representing P.

The most elemental multiplier is the one for one-bit characters, whose table is
presented in Table 1.1c (and repeated in Fig. 2.7a). In this case, the operation is
the AND function, and the result is represented by using only one bit.

80 2 Basic Arithmetic Circuits

http://dx.doi.org/10.1007/978-3-642-54649-5_1

When multiplying 2-bit integer positive numbers, X = x1x0 e Y = y1y0, 4 bits
are required for representing the product M = X $ Y. This multiplier can be
designed as a combinational circuit with four inputs and four outputs, which truth
table and circuit are presented in Fig. 2.7b, c. This circuit can be also interpreted as
a base-4 multiplier of two 1-digit characters, and synthesized by using elemental
multipliers and adders. In fact, Fig. 2.7d details the X by Y multiplication, and
Fig. 2.7e presents the circuit with this design strategy, using four 1-bit multipliers
and two half-adders. With independence of the design used, a multiplier of two 2-
bit characters (or two 1-digit base-4 characters) is represented as in Fig. 2.7f.

For building circuits enabling the multiplication of characters with any number
of bits, the same techniques used for 2-bit numbers can be used. As an example,
for multiplying 4-bit characters (a base-16 elemental multiplier), a combinational
circuit with eight inputs and eight outputs can be synthesized and implemented
using a programmable device (a ROM for example) or in any other way. Ne-
vertheless, when the size of the characters to be multiplied increases, this synthesis
technique leads to bulky and difficult to manage circuits. In this situation the
multipliers are synthesized by combining elemental multipliers and adders.
Figure 2.8a shows the method of operation for multiplying two 4-bit numbers. The
circuit in Fig. 2.8b implements mimetically this method using 1-bit multipliers,
half-adders and full-adders. Also, 2-bit multipliers and adders could be used as
building blocks. In this case, being X = X1X0 (X1 = x3x2, X0 = x1x0), Y = Y1Y0

(Y1 = y3y2, Y0 = y1y0), multiplication can be performed as described in Fig. 2.8c,
and the circuit of Fig. 2.8d is also a 4-bit characters multiplier.

Building methods based on the use of elementary multipliers and adders allow
the design of combinational multipliers of any size.

In general, given two base b numbers (P and Q) to be multiplied, they can be
decomposed into two or more pieces, and then processing these pieces using less
complex resources. As an example, decomposing P and Q into two pieces it
results:

P ¼ pn%1bn%1 þ pn%2bn%2 þ $ $ $ þ p1bþ p0 ¼ PHbs þ PL

Q ¼ qn%1bn%1 þ qn%2bn%2 þ $ $ $ þ q1bþ q0 ¼ QHbs þ QL

P $ Q ¼ ðPHbs þ PLÞ $ ðQHbs þ QLÞ ¼ PHQHb2s þ ðPHQL þ PLQHÞbs þ PLQL

Note that s must be chosen close to (n - 1)/2 in order to make the circuits
simpler.

With the expressions above, four multipliers and the corresponding adders are
required for obtaining PHQH, PHQL, PLQH and PLQL. In order to reduce the
number of multipliers, although at the expense of increasing the number of adders,
the product P $ Q can be expressed as:

P $ Q ¼ PHQHb2s þ ððPH þ PLÞ $ ðQH þ QLÞ % PHQH % PLQLÞbs þ PLQL

2.4 Multipliers 81

x y P

0 0 0

0 1 0

1 0 0

1 1 1

x1 x0 y1 y0 m3 m2 m1 m0

0 0 0 0 0 0 0 0

 0 1 0 0 0 0

 1 0 0 0 0 0

 1 1 0 0 0 0

0 1 0 0 0 0 0 0 m3 = x1x0y1y0

 0 1 0 0 0 1 m2 = x1y1(x0+y0)

 1 0 0 0 1 0 m1 = x0y1(x 1+ x 0)+ x1y0(x0+y1)

 1 1 0 0 1 1 m0 = x0y0

1 0 0 0 0 0 0 0

 0 1 0 0 1 0

 1 0 0 1 0 0

 1 1 0 1 1 0

1 1 0 0 0 0 0 0

 0 1 0 0 1 1

 1 0 0 1 1 0

 1 1 1 0 0 1

(b)

(c)

(a)

Fig. 2.7 a 1-bit multiplier. b Two-bits multiplying table. c Two-bits multiplier circuit. d X by
Y multiplication. e Network for 2-bit character multiplying. f 2-bits multiplier

82 2 Basic Arithmetic Circuits

In this way, only three multipliers are required for getting PHQH,
(PH ? PL) $ (QH ? QL) y PLQL. Obviously, each one of the partial products can
be computed using iteratively the same procedure for decomposing each operand
into two or more chunks.

2.4.2 Sequential Multipliers

The designs above allow the multiplication of two unsigned binary numbers in only
one clock cycle. It is possible that the resulting circuits are so much complex for the
designer convenience or introduce excessive delay for responding into the clock
cycle required for the general system performance. In this situation,
pipelining of the circuits above or the design of the sequential circuit must be
approached for providing simpler circuits, at the expense of more iterations for
completing the multiplication operation. Let’s consider the construction of a mul-
tiplier for n-bit unsigned binary numbers. If X = xn-1…x0 is the multiplicand, being
available in a parallel output register, Y = yn-1…y0 is the multiplier, which is
available in a shift register with serial output, and R = r2n-1…r0, is the output
which will be available in a 2n-bit register (initialized to zero), we have the structure
presented in Fig. 2.9a. With this circuit, the multiplication can be completed in
n clock cycles (as many as bits in the multiplier operand), so that in each cycle, the
partial sum corresponding to each multiplier bit is added to the previous result
properly shifted. If the partial bit is ‘0’, the corresponding partial sum will be zero,
and when the multiplier bit is ‘1’, the partial sum will be equal to the multiplicand.
The operation can start from the most significant bit or from the less significant one,

x1x0

y1y0

x1y0 x0y0

x1y1 x0y1

m3 m2 m1 m0

(d)

(e) (f)

Fig. 2.7 continued

2.4 Multipliers 83

and in each case the previous result must be shifted in a different direction: to the left
when starting from the most significant bit, and to the right when starting from the
less significant one. As an example, when starting from the most significant bit of the
multiplier, the multiplication algorithm will be:

Algorithm 2.1

where R

is the previous content of R shifted one position to the left, and yn-1-i X is
the current partial product.

x3x2 x1x0

y3y2 y1y0

x3y0 x2y0 x1y0 x0y0

x3y1 x2y1 x1y1 x0y1

x3y2 x2y2 x1y2 x0y2

x3y3 x2y3 x1y3 x0y3

m7 m6 m5 m4 m3 m2 m1 m0

(a)

X1X0 X0Y0 x1y0 x0y0

Y1Y0 x1y1 x0y1

X1Y0 X0Y0 X1Y0 x3y0 x2y0

X1Y1 X1Y0 x3y1 x2y1

m7 … m0 X0Y1 x1y2 x0y2

x1y3 x0y3

X1Y1 x3y2 x2y2

x3y3 x2y3

m7 m6 m5 m4 m3 m2 m1 m0

(c)

(b) (d)

Fig. 2.8 a Four-bit characters multiplication. b Circuit for multiplication. c X by Y multiplica-
tion. d Network for multiplying X by Y

84 2 Basic Arithmetic Circuits

This algorithm can be implemented using the circuit of Fig. 2.9a. A latch, X,
with parallel output, a shift register, Y, activated by falling edge, and a register R,
with parallel output, parallel input and activated by rising edge, are used. In
addition to these registers, n AND gates are used to generate the partial products.
As the least significant bit of each partial product is directly the bit r0 of the
corresponding partial sum, this bit is stored directly in R and it is not an input of
the adder. Thus, just an (2n - 1)-bit adder (usually one less than to be laid down
for the final result), whose entries are, first, the n-product AND xn-1yn-1-i,
xn-2yn-1-i,…, x1yn-1-i (see Fig. 2.9a), and secondly, the bits r2n-2 …r0 of the
previous result. The (2n - 1)-bits of the adder output are stored in r2n-1 …r1. This
allows the displacement to the left of the previous results. A counter modulo
n would suffice to control the operation of this multiplier. As an example, the
results that are generated in the four iterations that have to be executed by mul-
tiplying the 4-bit numbers X = 1011 by Y = 1101 are given in Fig. 2.9b.

If the multiplication starts by the least significant bit of the multiplier, the
algorithm is as follows:

1) y3 = 1 R 00000000

y3x 1011

 00001011 R

2) y2 = 1 R 00010110

y2x 1011

 00100001 R

3) y1 = 0 R 01000010

y1x 0000

 01000010 R

4) y0 = 1 R 10000100

y0x 1011

 10001111 R

(b)

(a) Fig. 2.9 First serial-parallel
multiplier: a Circuit.
b Example (X = 1011,
Y = 1101)

2.4 Multipliers 85

Algorithm 2.2

where~R is the previous value of R shifted to the right, and yiX is the present partial
product.

This algorithm can be implemented using the circuit of Fig. 2.10a. A latch, X,
with parallel output is used again for the multiplicand. However, the multiplier can
be stored in the lower half of the register R, such that the most significant half of

1) y0 = 1 R 00001101

y0x 1011

 01011110 R
2) y1 = 1 R 01011110

y1x 0000

 00101111 R
3) y2 = 0 R 00101111

y2x 1011

 01101111 R
4) y3 = 1 R 01101111

y3x 1011

 10001111 R

(a)

(b)

Fig. 2.10 Second serial-
parallel multiplier: a Circuit.
b Example (X = 1011,
Y = 1101)

86 2 Basic Arithmetic Circuits

R (n bits) forms a register with parallel output and parallel load, and the n-bit least
significant of R form a shift register, Y. The register R is loaded or displaced in the
falling edge of each clock pulse. In order to generate the partial products, n AND
gates are used and an n-bits (as many as bits in the multiplicand) adder, whose
inputs are, first, the bits corresponding to the partial product in each iteration,
xn-1yi, …, x0yi, and otherwise, the r2n-1 …rn bits of the previous result (see
Fig. 2.10a). The n ? 1 output bits of the adder are stored in r2n-1 …rn-1 (recall
that rn-1 is the serial input of the shift register and, in each iteration there is a shift
to the right of Y). With all this, the shift of the previous results is achieved. Again,
to control the operation of the multiplier a module n counter is sufficed. As an
example, the results generated in the four iterations by multiplying the 4-bit
numbers, X = 1011 by Y = 1101, are given in Fig. 2.10b.

The circuits with the structures of Figs. 2.9a and 2.10a can be called serial-
parallel multiplier due to the multiplier is serial data and the multiplicand is
parallel data. A simpler but more expensive solution in terms of calculation time,
would be the serial-serial multiplier, where in each iteration one bit of the
multiplicand and one of the multiplier would be multiplied; it is left as an exercise.

In each iteration of the serial-parallel multiplier, a multiplier bit and the mul-
tiplicand, M, are multiplied. This circuit can be transformed into another allowing
that M could be multiplied by more than one bit of the multiplier in each iteration.
For example, multiplying in each iteration by two bits of the multiplier, for an n-bit
multiplier, the multiplication would be available in n/2 iterations. Again, the
design of these circuits is left as an exercise.

2.4.3 Multiplying by a Constant

The multiplication of a set of data for one or more constants is an operation that
must be performed frequently. Of course, any multiplier can be used for this
purpose, as described previously. However, in this case, when one of the operands
is constant, simpler circuits can be designed for this specific purpose. For example,
let suppose the case of a circuit for multiplying any unsigned 8-bit binary number,
X = x7… x0, by 25. Given that 2510 = 110012, to multiply by 25 is equivalent to
adding the three terms given in Fig. 2.11a. Thus, using two 8-bit parallel adders,
this multiplication can be implemented, as shown in the same Fig. 2.11a, gener-
ating a 13-bit result, R = r12… r0. Compared to a generic multiplier circuit, the
reduction to be achieved with this specific circuit is evident. This idea of using
parallel adders will be called solution 1 for multiplying by a constant.

In general, both adders and subtractors can be used for the decomposition of the
multiplier M. This is equivalent to use signed digits in the decomposition of M, and
from the minimal representation of M a simple multiplier circuit may be obtained.

If full adders and half adders are used as building blocks, the circuit for mul-
tiplying by 25 can be reduced more. Specifically just 11 full adders and 5 half
adders are required, as shown in Fig. 2.11b. This is the solution 2 for multiplying

2.4 Multipliers 87

by a constant. Solution 2, when considering the design at a lower level, usually
produces simpler circuits than solution 1.

Another way to build specific multiplier when the multiplier is a constant, M,
using adders digits (of adequate size in each situation), consists in decomposing
the constant M in factors, which in turn are decomposed into sums of powers of
two. For example, for M = 25, it results:

25 $ X ¼ 4 þ 1ð Þ $ 4 þ 1ð Þ $ X ¼ 4 þ 1ð Þ $ 4 $ X þ Xð Þ ¼ 4 $ Y þ Y

x7 x6 x5 x4 x3 x2 x1 x0

x7 x6 x5 x4 x3 x2 x1 x0

x7 x6 x5 x4 x3 x2 x1 x0

r12 r11 r10 r9 r8 r7 r6 r5 r4 r3 r2 r1 r0

Fig. 2.11 Multiplying by 25: a First solution. b Second solution. c Third solution. d Other
implementation for the third solution. e Multiplying by 11, 19, 23 and 27

88 2 Basic Arithmetic Circuits

where Y = 4 $ X ? X. Therefore, the multiplication is performed using two adders
of appropriate length, as shown in Fig. 2.11c. Multiplication by a power of two is
reduced to a displacement, which does not require circuitry. If X is of n bits, the
adder 1 of Fig. 2.11c must be an n-bit adder, and the adder 2 an (2n ? 1)-bit adder.
This solution to multiply by a constant is called solution 3.

It is also possible to use that 25 = 3 9 8 ? 1, and again this multiplication can
be implemented using two adders, resulting in the circuit of Fig. 2.11d.

Developments that can be used to multiply by a constant, up to 100, are given in
Table 2.1. The powers of 2 do not need one adder (obviously not included in the
table); in this table, one adder/subtractor is enough for 31 constants; for 54 con-
stants two adders/subtractors are needed; only for 8 constants three constants
adder/subtractors are required.

Two factors products are only used in Table 2.1, since only reaches 100.
Obviously, products with more than two factors can be used, which may make
sense for constants greater than those shown in Table 2.1. For example,
504910 = 9 9 17 9 33 and, according with Table 2.1, it can be implemented with
three adders, since each factor only needs one adder; using signed digit 504910 ¼
101000!100!10012; and four adders/subtractors are required to build the multiplier.

Another decomposition of multiplier M of interest to explore consists of finding
dividers on the form 2i ± 2j, which in some cases can lead to simpler circuits. For
example, the case of multiply 17 9 41 = 697 = (16 ? 1) (1 ? 8 ? 32) =
(16 ? 1) ? 8 (16 ? 1) ? 32(16 ? 1). With this decomposition, the multiplica-
tion can be done with three adders, while starting form the development 697 ¼
101100!1001 four adders/subtractors are required.

When the same data have to be multiplied by multiple constants, it is possible to
organize the process so that different partial products can be shared in the different
calculations, as can be seen in the following example.

Example 2.1 Let suppose the case of multiply simultaneously by 11, 19, 23 and
27.

Developing these constants as follows 11 = 8 ? 3, 19 = 16 ? 3,
23 = 19 ? 4, 27 = 19 ? 8 or 27 = 11 ? 16, the multiplier can be made using
five adders, sharing intermediate results, as it is depicted in Fig. 2.11e. h

2.5 Exponentiation

To raise a number N to a power P (P integer) consists on multiplying the number
N by itself P times. Therefore, with an appropriate multiplier, any integer number
N can be raised to any power. First the calculation of the square of N is considered,
where N is an unsigned integer in base 2. As illustrative example, let suppose a 8-
bit number, N = x7x6x5x4x3x2x1x0. The N 9 N multiplication is shown in
Fig. 2.12a, where it has been applied that xixi = xi. Moreover, when a column has

2.4 Multipliers 89

Table 2.1 Multipliers 1–100

N8 N8 A/S Develop N8 N8 A/S Develop

3 1 2 ? 1 53 3 32 ? 16 ? 4 ? 1
5 1 4 ? 1 54 2 6 9 9; 64 - 8 - 2
6 1 4 ? 2 55 2 64 - 8 - 1
7 1 8 - 1 56 1 64 - 8
9 1 8 ? 1 57 2 64 - 8 ? 1
10 1 8 ? 2 58 2 64 - 8 ? 2
11 2 8 ? 2 ? 1 59 2 64 - 4 - 1
12 1 8 ? 4 60 1 64 - 4
13 2 8 ? 4 ? 1 61 2 64 - 4 ? 1
14 1 16 - 2 62 1 64 - 2
15 1 16 - 1 63 1 64 - 1
17 1 16 ? 1 65 1 64 ? 1
18 1 16 ? 2 66 1 64 ? 2
19 2 16 ? 2 ? 1 67 2 64 ? 2 ? 1
20 1 16 ? 4 68 1 64 ? 4
21 2 16 ? 4 ? 1 69 2 64 ? 4 ? 1
22 2 16 ? 4 ? 2 70 2 64 ? 4 ? 2
23 2 16 ? 8 - 1 71 2 64 ? 8 - 1
24 1 16 ? 8 72 1 64 ? 8
25 2 16 ? 8 ? 1; 5 9 5 73 2 64 ? 8 ? 1
26 2 16 ? 8 ? 2 74 2 64 ? 8 ? 2
27 2 3 9 9; 32 - 4 - 1 75 2 15 9 5
28 1 32 - 4 76 2 64 ? 8 ? 4
29 2 32 - 4 ? 1 77 3 64 ? 8 ? 4 ? 1
30 1 32 - 2 78 2 5 9 16 - 2
31 1 32 - 1 79 2 5 9 16 - 1
33 1 32 ? 1 80 1 5 9 16
34 1 32 ? 2 81 2 5 9 16 ? 1; 9 9 9
35 2 5 9 7; 32 ? 2 ? 1 82 2 5 9 16 ? 2
36 1 32 ? 4 83 3 64 ? 16 ? 2 ? 1
37 2 32 ? 4 ? 1 84 2 5 9 16 ? 4
38 2 32 ? 4 ? 2 85 2 17 9 5
39 2 32 ? 8 - 1 86 3 64 ? 16 ? 4 ? 2
40 1 5 9 8; 32 ? 8 87 3 64 ? 16 ? 8 - 1; 3 9 29
41 2 32 ? 8 ? 1 88 2 8 9 11; 5 9 16 ? 8; 3 9 32 - 8
42 2 32 ? 8 ? 2 89 3 64 ? 16 ? 8 ? 1
43 3 32 ? 8 ? 2 ? 1 90 2 3 9 30; 5 9 18
44 2 32 ? 8 ? 4 91 3 64 ? 32 - 4 - 1
45 2 5 9 9 92 2 3 9 32 - 4
46 2 32 ? 16 - 2 93 2 3 9 31
47 2 32 ? 16 - 1 94 2 3 9 32 - 2

(continued)

90 2 Basic Arithmetic Circuits

xixj ? xjxi = 2xixj obviously it can be moved to the next column as xixj. Also,
when a column is xi ? xixj:

xi þ xixj ¼ xi xj þ !xj
! "

þ xixj ¼ 2xixj þ xi!xj

and 2xixj can be moved to the next column as xixj. Considering all these
replacements, the summands to be used for calculating the square can remain as in
Fig. 2.12a.

With respect to the implementation of the different products, the products
expressed as xjþ1!xj and xjþ1xj that appear in adjacent columns (highlighted in
Fig. 2.12a) can be synthesized simultaneously with a demultiplexer, such as shown
in Fig. 2.12b. A possible implementation of the squaring circuit for 8-bit integers
is given in Fig. 2.12c, using 7 demultiplexers, 21 AND gates, 7 half adders and 20
full adders. The AND gates are shown in Fig. 2.12c with a circle that includes the
sub indexes of the two input gate.

Obviously, for an integer N with any number of bits, a combinational circuit for
squaring can be designed as was done for eight bits.

If it is useful in some situation, the product of two numbers can be calculated
using addition, subtraction and square, from the following expression:

XY ¼ 1
4

X þ Yð Þ2% X % Yð Þ2
n o

2.5.1 Binary Methods

To raise N to any other integer power, P, square and multiplier circuits can be
used. To obtain a starting expression suitable, P is developed as a binary number:

P ¼ pm%12m%1 þ pm%22m%2 þ $ $ $ þ p12þ p0 ð2:1Þ

¼ ðð. . .ðpm%12þ pm%2Þ2þ $ $ $ Þ2þ p1Þ2þ p0 ð2:2Þ

Thus, using the development (2.2) it results:

NP ¼ ð. . .ððNpm%1Þ2 $ Npm%2Þ2 $ $ $ $ $ Np1Þ2 $ Np0

Table 2.1 (continued)
N8 N8 A/S Develop N8 N8 A/S Develop

48 1 32 ? 16 95 2 3 9 32 - 1
49 2 32 ? 16 ? 1 96 1 3 9 32
50 2 32 ? 16 ? 2 97 2 3 9 32 ? 1
51 2 3 9 17 98 2 3 9 32 ? 2
52 2 32 ? 16 ? 4 99 2 3 9 33

100 2 3 9 32 ? 4; 5 9 20

2.5 Exponentiation 91

x7 x6 x5 x4 x3 x2 x1 x0

x7 x6 x5 x4 x3 x2 x1 x 0

x7x0 x6x0 x5x0 x4x0 x3x0 x2x0 x1x0 x0x0

x7x1 x6x1 x5x1 x4x1 x3x1 x2x1 x1x1 x0x1

x7x2 x6x2 x5x2 x4x2 x3x2 x2x2 x1x2 x0x2

x7x3 x6x3 x5x3 x4x3 x3x3 x2x3 x1x3 x0x3

x7x4 x6x4 x5x4 x4x4 x3x4 x2x4 x1x4 x0x4

x7x5 x6x5 x5x5 x4x5 x3x5 x2x5 x1x5 x0x5

x7x6 x6x6 x5x6 x4x6 x3x6 x2x6 x1x6 x0x6

x7x7 x6x7 x5x7 x4x7 x3x7 x2x7 x1x7 x0x7

x7x6 x7x5 x7x4 x7x3 x7x2 x7x1 x7x0 x6x0 x5x0 x4x0 x3x0 x2x0 x1x0 0 x0

x7 x6x5 x6x4 x6x3 x6x2 x6x1 x5x1 x4x1 x3x1 x2x0 x1

x6 x5x4 x5x3 x5x2 x4x2 x3x2 x2

x5 x4x3 x3

x4

x7x6 x7 x 6 x7x5 x7x4 x7x3 x7x2 x7x1 x7x0 x6x0 x5x0 x4x0 x3x0 x1x0 x1 x 0 0 x0

x6x5 x6 x 5 x6x4 x6x3 x6x2 x6x1 x5x1 x4x1 x2x1 x2 x 1 x2x0

x5x4 x5 x 4 x5x3 x5x2 x3x2 x3 x 2 x3x1

x4x3 x4 x 3 x4x2

c15 c14 c13 c12 c11 c10 c9 c8 c7 c6 c5 c4 c3 c2 c1 c0

(a)

(b)

(c)

Fig. 2.12 a Square. b Demultiplexer. c Circuit for squaring

92 2 Basic Arithmetic Circuits

With this development for NP; the calculation involves squaring and multi-
plication, iteratively. The core of the calculation would be:

The result remains in the register R, which initially must be R / 1. The
complete algorithm could be as follows:

Algorithm 2.3

The bits pi of the binary development of P are processed in this algorithm
starting with the most significant one, hence, this method is generally known as
binary method from left to right.

A possible processing unit for exponentiation using the above algorithm (the
control signals are not included) is represented in Fig. 2.13a. This circuit includes
a register R, a multiplier and a squarer.

Other development of NP using (2.1) is the following:

NP ¼ N20
$p0

$ N21
$p1

$ $ $ $ $ N2m%2
$pm%2

$ N2m%1
$pm%1

ð2:3Þ

From this development another algorithm for the exponentiation can be
designed. Again, the calculation consists on to square and to multiply, according to
the following core:

Initially R / 1. The result remains in R. The algorithm for this case could be
the following one:

Algorithm 2.4

2.5 Exponentiation 93

The bits pi of the binary development of P are processed in this algorithm
starting with the least significant one, hence, this method is generally known as
binary method from right to left.

A possible circuit for exponentiation using the above algorithm (the control
signals are not included) is represented in Fig. 2.13b. This circuit includes two
registers, a multiplier and a squarer.

When operating in the context of certain algebraic structures can be arranged
and easily operate with both N and N-1. If this is the case, a canonical develop-
ment can be used for the exponent P, in which they appear, in general, both +1 and
-1 (that is, both positive and negative exponents), but the number of operations
will be in average, smaller. The core of the calculation, using a development
similar to (2.3) would be in this case:

The algorithm in this case may be that which is given below, the corresponding
circuit could be the one in Fig. 2.13c.

Fig. 2.13 Exponentiation: a First solution. b Second solution. c Exponentiation using the
canonic development

94 2 Basic Arithmetic Circuits

Algorithm 2.5

If the exponent P can be factorized, P = Q $ R, then the exponentiation can be
decomposed into two phases:

NP ¼ NQ$R ¼ NQ! "R

If the exponent P is developed using any base, b:

P ¼ pm%1bm%1 þ pm%2bm%2 þ $ $ $ þ p1bþ p0

¼ ðð. . .ðpm%1bþ pm%2Þbþ $ $ $Þbþ p1Þbþ p0

the binary method, both from left to right and from right to left, can be extended to
the base b, with appropriate modifications. In the algorithm in base b from left to
right it must be calculated:

NP ¼ . . . Npm%1! "b$Npm%2
$b

$ $ $ $ $ Np1

% &b

$Np0

Since the coefficients pj are not only 0 or 1, it is necessary to multiply by N j

(j = 1, 2,…, b - 1) and to raise to the power b.
In the algorithm in base b from right to left it must be calculated:

NP ¼ Nb0
$p0

$ Nb1
$p1

$ $ $ $ $ Nbm%2
$pm%2

$ Nbm%1
$pm%1

Thus, it is required to raise to the powers 1, 2, …, b.

2.5.2 Additive Chains

The developments (2.1) and (2.2) transform the exponent P into an addition and,
applying that the exponents are additive, the binary developments emerge. This
same idea is used for additive chains.

Given P a positive integer, an additive chain for P is a sequence of integers, p0,
p1,…, pn, such that p0 = 1, pn = P, pi = pj ? pk, i [j C k, pi = pj for

2.5 Exponentiation 95

i = j. Then, the two first elements of each additive chain are always 1 and 2; the
third element can be only 3 or 4, and the remainder elements are obtained adding
two previous elements (that can be a previous repeated element).

A particular case of additive chains are known as Brauer chains [Bra39]; for
these additive chains pi = pi-1 ? pk, i - 1 C k. Thus, using a Brauer chain, to
obtain the next element of the chain, the present element is used in the involved
addition. For implementation purposes, it is obvious that using always the previous
result is very interesting. A procedure for constructing this type of additive chains,
which are the most used, is described in [Bra39]. This procedure is not the only
possibility. To apply this method an integer e is chosen and P is developed in base
b = 2e:

P ¼ pm%1bm%1 þ pm%2bm%2 þ $ $ $ þ p1bþ p0

The following Brauer additive chain can be constructed for P, being composed
by m sections that have to be adequately linked. The first section is {1, 2, 3, …,
2e - 1}; the second section is {2pm-1, 4pm-1, 8pm-1, …, bpm-1 (bpm-1 ? pm-2)};
the third section is {2(bpm-1 ? pm-2), 4(bpm-1 ? pm-2), 8(bpm-1 ? pm-2), …,
b(bpm-1 ? pm-2), b(bpm-1 ? pm-2) ? pm-3}; …; the last section is
{2(b(… (bpm-1 ? pm-2) _ ? p1), 4(b(… (bpm-1 ? pm-2) _ ? p1),
8(b(… (bpm-1 ? pm-2) _ ? p1), …, b(b(… (bpm-1 ? pm-2) _ ? p1),
b(b(… (bpm-1 ? pm-2) _ ? p1) ? p0}, as it is done in the following example.

Example 2.2 Obtain Brauer additive chains for 26221, with e = 1, 2, 3, 4
and 5.

Choosing e = 1 (b = 2e = 2) it is:

26221 ¼ 214 þ 213 þ 210 þ 29 þ 26 þ 25 þ 23 þ 22 þ 1

Thus, p14 = 1, p13 = 1, p12 = 0, p11 = 0, p10 = 1, p9 = 1, p8 = 0, p7 = 0,
p6 = 1, p5 = 1, p4 = 0, p3 = 1, p2 = 1, p1 = 0, p0 = 1. The first section of the
Brauer chain is 1; the second section is 2 and 3; the third section is 6; the fourth
section is 12; the fifth section is 24, 25; the sixth section is 50, 51; the seventh
section is 102, the eighth section is 204; the ninth section is 408, 409; the tenth
section is 818, 819; the eleventh section is 1638, the twelfth section is 3276, 3277;
the thirteenth section is 6554, 6555; the fourteenth section is 13110; and the
fifteenth section is 26220, 26221. Thus the additive chain is formed by 23 elements
{1, 2, 3, 6, 12, 24, 25, 50, 51, 102, 204, 408, 409, 818, 819, 1638, 3276, 3277,
6554, 6555, 13110, 26220, 26221}.

Choosing e = 2 (b = 2e = 4) it results:

26221 ¼ 1* 47 þ 2* 46 þ 1* 45 þ 2* 44 þ 1* 43 þ 2* 42 þ 3* 4þ 1

Therefore p7 = 1, p6 = 2, p5 = 1, p4 = 2, p3 = 1, p2 = 2, p1 = 3, p0 = 1.
The first section of the chain Brauer is 1, 2, 3; the second section is 2, 4, 6; the
third section is 12, 24, 25; the fourth section is 50, 100, 102; the fifth section is
204, 408, 409; the sixth section is 818, 1636, 1638; the seventh section is 3276,

96 2 Basic Arithmetic Circuits

6552, 6555; and the eighth section is 13110, 26220, 26221. In the second section
the 2 should be removed, which is already in the first section; the 4 can also be
removed, since it is not needed to build the following elements. Thus the additive
chain has 22 elements: {1, 2, 3, 6, 12, 24, 25, 50, 100, 102, 204, 408, 409, 818,
1636, 1638, 3276, 6552, 6555, 13110, 26220, 26221}.

Choosing e = 3 (b = 2e = 8) it is:

26221 ¼ 6* 84 þ 3* 83 þ 82 þ 5* 8þ 5

Therefore p4 = 6, p3 = 3, p2 = 1, p1 = 5, p0 = 5. The first section of the
Brauer chain is 1, 2, 3, 4, 5, 6, 7; the second section is 12, 24, 48, 51; the third
section is 102, 204, 408, 409; the fourth section is 818, 1636, 3272, 3277; the fifth
section is 6554, 13108, 26216, 26221. From the first section 4 and 7 can be
suppressed, which are not used lately. Thus the additive chain is 21 elements {1, 2,
3, 5, 6, 12, 24, 48, 51, 102, 204, 408, 409, 818, 1636, 3272, 3277, 6554, 13108,
26216, 26221}.

Choosing e = 4 (b = 2e = 16) it results:

26221 ¼ 6* 163 þ 6* 162 þ 6* 16þ 13

Thus, p3 = 6, p2 = 6, p1 = 6, p0 = 13. The first section of the Brauer chain is
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15; the second section is 12, 24, 48, 96,
102; the third section is 204, 408, 816, 1632, 1638; and the fourth section is 3276,
6552, 13104, 26208, 26221. From the first section 3, 5, 7, 8, 9, 10, 11, 14 and 15
can be suppressed, which are not subsequently used, although 13 is used later, can
also be delete building it like 12 ? 1, thereby facilitating the link of the first
section to the second; making this, the fourth section would be 3276, 6552, 13104,
26208, 26220, 26221. In this way the additive chain is 20 elements {1, 2, 4, 6, 12,
24, 48, 96, 102, 204, 408, 816, 1632, 1638, 3276, 6552, 13104, 26208, 26220,
26221}.

Choosing e = 5 (b = 2e = 32) it results:

26221 ¼ 25* 322 þ 19* 32þ 13

Therefore p2 = 25, p1 = 19, p0 = 13. The first section of the Brauer chain is 1,
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,
27, 28, 29, 30, 31; the second section is 50, 100, 200, 400, 800, 819, and the third
section is 1638, 3276, 6552, 13104, 26208, 26221. From the first section 3, 5, 7, 8,
9, 10, 11, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30 and 31 can be
suppressed, since they are not subsequently used. In this way the additive is 20
elements string {1, 2, 4, 6, 12, 13, 19, 25, 50, 100, 200, 400, 800, 819, 1638, 3276,
6552, 13104, 26208, 26221}.

Using an additive chain with P elements, P - 1 operations must be performed
(multiplications and squares) to calculate the corresponding power, since the
element 1 does not involve any operation. Thus, with a chain of 20 elements, 19
operations are required.

2.5 Exponentiation 97

Considering 26221 = 2017 9 13, 26221 can be expressed as the concatenation
of two additive chains, corresponding to 2017 and to 13. For 2017 the additive
Brauer chain with 15 elements can be constructed {1, 2, 3, 6, 12, 24, 31, 62, 124,
248, 252, 504, 1008, 2016, 2017}, for 13 the Brauer additive chain with 6 elements
can be constructed {1, 2, 3, 6, 12, 13}. Using these two additive chains, 19
operations are required again to calculate the corresponding power, as the initial 1
of each chain does not involve any operation. h

From Example 2.2 it is clear that a Brauer chain with e = 1 corresponds to the
binary method from left to right described above. It can be considered that a
Brauer chain with e [1 is only a generalization of the binary method from left to
right; in fact the exponentiation method using a Brauer chain is also known as the
method 2e from left to right.

There is no available algorithm that guarantees the shortest chain.
The same circuit proposed for the binary method from left to right (Fig. 2.13),

with minor modifications, can be used to calculate any power using additive chains.

2.6 Division and Square Root

This section will consider simple circuits to divide integers and to extract the
integer square root of integer numbers.

2.6.1 Combinational Divisors

Let consider two unsigned binary numbers: D (m-bit dividend), and d (n-bit
divisor). In this case, the division consists on finding two unsigned binary num-
bers, C (quotient) and r (remainder), r \ d, such that:

D ¼ C $ d þ r

The division is defined for d = 0. Therefore, in what follows it is assumed that
this condition is met, i.e., before dividing, it is checked if d = 0, and only in this
affirmative case, the division is performed.

With the condition r \ d, C and r are unique, and to calculate them, an
immediate combinational solution might be thought obviously. To implement the
division it is sufficed, for example, a ROM of m ? n address bits and m outputs
(2m+n words of m bits), in which the quotient and the remainder corresponding to
every possible (D, d) are written. For real cases this is not a feasible combinational
solution since m ? n will result almost always too large to directly synthesize the
corresponding functions (for example, to include all possible outputs in a ROM).

Another combinational solution is possible that attempts to mimic the division
algorithm as a series of subtractions and shifts. Before addressing this alternative,

98 2 Basic Arithmetic Circuits

more aspects about the operands have to be established. Specifically it is assumed
that, as usual, the relationship between the lengths of the dividend and the divisor
is m = 2n - 1, and that the most significant bit of the divisor, d, is 1. Neither of
these assumptions implies restriction, because on the one hand, the size of the
operand can always be adjusted by adding zeros, and, second, by shifting the
divisor it is possible to make 1 the most significant bit; after division, the shifts
made in the divisor must be properly transferred to the quotient and the remainder
to obtain correct results. With these assumptions, with n-bits for both the quotient
and to the remainder, all possible results may be represented, and the division is
made in n-steps, in each of which a bit of the quotient is obtained.

In what follows, an example will be used to reach a combinational divider
circuit: let n = 4, D = 0110101, d = 1011. The four stages of calculation for this
case are detailed in Fig. 2.14a. In the first stage d is subtracted from the four most
significant bits of D (D6D5D4D3); if the result is positive (and therefore no output
borrow), the quotient bit is 1, and the difference D6D5D4D3 - d passes to the next
stage as the most significant bits of the modified dividend. If the result is negative
(i.e., there is output borrow), the quotient bit is 0, and the dividend unchanged
passes to the next stage. In other words, the quotient bit is the complement of the
borrow of the subtractor output, and if the quotient bit is 0, D without changing is
selected for the next stage, while if the quotient bit is 1, the most significant bits of
the dividend bit must be modified selecting D6D5D4D3 - d. Therefore, with a full
subtractor, FS, to take into account the possible borrow of the previous bit, plus one
2-to-1 multiplexer, the circuit necessary for processing each bit can be constructed,
as shown with cell CR of Fig. 2.14b. If for a given bit (as with the least significant
bit) no input borrows are to be considered, the full subtractor FS can be replaced by
a half subtractor, HS, resulting in the CS cell, simpler than the CR, Fig. 2.14c.

The second and subsequent iterations consist on repeating the same as the first
iteration, using in each case the unmodified or modified dividend which has
resulted in the previous iteration. Then, by subtracting, the divisor is shifted one
position to the right in each iteration. The remainder, r3… r0, is obtained in the
fourth iteration.

The circuit for dividing a number of seven bits by other of four bits is detailed
in Fig. 2.14d, in which 12 CR cells and 7 CS cells are used (or 19 CR cells, if only
one single type of cells want to be used). As it has been already indicated, the
divisor has to be adjusted to get that always the most significant bit is a 1, and after
division, these movements have to be translated to the results. It is straightforward
to extend these design divisors for any value of n.

2.6.2 Sequential Divisors

The most common divisors are the sequential. The ideas that led to the divisor of
Fig. 2.14d can be used to construct a divisor that divides D, of 2n - 1 bits, by d, of
n bits, using n clock pulses. As a particular case it is still assumed that n = 4.

2.6 Division and Square Root 99

 1) D6D5D4D3 0110

 – 1011

Negative c3 = 0

 2) D6D5D4D3 1101

 – 1011

0100 c2 = 1

 3) D6D5D4D3 0100

 – 1011

Negative c1 = 0

 4) D6D5D4D3 1001

 – 1011

Negative c0 = 0

redniameR 1001

(a)

(b)

(d)

(e)

(c)

Fig. 2.14 a Division example; b CR cell; c CS cell; d Combinational divisor of 7 by 4 unsigned
bits. e Sequential divisor of 7 by 4 unsigned bits

100 2 Basic Arithmetic Circuits

Figure 2.14e shows a circuit using three CR cells, two CS cells, one 4-bit latch to
store the divisor, d (this register it is not shown in Fig. 2.14e), and an 8-bit register
for the dividend, D. This register D consists of two 4-bit register: the first register
(D7D6D5D4) must be simultaneous reading and writing (i.e., master-slave), the
second (D3D2D1D0) must be a shift register with serial input and output. The
registers d and D have to be loaded with the data to be processed before starting
operation. Obviously always D7 = 0 before starting to divide, and the divisor will
have been shifted so the most significant bit of d is 1. The shift register
(D3D2D1D0) is used to store the bits of the quotient. It is easily verified that this
circuit in Fig. 2.14e does the same as the one in Fig. 2.14d, unless using four clock
pulses. Therefore, after four iterations, the quotient is stored in D3D2D1D0 and the
remainder of the division is stored in D7D6D5D4. Again, this circuit can be
extended immediately to any value of n.

2.6.3 Dividing by a Constant

In some applications, as in the scaling or in the change of base or in the modular
reduction, it is necessary to divide a data set by the same constant. For this purpose
different specific circuits can be used. In what follows it is assumed that integer
data are going to be divided by an integer constant.

It is easy to see that, strictly, just dividers to divide by odd numbers have to be
designed. Indeed, the division of a number of m bits by 2n is simplified to n shifts:
the n least significant bits are the remainder of the division, and the m - n most
significant bits are the quotient. Moreover, any even number can be decomposed
into the product of an odd number by a power of two:

C ¼ I * 2n) N
C
¼ N

I
1
2n

A first solution to design a divider by a constant, even or odd, consists of
particularizing the generic circuits of Fig. 2.14d, e for the divisor to be used. For
example, the sequential divisor of the Fig. 2.14e is shown in Fig. 2.15; this
sequential divisor is particularized to divide by 10 (1010 = 10102) any unsigned
7-bit integer data. Obviously, the same result is obtained when dividing by 5, and

Fig. 2.15 Sequential divisor by 1010

2.6 Division and Square Root 101

then by 2. In any case, these particularized circuits provide both the quotient and
the remainder of the division.

The next three sections are also devoted to the implementation of the division
by a constant, but considering those cases in which only one of the results is of
interest: the quotient or the remainder.

2.6.4 Modular Reduction

In some cases only one of the two results of the division is of interest. If only the
remainder is of interest, it is a modular reduction, as shown in Sect. 1.2.4. After
obtaining the remainder, R = NmodC, the difference N - R is a multiple of C.
The following example shows a case study of modular reduction based on cal-
culating the remainder corresponding to the different powers of the base, as
developed in Sect. 1.2.4.

Example 2.3 Let suppose the case of calculating the remainder resulting from
dividing by 5 any 8-bit unsigned binary numbers. Let suppose N = AB-
CDEFGH is the 8-bit binary number to be processed. It results:

Nmod5 ¼ A27 þ B26 þ C25 þ D24 þ E23 þ F22 þ G21 þ H
! "

mod5

¼ fA 27mod5
! "

þ B 26mod5
! "

þ C 25mod5
! "

þ D 24mod5
! "

þ E 23mod5
! "

þ F 22mod5
! "

þ G 21mod5
! "

þ Hgmod5

Calculating the remainders of the different powers it results:

27mod5 ¼3; 26mod5 ¼ 4; 25mod5 ¼ 2; 24mod5 ¼ 1;

23mod5 ¼3; 22mod5 ¼ 4; 21mod5 ¼ 1

Thus:

Nmod5 ¼ 3Aþ 4Bþ 2C þ Dþ 3E þ 4F þ 2Gþ Hð Þmod5

Applying this expression, the modular reduction can be made using three
blocks:

L ¼ ð3Aþ 4Bþ 2C þ DÞmod5;

M ¼ 3E þ 4F þ 2Gþ Hð Þmod5;

N ¼ LþMð Þmod5

The calculations for L and M are identical, and in what follows reference to
L will be made. The sum (R = 3A ? 4B ? 2C ? D) and the remainder (mod5)
for each combination of the inputs are shown in the table of Fig. 2.16a. It is
immediate that the value of R can be obtained with the circuit of Fig. 2.16b. It can
be probed that to get the remainder it is just necessary adding 3 to R when R is

102 2 Basic Arithmetic Circuits

http://dx.doi.org/10.1007/978-3-642-54649-5_1
http://dx.doi.org/10.1007/978-3-642-54649-5_1
http://dx.doi.org/10.1007/978-3-642-54649-5_1
http://dx.doi.org/10.1007/978-3-642-54649-5_1

equal to 5, 6 or 7, or the carry is c = 1, i.e., it must add 3 when the function
F = s2s0 ? s2s1 ? c is equal to 1. This correction, when R = 1010, gives 5 as
remainder, when it should be 0. Therefore the result should be correct in this
situation, to be 0 instead of 5. Since R = 1010 only for ABCD = 1111, with a
NAND gate this exceptional situation can be controlled. Joining the two succes-
sive corrections it results the circuit of Fig. 2.16c.

It is easy to see that to calculate N the same circuit for L or M can be used,
although in the case of N it is not necessary to correct the value 10, since it can not
appear.

In short, with three blocks as that in Fig. 2.16b the remainder from dividing by
5 any 8-bit binary number can be calculated. h

The modular reduction algorithm based on successive modular multiplications
(modular multiplicative reduction, see Sect. 1.2.4) can also be used. Let M =
2k - a, 1 B a \ 2k - 1. To calculate NmodM, being N an n-bit integer number,
an n-bit register N can be used, which is the concatenation of P, of n - k bits, and
Q, of k bits, by applying the following algorithm:

ABCD mod5
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 0
0110 6 1
0111 7 2
1000 3 3
1001 4 4
1010 5 0
1011 6 1
1100 7 2
1101 8 3
1110 9 4
1111 10 0

(a) (c)
Σ

(b)

Fig. 2.16 a Table with additions and remainders. b Circuit for R. c Circuit for mod5

2.6 Division and Square Root 103

http://dx.doi.org/10.1007/978-3-642-54649-5_1
http://dx.doi.org/10.1007/978-3-642-54649-5_1

Algorithm 2.6

The register R stores the result.

Example 2.4 Design a circuit to operate with 16-bit binary numbers for cal-
culating Nmod245.

Since 245 = 256 - 11 = 28 - 11 = 2k - a (it results k = 8, a = 11), the 16-
bit register N is the concatenation of two 8-bit registers, P and Q. An auxiliary
register, R, is used to store intermediate results, and which is initially set to zero. In
each iteration R and Q have to be added, and P has to be multiplied by 11. The
number N to be reduced has to be initially introduced into the register N. With all
this, the circuit of Fig. 2.17a can be used as the processing unit for this calculation.

As an example, the contents of the various registers when N = 1101 0011 1000
0010 are shown in Fig. 2.17b. h

(a)

Step Operation P Q R
0 R 0 1101 0011 1000 0010 0000 0000

1 R R + Q, N P·a 0000 1001 0001 0001 1000 0010

2 R R + Q, N P·a 0000 0000 0110 0011 1001 0011

3 R R + Q 0000 0000 0110 0011 1111 0110

4 R R – M 0000 0000 0110 0011 0000 0001

(b)

Fig. 2.17 Multiplicative modular reduction. a Processing unit. a Example N = 1101 0011 1000
0010

104 2 Basic Arithmetic Circuits

2.6.5 Calculating the Quotient by Undoing
the Multiplication

When it is known that the remainder is zero (i.e., it is an exact division) then
iterative procedures that try to ‘‘undo’’ the multiplication [Sri94] can be used, such
as dividing by 3, as detailed in the following example. For division by 5, see
[Sit74].

Example 2.5 Let suppose the case of the division of any 8-bit integer number
N = QRSTUVWZ multiple of 3, by 3 (zero remainder).

The 6-bit quotient is C = abcdef. The task consists on obtaining abcdef from
QRSTUVWZ. The bits QRSTUVWZ are related to the bits abcdef. In fact, multi-
plying abcdef by 310 = 112, as follows, it results:

a b c d e f
x 1 1

a b c d e f
a b c d e f

Q R S T U V W Z

It is clear that f = Z. As W = e ? f, e is obtained by subtracting f to
QRSTUVW; specifically it is the least significant bit of M = QRSTUVW - f. After
deletion of the least significant bit of M with a right shift, d is obtained by
subtracting e, and so on for the remaining bits of the quotient. In short, by shifts
and subtractions the quotient bits are obtained, one each time, from the least
significant to the most significant, with an algorithm, whose core may be obtained
as follows:

C C
n0!

;N N % n0
''''!

where C (where it will be the quotient) is a shift register in which, at each iteration,
the least significant bit in register N (n0 bit) is entered. This division can be
implemented with the circuit of Fig. 2.18. h

The procedure for dividing by a constant when the remainder is zero applied in
Example 2.5 can be easily extended to any divisor, with appropriate modifications.
For example, repeating this procedure for each case, to divide by 510 = 1012, two
bits of the quotient can be obtained in each iteration, and to divide by 910 = 10012,
three bits of the quotient can be obtained in each iteration.

When the binary divider development has more than two ones, the intermediate
operations can be more complex, even the minimal signed digit development can be
used. For example, for 7 ¼ 111 ¼ 1001 a procedure involving additions instead of
subtractions can be designed. In general, both sums and subtractions may appear.

2.6 Division and Square Root 105

2.6.6 Calculating the Quotient by Multiplying by the Inverse
of the Divisor

Another method for dividing by a constant, particularly when only the quotient is
of interest, consists on multiplying by its inverse. The inverse of the first odd
integers are given in Table 2.2; the inverse of an even number is simply obtained
by shifts of the inverse of the greater odd which it is a multiple.

When the task consists of dividing by a constant whose inverse is a periodic
fraction, to obtain the quotient a process in which simply multiplying the dividend
by the first period or by the first two periods (usually more than two periods are not
necessary) of the inverse of the divisor can be designed, and then adding 1 to the
least significant position, as it is demonstrated in the following example.

Example 2.6 Design a circuit to divide any unsigned 8-bit integer number N,
multiple of 5 (it means, with remainder 0), by 510 = 1012.

The largest multiple of 5 with 8 bits is 25510 = 111111112. The quotient in this
case is 5110 = 1100112. According to Table 2.2, the inverse of 5 is 1=5 ¼ 0:0011.
Multiplying 11111111 by 0.0011 it results the following integer:

11111111* 0:0011 ¼ 101111 ¼ 4710

which differs in three of 51. Therefore it does not suffice to multiply by the first
period to generate a result that differs in one from the correct. Using two periods, it
results the following integer:

11111111* 0:00110011 ¼ 110010 ¼ 5010

Fig. 2.18 Divider by 3

Table 2.2 Inverses of the
first integers

1=3 ¼ 0:01
1=5 ¼ 0:0011
1=7 ¼ 0:001
1=9 ¼ 0:000111
1=11 ¼ 0:0001011101
1=15 ¼ 0:000100111011

106 2 Basic Arithmetic Circuits

which differs in one of 51. Therefore, to calculate the quotient of dividing by 5 any
8-bit multiple of 5 (non-zero), it is enough to multiply by 0.00110011, and to add 1
to the integer part of the result. Moreover, the multiplication by 0.00110011 can be
done in two iterations, with a single adder, or in one iteration, with two adders.

A circuit for dividing by 5, in one iteration, including the correction of adding 1
to the result of the multiplication by 0.00110011, is shown in Fig. 2.19a. A first
adder of 8 bits, A1, whose inputs are E1 = N and E2 ¼ N

!
(that is, N shifted right

one position) and whose 10-bit output is S1, is used. S1 (unshifted and shifted four
positions) is the input to a second adder A2; only the most significant 6 bits of the
output of A2 are used; to add these 6 bits and 1 the adder A3 is used, consisting of
six half adders. h

The procedure for obtaining the quotient in an exact division using the multi-
plication by the inverse consists of to analyze the behavior of the largest possible
multiple of the divisor, and to decide how many periods of the inverse should be
used. This particular procedure outlined in Example 2.6 can be easily refined and
extended to obtain the integer quotient when dividing any number by 5, whether be
or not a multiple of 5.

With the multiplication by the inverse there is a procedure for scaling values
within a predetermined range. When it is applied without refinements to any value,
not necessarily a multiple of the constant scaling, the maximum error that can be
committed is 1.

Fig. 2.19 a Divider by 5 for multiples of 5. b Divider by 5

2.6 Division and Square Root 107

With a more detailed analysis of each case, it is possible to design circuits to
divide by means of the multiplication by the inverse and that produce a correct
result in all cases, as can be seen in the following example.

Example 2.7 Design a circuit to obtain the quotient of the division by
510 5 1012 of any unsigned 8-bit integer number N (n7…n0).

According to Example 2.6, if N is a multiple of 5, it is necessary to add 1 to the
result of multiplying N by 0.00110011. It is easy to see that if N is not a multiple of
5, the integer part of N 9 0.00110011 is the correct quotient. Therefore, if for this
case is intended to construct a similar circuit to that in Fig. 2.19a, it is necessary to
separate the multiples of 5 from the other values. This can be done by analyzing
the fractional part of N 9 0.00110011. With a detailed analysis of the different
cases, it is concluded that N is a multiple of 5 if the three most significant bits of
the fractional part c-1c-2c-3 are equal to 111 (this is true for N B 160), or if the
two most significant bits c-1c-2 are equal to 11, and N [160. As
16010 = 101000002,

N' 160! n7 n6 þ n5ð Þ ¼ 1

Therefore, the condition for adding 1 is that the following function F be equal
to 1:

F ¼ c%1c%2c%3 þ c%1c%2n7 n6 þ n5ð Þ

From all this, the circuit of Fig. 2.19b will generate the correct quotient of any
8-bit unsigned integer, when it is divided by 5. h

Other procedures for dividing by an integer are based on the following
expressions, which can be easily verified making the corresponding divisions:

ð1% 2%nÞ%1 ¼ 1þ 2%n þ 2%2n þ 2%3n þ $ $ $
ð1þ 2%nÞ%1 ¼ 1% 2%n þ 2%2n % 2%3n þ $ $ $

Given an integer p, it is possible to find two integers q and n, such that:

p* q ¼ 2n % 1) 1
p
¼ q

2n % 1

but

2n % 1ð Þ%1¼ 2%n 1% 2%nð Þ%1¼ 2%n 1þ 2%n þ 2%2n þ 2%3n þ $ $ $
! "

From this equation:

1
p
¼ q* 2%n 1þ 2%n þ 2%2n þ 2%3n þ $ $ $

! "

108 2 Basic Arithmetic Circuits

Another option is:

p* q ¼ 2n þ 1 ¼ 1
p
¼ q

2n þ 1

2n þ 1ð Þ%1 ¼ 2%n 1þ 2%nð Þ%1¼ 2%n 1% 2%n þ 2%2n % 2%3n þ $ $ $
! "

1
p
¼ q* 2%n 1% 2%n þ 2%2n % 2%3n þ $ $ $

! "

Therefore, for dividing by p it is enough to multiply by q, that it is shifted
n places, and for the corresponding sum (1 ? 2-n ? 2 - 2n ? 2 - 3n ? _) or
(1 - 2-n ? 2 - 2n - 2 - 3n ? _). Only the first summands of each addition
are used, as can be seen in the following example. Of these two last possibilities,
the integer q leading to a simpler procedure is chosen in each case. Possible
products applicable to the first integers are shown in Table 2.3.

Example 2.8 Obtain the expression corresponding to the division by 5 and by
7 using the Table 2.3.

The development of (2n ? 1)-1 is used for the division by 5, where q = 1,
n = 2. It results:

Table 2.3 Applied products
to the first integers

p p 9 q 2n ± 1 n

3 3 9 1 3 2
5 5 9 1 5 2
7 7 9 1 7 3
9 9 9 1 9 3
11 11 9 3 33 5
13 13 9 5 65 6
15 15 9 1 15 4
17 17 9 1 17 4
19 19 9 27 513 9
21 21 9 3 63 6
23 23 9 89 2047 11
25 25 9 41 1025 10
27 27 9 19 513 9
29 29 9 565 16385 14
31 31 9 33 1023 10
33 33 9 31 1023 10
35 35 9 117 4095 12
37 37 9 7085 262145 18
39 39 9 105 4095 12
41 41 9 25 1025 10
43 43 9 3 129 7
45 45 9 91 4095 12
47 47 9 178481 8388607 23
49 49 9 42799 2097151 21
51 51 9 5 255 8

2.6 Division and Square Root 109

1
5
¼ 1* 2%2 1% 2%2 þ 2%4 % 2%6 þ $ $ $

! "
¼ 0:01ð1% 0:01% 0:0001% 0:0000001þ $ $ $Þ

¼ 0:01ð0:11þ 0:000011þ $ $ $Þ ¼ 0:0011

The development of (2n - 1)-1 is used for the division by 7, where q = 1,
n = 3. It results:

1
7
¼ 1* 2%3ð1þ 2%3 þ 2%6 % 2%9 þ $ $ $Þ ¼ 0:001ð1þ 0:001þ 0:000001

þ 0:000000001þ $ $ $Þ ¼ 0:001

Of course, the obtained expressions are identical to those given in Table 2.2.h

2.6.7 Modular Reduction (Again)

The idea developed in the previous section to obtain the quotient multiplying by the
inverse of the divisor can be used to implement the modular reduction, Nmodm. It
involves using a good approximation for the value of the quotient of N divided by
m. As seen in Sect. 2.6.6, using an appropriate value for M = 1/m and multiplying
by N, the correct value of the quotient is obtained, or a sufficiently approximate
value, ca, so that the following algorithm can calculate R = Nmodm:

Algorithm 2.7

If n digits are used for operating in the base b, the N $ M product can be
expressed as:

ca ¼
N
bk

bn

m
1

bn%k

()

so that, pre calculating M ¼ bn

m , it is enough to multiply M by the n-k most sig-
nificant digits of N to obtain ca, as it is probed in the following example. The
Barrett modular reduction method [Bar87] basically consists of this.

Example 2.9 Design a procedure to obtain Nmod13, with N of 8 bits.
With these data 28/13 & 1910 = 100112 can be used. Let consider the extreme

case N = 1111 1111. It is straightforward to check that c = 10011.

110 2 Basic Arithmetic Circuits

• For k = 4: ca = five most significant bits of 1111 9 10011 = 10001. Therefore
c - ca = 2 (should subtract twice).

• For k = 3: ca = five most significant bits of 11111 9 10011 = 10010. There-
fore c - ca = 1 (should subtract once).

• For k = 2, 1 and 0, the same value is obtained for ca (10010).

Using 28/13 & 19.510 = 10011.12 again for the extreme case N = 1111 1111
(will remain c = 10011), it results:

• For k = 4: ca = five most significant bits of 1111 9 100011.1 = 10010.
Therefore c - ca = 1 (should subtract once).

• For k = 3 it results the same value for ca (10010).
• For k = 2: ca = five most significant bits of 1111 9 100011.1 = 10010.

Therefore c = ca (subtraction is not necessary).

In conclusion, for this application works well using 28/13 $ 19.510 = 10011.12

and do k = 2. h

2.6.8 Square Root

The square root can be extracted by successive subtractions, such as seen in Sect.
1.6.1. The obtained circuits are very similar to those implementing the division.
For example, the circuit of Fig. 2.20a, which uses the same CR and CS cells from
the divider (Fig. 2.14b, c) extracts the integer binary square root of any 8-bit
integers, a7 … a0. In this case, the combinational circuit for calculating the square
root has four stages or rows, each one calculating D+ = D - (4R1 ? 1)22i. If
D+ C 0, then ri = 1 and D is substituted by D+; if D+ \ 0, then ri = 0 and D is
unchanged. The result is a square root of four bits, r3r2r1r0, and a remainder of five
bits, b4b3b2b1b0.

The integer square root of a binary number of 8 bits, A = a7 … a0, may be
calculated with the sequential circuit of Fig. 2.20b using four iterations. A shift
register is used to store A, called SR1, with double shift at each iteration, so that in
the ai and ai-1 outputs are successively obtained a7 and a6, a5 and a4, a3 and a2, a1

and a0. The successive bits of the result are written to a normal shift register called
SR2. The results of successive subtractions are written to a read-write parallel
register, R3. Initially R3 must be zero. After four iterations, the root is stored in
SR2 and the remainder is stored in R3. It is easy to verify that, with the specified
operating conditions, the circuit of Fig. 2.20b performs in each iteration the same
action as the corresponding row of the circuit of Fig. 2.20a.

2.6 Division and Square Root 111

http://dx.doi.org/10.1007/978-3-642-54649-5_1
http://dx.doi.org/10.1007/978-3-642-54649-5_1
http://dx.doi.org/10.1007/978-3-642-54649-5_1

2.7 BCD Adder/Subtracter

From Sect. 1.7.1 it results that a circuit to add two BCD characters, X = x3x2x1x0

and Y = y3y2y1y0, can be constructed with four binary adders plus the correction
circuit for adding 6 when appropriate. Calling R = r3r2r1r0 to the partial result
generated by the four binary adders, and calling a+ to the partial carry, 6 must be
added when F = 1, for which two expressions are given:

F ¼ r3r2 þ r3r1 þ aþ ¼ aþ þ aþþ

This F function also gives the final carry. Therefore, the circuit of Fig. 2.21a or
b is an adder for BCD digits. Unsigned decimal numbers of n digits can be added
by cascading n adder circuits of BCD digits as depicted in Fig. 2.21c.

The sign digit has to be included if the subtraction has to be implemented. The
SM representation is not recommended for subtraction, since prior to the operation
itself, the two operands should be compared. However, if the 9’s complement
representation is used, basically the same structure in Fig. 2.21c can be used to add
and subtract. Just it is necessary to change the sign of the subtrahend and 9’s
complement each of its digits. The truth table for the 9’s complement generation of

Fig. 2.20 Square root a Combinational circuit. b Sequential circuit

112 2 Basic Arithmetic Circuits

http://dx.doi.org/10.1007/978-3-642-54649-5_1
http://dx.doi.org/10.1007/978-3-642-54649-5_1

each digit is shown in Fig. 2.22a, and the corresponding circuit is shown in
Fig. 2.22b; to change the sign it is enough to invert the bits with which it is
encoded. Using the control signal s=r, to be 0 for the sum and to 1 for the
subtraction, in Fig. 2.22c has an adder/subtractor for two BCD numbers of n - 1
digits plus a sign digit represented in 9’s complement; in this circuit it is taken into
account the end-around carry.

Regarding the 10’s complement representation, it is important to remember that
the 10’s complement of a BCD number can be obtained from the 9’s complement,
by adding 1. Using this idea, and considering that in this case there is no end-
around carry, the circuit of Fig. 2.22d is an adder/subtractor for BCD numbers
represented in 10’s complement.

Comparing the circuits of Fig. 2.22c, d, it is obvious that it is preferable the
10’s complement representation versus the 9’s complement representation.

2.8 Comparators

In the processing of the information it is common to have to compare two words or
data in general. For example, ordering from lowest to highest a table of numbers or
alphabetize a series of words, the elements are compared in pairs and sorted

Fig. 2.21 BCD adder. a For digits. b For digits by using a multiplexer. c For numbers of length n

2.7 BCD Adder/Subtracter 113

accordingly; also, in many arithmetic operations different numerical results have to
be compared.

Let X and Y be two elements to sort; the comparators can be used for this task.
A comparator for n-bit words has 2n inputs and m outputs so that each of the
elements to be compared is encoded with n bits, and the comparison is made based
on the value in binary (unsigned) of these encodings. The m outputs give the result
of the comparison; the most frequent is m = 3, in which case the outputs are
X [Y, X = Y, X \ Y, each being activated as they fulfill the corresponding
condition.

The simplest comparator is that including 1-bit words (n = 1). In this case the
three functions to be synthesized, as can be easily checked in the table in
Fig. 2.23a, are:

For X [Y : f2ðx; yÞ ¼ x!y
For X ¼ Y : f9ðx; yÞ ¼ xyþ !x!y
For X\Y: f4ðx; yÞ ¼ !xy

Fig. 2.22 a Truth table for
the 9’s complement. b Circuit
to calculate 9’s complement.
c 9’s complement adder/
subtractor. d 10’s
complement adder/subtractor

114 2 Basic Arithmetic Circuits

A common value for n is 4 (X = x3 … x0, Y = y3 … y0). For this case, the
output X = Y will be 1 when the corresponding bits of each input are equal; this
means:

F X ¼ Yð Þ ¼ f9 x3; y3ð Þ $ f9 x2; y2ð Þ $ f9 x1; y1ð Þ $ f9 x0; y0ð Þ

The output X [Y will be 1 if x3 [y3, or x3 = y3 and x2 [y2, or x3 = y3 and
x2 = y2 and x1 [y1, or x3 = y3 and x2 = y2 and x1 = y1 and x0 [y0; it means:

Fig. 2.23 Comparators. a Table for 1-bit comparator. b Cascade connection. c Cascade
connection of digit comparator. d Parallel-serial connection of digit comparators. e Comparator
of 24-bit words with parallel-serial connection

2.8 Comparators 115

F X [Yð Þ ¼ f2 x3; y3ð Þ þ f9 x3; y3ð Þ $ f2 x2; y2ð Þ þ f9 x3; y3ð Þ $ f9 x2; y2ð Þ
$ f2 x1; y1ð Þ þ f9 x3; y3ð Þ $ f9 x2; y2ð Þ $ f9 x1; y1ð Þ $ f2 x0; y0ð Þ
¼ f2 x3; y3ð Þ þ f9 x3; y3ð Þ $ f2 x2; y2ð Þð
þ f9 x2; y2ð Þ $ f2 x1; y1ð Þ þ f9 x1; y1ð Þ $ f2 x0; y0ð Þð ÞÞ

The expression for the function corresponding to the output X \ Y is parallel to
the one for X [Y, substituting [by \ (it means, f2 by f4). It is obvious that once
that two of the comparator outputs are known, the third can be obtained from these
two. Concretely,

X ¼ Y , ðX [YÞ $ ðX\YÞ
X [Y , ðX ¼ YÞ $ ðX\YÞ
X\Y , ðX ¼ YÞ $ ðX [YÞ

Thus, it is suffices to synthesize two of the output functions and to construct the
third as the products of its complements (NOR function).

The commercially available comparators are ready for possible cascade con-
nection, for which they include three inputs (X [Yin, X = Yin, X \ Yin), through
which the outputs of the preceding stage are introduced, thereby allowing to build
comparators for words of any length, as shown in Fig. 2.23b for the case of 1-bit
comparators. For comparator of digits of m bits, this way of cascade connection
can be used to construct comparators of pm bit words, as shown in Fig. 2.23c. This
cascading connection can be slow since the overall delay accumulates the delay of
all the comparators.

Parallel-serial structures with several comparators can be used to accelerate the
response of the comparator of words, which partial results are globalized at a final
comparator, as shown in Fig. 2.23d for the case of constructing a comparator for
16-bit words using 4-bit digit comparators. In this case four parallel comparators
are used, C3 … C0. Two digits are composed with the outputs of these parallel
comparators, A [B and A \ B, that are compared in a final comparator, Cf, which
provides the final result of the comparison. This parallel-serial structure can be
improved by using the inputs provided to the cascade connection; in the structure
of Fig. 2.23d are set to the neutral values 010. For example, using five comparators
in parallel, C4 …C0, the final comparator Cf, and the inputs for the cascading
connection, a comparator for 24-bit words, as shown in Fig. 2.23e, can be built.

2.9 Shifters

A k-positions shifter is a circuit whose input is an n-bit character, E = en-1…e0,
and whose output is also an n-bit character, S = sn-1…s0, which, when the
shifting have to be made, it is obtained from the input E by means of k-shifts,

116 2 Basic Arithmetic Circuits

either to the right or to the left, as stated, as shown in Fig. 2.24; if no displacement
has to be made, then S = E.

In a shift of k positions there will be k bits of S to which no bit of E is applied:
the k most left bits when moving to the right, or the k most right bits on the left
shifts. For these k bits of S the values to be assigned has to be established, usually
using one of the following two options:

(a) filled with constant (all zero or all one, although other combinations are
possible);

(b) filled with the k bits of E that would be unmatched (i.e., the most right on the
right shifts, or the most left on the left shifts; in both cases it consists on
rotating the input in the sense that apply). For example, in a shifter with two
positions (k = 2) for 8-bit characters (n = 8), with zero padding, if
E = 10011101, a shift to the right will result S = 00100111, and a shift to the
left be S = 01110100; if the padding were with remaining input bits (i.e., a
rotation) in a shift to the right will be S = 01100111, and in a shift to the left
S = 01110110.

Therefore, to define the action of a shifter it must be specified:

• the size n of the characters to be shifted,
• whether it has to perform or not the shift, with the variable s,
• the magnitude of the shift k,
• if the shift is to the right or to the left, with the variable d,
• if the padding is a constant value or by rotation, with the variable r,
• and finally, the value of the constant filling, where appropriate, with the c variable.

The size n of the characters are supposed to be pre-established, usually equal to
the size of the characters being processed. The decision to perform the shift is

Fig. 2.24 Actions of the
shifters

2.9 Shifters 117

described, for example, with s = 1 (s = 0, no shift). The magnitude of the shift
k can range from k = 1 in simple shifter until k B n in a general shifter, called
by some authors as a barrel shifter. The sense of the shift is encoded with d (0 on
the left and 1 to the right, for example); in the simplest case the shift is one-way, in
which case it is not necessary that variable. With r the fill type (0 stuffing constant,
1 for rotation, for example) is encrypted. The constant filling, c, can match (this
would be the easiest) the value 0 or 1 to use.

2.9.1 Shifters Built with Shift Registers

The most obvious and simplest solution to construct a shifter is to use a shift
register. The register depends on the features desired for the shifter. Using a
bidirectional universal shift register, a shifter with all possible benefits can be
built, as shown in Fig. 2.25. A standard shift register can shift a position (to the left
or to the right) on each clock pulse.

The drawback of this solution is the time it can take to make a shift. In effect, a
shift of k-position takes k clock pulses (each position takes a pulse), and, some-
times, it is an unbearable delay due to the performance degradation involved.
Therefore a strictly combinational solution is the option, without using memory
elements, as shown below.

2.9.2 Combinational Shifters

Using multiplexers as building blocks it is very easy to get a shifter with any
performance. Let consider first the design of a shifter for k fixed and a default
value of n. In this case the control variables are: s, d, r and c. It is straightforward
to check that the circuit of Fig. 2.26a acts as a fixed shifter of k-positions; it is
sufficient to obtain the outputs sn-1…s0 from the multiplexers for all combinations
of s, d, and r, and comparing them to the outputs generated in Fig. 2.24.

The k-position shifter of Fig. 2.26a consists of three levels of multiplexing
(with 2-to-1 multiplexers), which can be replaced by a single level of multiplexing
using 4-to-1 multiplexers, as shown in Fig. 2.26b. In this case the selection is done
with signals f1 and f0 obtained from s, d, and r as follows (it is left as an exercise to
check these functions):

Fig. 2.25 Shifter built using
a shift register

118 2 Basic Arithmetic Circuits

f1 ¼ sd f0 ¼ s dr þ dr
! "

Let suppose that p fixed shifters with different values of k are used, such that
k = 2n, n = 0, …, p - 1. Each of these shifters has its own control input si, for
deciding whether or not made the corresponding shift; all other control inputs
(d, r and c) are common to all shifters. It is easy to check that with these p shifters,
acting in cascade, each one over the output of the previous one, any shift k \ 2p

can be get. It is sufficient to write k in binary, k = ap-1 ap-2 … a1 a0, and do
si = ai. The obtained shifter from this structure is sometimes also known as barrel
shifter. For example, with three shifters (1, 2 and 4 positions) any shift between
0 and 7 can be accomplished, as shown in Fig. 2.26c.

It is obvious that all shifter circuits described above could be simplified if the
shifts were in one direction, or if the fill were of a single type, etc.

Fig. 2.26 a k-position shifter. b Other k-position shifter. c Barrel shifter up to 7 positions

2.9 Shifters 119

2.10 Conclusion

This chapter has presented the arithmetic circuits that are used in the following
chapters, for the implementation of the algebraic circuits.

References

[Bar87] Barrett, P.: Implementing the Rivest, Shamir and Adleman public-key encryption
algorithm on a standard digital signal processor. In: Odlyzko, A.M. (ed.) Advances in
Cryptology—CRYPTO’86 Proceedings, LNCS, vol. 263, pp. 311–323. Springer, Berlin
(1987)

[Bra39] Brauer, A.: On addition chain. Bull. Am. Math. Soc. 45, 736–739 (1939)
[Sit74] Sites, R.L.: Serial binary division by ten. IEEE Trans. Comp. 1299–1301 (1974)
[Sri94] Srinivasan, P., Petra, F.E.: Constant-division algorithms. IEE Proc. Comput. Tech.

141(6), 334–340 (1994)

120 2 Basic Arithmetic Circuits

http://www.springer.com/978-3-642-54648-8

	2 Basic Arithmetic Circuits
	2.1…Introduction
	2.1.1 Serial and Parallel Information
	2.1.2 Circuit Multiplicity and Pipelining

	2.2…Binary Adders
	2.2.1 Parallel Adders
	2.2.2 Pipelined Adders
	2.2.3 Serial Adders

	2.3…Binary Subtractors
	2.4…Multipliers
	2.4.1 Combinational Multipliers
	2.4.2 Sequential Multipliers
	2.4.3 Multiplying by a Constant

	2.5…Exponentiation
	2.5.1 Binary Methods
	2.5.2 Additive Chains

	2.6…Division and Square Root
	2.6.1 Combinational Divisors
	2.6.2 Sequential Divisors
	2.6.3 Dividing by a Constant
	2.6.4 Modular Reduction
	2.6.5 Calculating the Quotient by Undoing the Multiplication
	2.6.6 Calculating the Quotient by Multiplying by the Inverse of the Divisor
	2.6.7 Modular Reduction (Again)
	2.6.8 Square Root

	2.7…BCD Adder/Subtracter
	2.8…Comparators
	2.9…Shifters
	2.9.1 Shifters Built with Shift Registers
	2.9.2 Combinational Shifters

	2.10…Conclusion
	References

