
Extended BLIF Specification with Black and White Boxes

Alan Mishchenko

Department of EECS, University of California, Berkeley

alanmi@eecs.berkeley.edu

October 20, 2009

Abstract

Industrial designs are composed of several types of logic blocks:

those to be synthesized, those already synthesized (such as

adders), and those with unknown/irrelevant logic representation

(such as memories). The latter two types of blocks should not be

(or cannot be) synthesized and may be abstracted as boxes. This

technical report describes a format to represent such boxes. The

boxes can be white (logic is known) and black (logic is unknown).

An implementation of a design flow with boxes is available in the

synthesis and verification system ABC. The logic and timing

information of the boxes is used in several optimization steps:

AIG rewriting, technology mapping, and sequential synthesis.

Future work will extend the use of boxes to the computation of

structural choices and optimization with don’t-cares.

1 Overview

This report describes the extended BLIF format used for

representing hierarchical sequential designs on the level of gates.

Described below are the changes to the standard BLIF [1] made to

specify white and black boxes, as implemented in ABC [2].

The design should be specified in one BLIF file. Many-file

designs are currently not supported. The root model should be

listed at the beginning of the file. The auxiliary models can follow

in any order. Only two levels of hierarchy are currently supported.

2 Root model timing

The root model can have timing information for all or some of

the inputs/outputs specified. The input timing information in the

root model is represented using directive .input_arrival <name>

<float>. By default, if the arrival time of an input is not specified,

it is assumed to be zero. It is allowed to use expression -inf

instead of <float> to represent an early arrival time of an input.

The output timing information in the root model is represented

using directive .output_required <name> <float>. By default, if

the required time of an output is not specified, it is assumed that

the output is required as early as possible, and the synthesis

system will try to minimize the arrival time of this output.

3 Box representation

Summarized in Table 1 are several types of boxes allowed by

the extended BLIF format. The first three types should be

specified using directive .attrib. For example, .attrib white seq

keep box means that the sequential logic (seq) of the box is known

(white) and the box cannot be removed (keep). There may be one

or more .attrib directives per box. The forth box type

(merge/no_merge) cannot be listed on the .attrib line because is

applied individually for each box output. For example, if a box

has four outputs but only the first two cannot be merged, it can be

represented as follows: .no_merge box_out1 box_out2.

Table 1: Summary of box attributes in extended BLIF.

Box attribute Option 1 (default) Option 2

Object type

box

(box should not be

collapsed after reading)

logic

(box will be collapsed

after reading)

Presence type

white

(logic is known)

black

(logic is unknown)

Logic type comb

(logic is combinational)

seq

(logic is sequential)

Persistence type sweep

(box is removable)

keep

(box is not removable)

Merging type merge

(merging of an output is

allowed)

no_merge

(merging of an output

is not allowed)

4 Box timing

Both white and black boxes can have timing information

specified. Representation of this information for combinational

and sequential boxes is different.

For combinational boxes, directive .delay is used. There are

three ways of using this directive. If only one number is listed,

.delay <float>, it means that every input-to-output connection of

the box has the same delay. If there is a signal name followed by

the number, .delay <name> <float>, it means that any input-to-

output connection involving the signal (either input or output) has

the same delay. Finally, individual input-to-output delays are

specified using directive .delay <inname> <outname> <float>.

If more than one .delay directive is present, the later one overrides

the former one. If there is no .delay directive, the combinational

box is assumed to have unit delay, that is, the delay from any

input to any output is equal to 1.

Delay of sequential boxes is specified using two directives:

.input_required <input > <float> and .output_arrival <output>

<float>. The first directives represents the required times for the

box inputs while the second one represents the arrival times of the

box outputs, counting from the last clock edges. In a way, the

representation of timing for the inputs/outputs of the box is

similar to the representation of timing for outputs/inputs of the

root model, but the directive names are different.

5 Register classes

The .latch directive used to specify registers (flip-flops) in the

traditional BLIF format looks as follows: .latch <input>

<output> <type> <control> <init_val>, where <type> is one of

{ffe, re, ah, al, asg}, which correspond to “falling edge”, “rising

edge”, “active high”, “active low” and “asynchronous”.

To represent sequential designs with multiple clock domains

and to distinguish between different types of registers belonging

to the same clock domains (for example, rising-edge and falling-

edge registers), the extended BLIF format allows for representing

a register class.

The .latch directive in the extended BLIF can list <type> as an

integer number. This number represents the class of a given

register. The register class can be used to limit transformations

during sequential synthesis. For example, two registers that are

proved equivalent cannot be merged if they belong to different

class. When computing equivalent registers, computation is

limited to one clock-domain at a time while the registers of other

domains are treated as primary inputs. In the example below, the

second registers is listed as having class 15.

6 Flip-flops

The .latch directive of the traditional BLIF allows us to

represent a clocked flip-flop but it does not allow us to represent

set, reset, enable, etc. One way to circumvent this limitation is to

use white-boxes for each flip-flop type. An easier way, however,

is to use a new directive .flop added to the extended BLIF.

The syntax of the .flop directive is the following: the keyword

.flop is followed, in any order, by flop input (D=<signal_name>),

flop output (Q=<signal_name>), optional clock

(C=<signal_name>), optional set (S=<signal_name>), optional

reset (R=<signal_name>), and optional enable

(E=<signal_name>). The following two optional attributes (async

and negedge) can specify asynchronous reset and negative-edge

triggered clock, along with initial state attribute

(init=<integer_value>). The default is the don’t-care (init=2).

For example, the following extended BLIF line

.flop async init=1 D=n11 C=n22 R=n14 Q=n16

represents a flop with asynchronous reset, initialized to value 1,

with input n11, clock n22, reset n14, and output n16.

7 Example

The following example is included to illustrate the use of the

extended BLIF format. It can be cut-and-pasted into a file and

read into one of the latest versions of ABC using command *r.

This is an example of a design in extended BLIF
illustrating the use of black/white boxes and
timing info for the boxes and the root model.
.model example
.inputs a0 b0 a1 b1 C CE R S
.outputs s0 cout0 s1 cout1 Out
.input_arrival a0 1.0
.input_arrival b0 -inf
.output_required s0 2.0
.output_required s1 inf
representation of subcircuits
.subckt FA_black a=a0 b=b0 cin=Zero \
 s=d0 cout=cout0
.subckt FA_white a=a1 b=b1 cin=Zero \
 s=d1 cout=cout1
.subckt FDRSE_black C=C CE=CE D=d0 R=R S=S Q=s0
.subckt FDRSE_white C=C CE=CE D=d1 R=R S=S Q=s1
representation of combinational nodes
.names Zero
.names a0 b0 a1 b1 Out
11-- 1
--11 1
.end

full adder as a black box
.model FA_black
.inputs a b cin
.outputs s cout
.attrib black box comb
.delay a s 0.01
.delay b s 0.01
.delay cin s 0.01

.delay a cout 0.02

.delay b cout 0.02

.delay cin cout 0.02

.end

full adder as a white box
.model FA_white
.inputs a b cin
.outputs s cout
.no_merge s
.attrib white box comb
.delay a s 0.01
.delay b s 0.01
.delay cin s 0.01
.delay a cout 0.02
.delay b cout 0.02
.delay cin cout 0.02
.names a b cin s
100 1
010 1
001 1
111 1
.names a b cin cout
-11 1
1-1 1
11- 1
.end

complex flop as a black box
.model FDRSE_black
.attrib black box seq
.inputs C CE D R S
.outputs Q
.input_required C 0.0
.input_required CE 0.1
.input_required D 0.1
.input_required R 0.3
.input_required S 0.3
.output_arrival Q 0.4
.end

complex flop as a white box
.model FDRSE_white
.attrib white box seq
.inputs C CE D R S
.outputs Q
.input_required C 0.0
.input_required CE 0.1
.input_required D 0.1
.input_required R 0.3
.input_required S 0.3
.output_arrival Q 0.4
.latch int_r Q 15 C 1
.names D CE Q int_ce
-01 1
11- 1
.names int_ce S int_s
-1 1
1- 1
.names int_s R int_r
10 1
.end

8 Conclusions and future work

The hierarchical BLIF representation is extended by adding

several new directive .attrib as well as several directives to

represent the timing information.

The following features in this report have not been fully

implemented, or are implemented but not sufficiently tested:

• Timing information for sequential boxes.

• Required times for the outputs of the root model.

Acknowledgements

This work is supported in part by SRC contracts 1361.001 and

1444.001, NSF grant CCF-0702668 entitled "Sequentially

Transparent Synthesis", and the California MICRO Program with

industrial sponsors Actel, Altera, Calypto, IBM, Intel, Intrinsity,

Magma, Synopsys, Synplicity, Tabula, and Xilinx.

References
[1] Berkeley Logic Interchange Format (BLIF),

http://vlsi.colorado.edu/~vis/blif.ps

[2] Berkeley Logic Synthesis and Verification Group. ABC: A system

for sequential synthesis and verification. http://www-cad.eecs.

berkeley.edu/~alanmi/abc (recent versions available upon request)

