
Contributors to This Volume

S . E. GOODMAN

M. H. HALSTEAD

MONROE M. NEWBORN

AzRlEL ROSENFELD

PATRICK SUPPES

STUART ZWEBEN

'Advancesin
COMPUTERS

EDITED BY

MARSHALL C. YOVITS
Department of Computer and Information

Scie nce

Ohio State Uni versit y

Columbus . Ohio

VOLUME 18

@
ACADEMIC PRESS. New York. San Francisco. London-1979

A Subsidia ry of Ha rcourt Brace Jovanovich. Publishers

COPYRIGHT © 1979, BY A CADEMIC PRESS, INC.

ALL RIGHTS RESERVED.

NO PART OF THIS PUBLICATION MAY BE REPRODUCED OR

TRANSMITTED IN ANY FORM OR BY ANY MEANS, ELECTRONIC

OR MECHANICAL, INCLUDING PHOTOCOPY, RECORDING, OR ANY

INFORMATION STORAGE AND RETRIEVAL SYSTEM, WITHOUT

PERMISSION IN WRITING FROM THE PUBLISHER.

ACADEMIC PRESS, INC.

III Fifth Avenue, New York, New York 10003

United Kingdom Edition published by
ACADEMIC PRESS, INC. (LONDON) LTD.

24 / 28 Oval Road, London NWI 7DX

LIBRARY OF CONGRESS CATALOG CARD NUMBER: 59-15761

ISBN 0- 12-012118- 2

PRINTED IN WE UNITED STATES OF AMERICA

79 80 81 82 9 8 7 6 5 4 3 2 I

Contents

CONTRIBUTORS

PREFACE

ix
xi

Image Processing and Recognition

Azriel Rosenfeld

1. Introduction . . , . . . 	 2

2. Digitization 	 3

3. Coding and Approximation 	 8

4. Enhancement, Restoration, and Reconstruction 	 16

5. 	 Segmentation . 28

6. 	 Representation . . . 40

7. Description 	 48

8. 	 Concluding Remarks 55

References 55

Recent Progress in Computer Chess

Monroe M. Newborn

1. 	 Introduction · 59

2. 	 After Stockholm 62

3. Tree-Searching Techniques (Modifications to the

Minimax Algorithm). 92

4. 	 Chess-Specific Infonnation in Chess Programs 99

5. 	 Endgame Play 100

6. 	 Speed Chess 106

7. 	The Microcomputer Revolution 110

8. 	 Final Observations and the Future 113

References 114

v

Software in the Soviet Union: Progress
and Problems

S. E. 	GOODMAN

Woodrow Wilson School of Public

and International Affairs

Princeton University

I. Introduction 	 231

2. A Survey of Soviet Software 	 233

2.1 Soviet Software before 1972 . 	 233

2.2 Soviet Software since 1972 . 	 239

3. Systemic Factors . . 	 249

3.1 Software in the Context of the Soviet Economic System 249

3.2 Internal Diffusion 	 256

3.3 Stages in the Software Development Process 	 261

3.4 Manpower Development 	 265

4. Software Technology Transfer . . 	 268

4.1 Mechanisms for Software Technology Transfer 	 269

4.2 External Sources 	 273

4.3 The Control of Software Technology Transfer 	 275

5. 	 A Summary 278

Acknowledgments and Disclaimer 281

References . 281

1. Introduction

It is only within the last decade that the Soviets have really committed
themselves to the production and use of complex general purpose com
puter systems on a scale large enough to pervade the national economy.
This goal has made it necessary for the USSR to devote considerable
effort to upgrading and expanding its software capabilities .

This paper is an attempt to provide a broad perspective on software
development in the USSR. To this end, it will be convenient to classify
loosely the factors that affect the production and use of software in the
Soviet Union in terms of four categories :

(1) those that depend on hardware availability ;

231

Copyright © 1979 by Acade mic Press , Inc .
ADVAN CES IN CO M PUTERS, VO L. 18 	 All rights of reprod uction in any form reserved.

ISBN 0· 12·0 121 11>-2

233 232 S. E. GOODMAN

(2) those that are related to priorities in the allocation of effort and
other resources;

(3) those that are dependent on the nature of Soviet institutions and
economic practices, i.e., systemic factors; and

(4) those that involve technology transfers from foreign sources.

Although these categories are neither independent nor mutually exclusive,
they provide a useful framework for a survey and analysis.

We will try to show that the Soviets have made substantial progress in
removing limitations due to hardware availability, some progress as a
result of changes in priorities, and as yet relatively little progress in over
coming an assortment of complex systemic problems that affect the de
velopment of software . Consequently, the Soviets will continue to borrow
from foreign software technology, and they are now better equipped and
motivated to do so.

Soviet software progress and problems cannot be understood on a tech
nical basis alone. Relevant economic and political aspects have to be
examined to present a more complete picture. The USSR has permeated
technology and economics with politics, and our survey and analysis must
discuss software in the context of this overall environment. Although the
Soviet situation is extreme, it is not unique. Software engineering and
management goes beyond the technical details of program code
everywhere. In the last dozen years, Western literature has contained
many articles that deal with social and economic aspects of software (e.g.,
Infotech, 1972; Boehm, 1975; Bauer, 1975; Horowitz, 1975; Buxton et al.,
1976; Infotech, 1976; Myers, 1976; Wegner, 1977). The national and inter
national level discussions in this paper are logical extentions of this. We
are so used to our own environment that most of us do not think about its
advantages or disadvantages relative to other systemic arrangements.

Any serious study of the Soviet software industry 1 must involve some
implicit and explicit comparisons with its US counterpart. In most as
pects, the Soviets come out a poor second. This is because the pecu
liarities of the software sector tend to highlight Soviet weaknesses and
American strengths. One should be careful not to extrapolate these com
parisons over a broader economic spectrum.

It is difficult enough to write about the development and economics of
software under the best of circumstances. It is particularly difficult when
coupled with the special problems that afflict the study of the USSR. To
help come to grips with this combination, an effort has been made to use
as many sources as possible. These include a couple of thousand books
and articles from the open literature (newspapers, marketing brochures,

1 We shall use the term "software industry" to denote broadly the totality of a nation's
software capacity .

SOFTWARE IN THE SOVIET UNION

trade journals, research reports, the scientific and technical literature,
etc., through Fall of 1978). Of course, spacial limitations restrict the refer
ences to a small fraction of these. Unfortunately, the limited availability of
Soviet and East European source material in the US necessitates the use
of less-than-ideal hand-me-downs of various kinds. It is thus likely that
the bibliography contains more "bugs" (e .g., misspelled names) than
most. I have also had the benefit of a large number of private communica- .
tions. Assorted constraints make it necessary to limit'most of the discus
sion to nonmilitary, general purpose computing.

2. A Survey of Soviet Software

During the last ten years the USSR and its CEMA 2 allies have designed,
developed, and put into production a family of upward compatible third
generation computers known as the Unified System (ES) or Ryad. 3 This
system is an effective functional duplication of the IBM S/360 series, and
provides Soviet users with unprecedented quantities of reasonably good
general purpose hardware. The development of the Unified System is a
watershed in Soviet thinking on software, and it reflects a major commit
ment by the Party and government to the widespread use of digital com
puters in the national economy. The appearance of the first Ryad pro
duction models in 1972 marks a clear turning point in Soviet software

development.

2.1 Soviet Software Before 19724

Although the USSR was the first country on continental Europe to build
a working stored program digital computer (the MESM in 1951), and
quickly put a model into serial production (the Strela in 1953), the Soviets
have been slow to appreciate the value of computers for applications other
than small- and medium-scale scientific/engineering computations. Little
effort was made to produce large quantities of suitable hardware intended
for widespread general purpose use. A business machines industry was
essentially nonexistent, as was a body of consumers who had the per

2 The Council for Economic Mutual Assistance is composed primarily of Bulgaria,
Czechoslovakia, Gennan Democratic Republic (GDR), Hungary, Poland, and the USSR.
Cuba, Mongolia, Romania, and Vietnam also have affiliations.

3 ES is a transliterated abbreviation of Edinaya Sistema, the Russian for Unified System.
The Cyrillic abbreviation and an alternate transliteration YeS are also commonly used.
Language differences among the participating countries produce other variants; for example,
the Polish abbreviation is IS . Ryad (alternate transliteration: Riad) is the Russian word for
"row" or "series." The prefix R is sometimes used to designate computer models .

• Broad coverage of Soviet software before Ryad can be found in First AU Conf. Prog.
(1968) ; Second AU Conf. Prog. (1970); Ershov (1969); Drexhage (1976) ; and Ershov and

Shura-Bura (1976).

235 234 S. E. GOODMAN

ceived need and priority to obtain such equipment. Before the early 1960s
the military and scientific/engineering communities were the only influen
tial customers with an interest in computing. However both were less
enamoured with computers than their American counterparts, and the
Soviet industry developed only to the extent where it could respond to
this relatively limited demand. .

By 1971 less than 20 of the approximately 60 known computer models
had been serially produced with more than 100 units apiece (Rudins, 1970;
Davis and Goodman, 1978). The vast majority of these were small- to
medium-scale second-generation machines, some of which were still in
production during the Ninth Five-Year Plan (1971-75) (Myasnikov, 1977).

As of 1971, there were less than 2000 medium- and large-scale second
generation machines in the USSR," in contrast with the much larger num
ber and variety in the West. Furthermore, the West had many more
smaller computers. For example, by late 1963 IBM had built 14,000 1400
series machines (OECD, 1969), almost twice the total number of comput
ers in the USSR in 1970. Thus the population of experienced programmers
in the USSR remained relatively small , and there was a particularly criti
cal shortage of modern systems programmers who had worked on large,
complex, multifaceted software systems . This was compounded by the
failure of the Soviet educational system and the computer manufacturers
to provide the kind of hands-on , intensive practical training that was
common in the US .

Two handicaps shared by all Soviet computer models were a lack of
adequate primary storage and the state of peripheral technology (Ware,
1960; Godliba and Skovorodin, 1967; Judy, 1967; Rudins, 1970; Ershov
and Shura-Bura, 1976) . Installations usually had 1-32K words of core
memory. The most reliable and commonly used forms of input/output
were paper tape and typewriter console. Card readers, printers, and their
associated paper products were of poor quality and reliability. Until the
mid-1960s alphanumeric printers and CRT displays were essentially
nonexistent; printers were numeric and used narrow paper. Secondary
storage was on poor quality tape and drum units. For all practical pur
poses, disk storage did not exist in the USSR until Ryad. Tapes could not
reliably store information for much longer than a month. Additional reli
ability in input/output and secondary storage often had to be bought

5 Most of these were Ural-14 (1965), Minsk-32 (1968), and M-222 (1969) computers . Per
formance was in the 30-50K operations/sec range for scientific mixes. AU three machines
were relative latecomers to the period under discussion. The largest Soviet computer built in
quantity before 1977 was the BESM-6 (1965), comparable to the CDC 3600 in CPU perfor
mance (Ershov, 1975). Over 100 were in use by 1972. All four machines were in production
during most of the Ninth Five-Year Plan.

SOFTWARE IN THE SOVIET UNION

through duplication of hardware or redundant storage of information. For
example, the 16-track magnetic tapes for the Minsk-226 had six tracks for
data, two for parity checks, and the remaining eight tracks simply dupli
cated the first eight as an apparently necessary safeguard . Perhaps most
importantly, Soviet peripherals did not offer convenient means for
software exchange. Punched tape, with its limitations with regard to cor
recting and maintaining software, was more commonly used than punched
cards. Magnetic tapes often could not be interchanged and used on two
ostensibly identical tape drives.

One consequence of this was that almost all programming was done in
machine (binary) or assembly language. By the late 1960s translators for a
few languages were available for all of the more popular computer mod
els, but they were not generally used . A good compiler could take up most
of core, and the programmer could not get his program listed on his
numeric printer anyway. Thus there was a strong bias that favored the
"efficiency" of machine or assembly language programming. Clearly
some of this bias arose from real considerations, but some of it reflected
the same sort of dubious "professional" factors that perpetuate the use of
assembly language in the West. It also helped make a skilled programmer
a relatively rare and widely sought after employee in the USSR. Enter
prises competing for talent would ingeniously create new job titles with
higher benefits.

General purpose data processing and industrial applications were re
tarded the most by computing conditions. A severe handicap, in addition
to those already mentioned, was the lack of an upward compatible family
of computers with variable word length . Efforts to create such a family,
the Ural-1O(Uial-11, -14, and -16) series and early ASVT models (M-1000,
-2000, -3000), did not work out well (Davis and Goodman, 1978). The
hardware situation and the use of machine language inhibited the devel
opment of software that would permit computers to be used for nonscien
tific applications by large numbers of people having little technical train
ing. As a result, the hardware that did exist was often underutilized.

The fact remains, however, that by 1970 the USSR contained between
7000 and 10,000 computers and they could not be used at all without
software. 7 While this figure may be small when compared to the almost
40,000 installed computers in the United States in 1967 (OECD, 1969), it

6 The Minsk machines were the yeoman general purpose computers in the USSR before
Ryad, with a production span covering the period 1962-1975. In addition to the Minsk-32,
there were the earlier -2, -22, -22M, and -23 models (all rated at about 5K operations/sec).
Well over 2000 of these machines were built and many of them are in use today .

1 Our estimates of the Soviet computer inventory tend to be higher than most others, e.g.,
Berenyi (1970) , Cave (1977) .

236 237 S. E. GOODMAN

was still large enough to necessitate a substantial effort and commitment
of skilled technical people.

Much of the past Soviet systems software effort has been in program
ming languages. This is reflected in the large proportion of the open publica
tions devoted to this area, and is consistent with the given hardware
constraints, the relatively formal academic orientation of Soviet software
research personnel , and the historical pattern followed in the West. Some
thing like 50 different higher level languages can be identified from the
literature. Many are experimental and have had virtually no impact be
yond their development groups.

Most of the more widely used pre-Ryad programming languages were
based on ALGOL-60 . The popularity of this language is understandable in
light of the European role in its creation , the fact that most Soviet pro
grammers have had extensive training in mathematics, and its intended
use for scientific/engineering applications . Compiler development began
in the early 1960s and ALGOL-60 became available for most computer
models after 1963 (Ershov and Shura-Bura, 1976). FORTRAN was also
available for at least the Minsk machines, the M-220, and the BESM-6
from the mid-to-late 1960s.

Soviet use of ALGOL-60 has been characterized by a number of
home-grown variants (Drexhage, 1976). ALGAMS and MALGOL are
designed explicitly for use on slow, small-memory systems. ALGEC and
ALGEM have supplementary features that make them more suitable but
still not very convenient for use in economic applications. ALGOS ap
pears to have been an experimental language for the description of com
puter systems. ALGOL-COBOL (Kitov et at. , 1968) is a clear hybrid for
data processing. ALPHA (Ershov, 1966) and ANALITIK (Glushkov et
at. , 1971b) are nontrivial extensions, the latter for interactive numeric
computations . There was essentially no subsequent revision of these lan
guages after the appearance of ALGOL-68 .

A survey of the Soviet open literature on programming languages before
1970 reveals none that were particularly well suited for economic and
industrial planning, business data processing, or large integrated systems
like airline reservations or command and control systems. Attributes cru
cial to such applications, like good input/output and report generation
capabilities, were just not available. For all practical purposes, the more
widely used programming languages in the USSR during this period were
only good for scientific and engineering computations.

Interest in the more widely used United States programming languages
was not insignificant before Ryad. FORTRAN was used at quite a few
installations in the USSR and Eastern Europe. No fully satisfactory reason
is apparent , but the Soviet software community was strong in its opposi
tion to the use of COBOL before 1966. However, government interest in

SOFTWARE IN THE SOVIET UNION

general purpose data processing increased significantly during the Eighth
Five- Year Plan (1966-1970), and serious attention has since been paid to
COBOL (Myasnikov, 1972). This includes an early effort to set up a
minimal compatible COBOL set for Soviet use (Babenko et at. , 1968).
Other languages, including SNOBOL and LISP, attracted scattered adher
ents. The Norwegian general purpose simulation language, SIMULA 67 ,
also became fairly popular.

Hardware limitations retarded the development and implementation of
economically useful operating systems. Until the appearance of the
BESM-6 in 1965, the simplicity and limited flexibility of the available
CPUs and peripherals did not necessitate the development and use of
sophisticated systems software . This was reinforced by the failure of
computer manufacturers to develop and distribute such products and by
the lack of support services for either software or hardware (Gladkov ,
1970; Novikov , 1972).

As a result, users had to develop all but the most basic utility programs
to enable the installation to function adequately in a single program mode.
Most programs could not be shared with other computer centers having
the same CPU model because of local modifications that were made in the
course of hardware self-maintenance and the lack of uniform peripheral
equipment.

Gradually , conditions and perceptions improved and a number of pack
ages of utility routines were eventually put together for the more com
monly used machines. Later, mult"iprogramming batch systems were built
for the larger computers such as the Minsk-32, the Ural-lI , -14 , and -16. At
least three different operating systems were developed for the BESM-6.
The multiplicity of BESM-6 system projects is partially the result of the
nontransferability of anyone system to all installations, and a lack of
communication between installations . Some of these efforts appear to
have been "crash" projects that did not permit the full utilization of the
software development talent available . All of these systems are primitive
by Western standards and did not appear until long after hardware deliv
eries had begun. We do not know how widely they are used or how well
they are supported. Maintenance of even centrally developed systems
was largely the responsibility of the user installation.

As might be expected, Soviet attempts to develop time-sharing systems
were severely constrained by hardware . The USSR was deficient in every
aspect of hardware needed for this mode of computing. A further hand
icap was the poor state of supporting technology such as ground and
satellite communications. Data transmission by telegraph line at 50-150
bits/sec is still common in the Soviet Union (Leonov, 1966; Kudryavs
teva, 1976a).

There were a few pre-Ryad time-sharing projects (Doncov , 1971). The

238 239 S. E. GOODMAN

best known of these are the AIST project in Novosibirsk and the Sirena
airline passenger reservation system. Neither has done well (Doncov,
1971; Drexhage, 1976; Aviation Week, 1972). The BESM-6 operating sys
tem developed by the Institute of Applied Mathematics supported time
sharing at the Academy of Sciences' computer center in Moscow
(Bakharev et al., 1970; Zadykhaylo et al., 1970). It does not seem to have
amounted to much either. Some strange little "time-sharing" systems
(e .g., Bezhanova, 1970) were so limited as to be unworthy of the name.

There have been a few experimental multimachine configurations . The
best known of these were the aforementioned AIST system and the
Minsk-222, which was based on an assortment of Minsk-2 and Minsk-22
computers (Barsamian, 1968; Evreinov and Kosarev, 1970). Both projects
were characterized by what could only be described as naive optimism in
the form of unwarranted extrapolations and fatal underestimations.

With the exception of work in the area of scientific and technical com
puting, the open literature was notably lacking in descriptions of signifi
cant, implemented, and working applications software systems. No doubt
some existed in security sensitive areas, and there is evidence that
software was available to help control certain transportation networks,
such as the national railway system (Petrov, 1969; Kharlonovich, 1971).
However, one gets the strong impression that computers in the USSR
were not being used to do much beyond straightforward highly localized
tasks. The literature contained papers on the theoretical aspects of such
applications as information systems, but this work was generally of a
formal mathematical nature and contributed little to the actual implemen
tation of major systems.

But things would soon change. The 1960s was a period of political and
economic reevaluation with respect to the need for expanding the general
purpose computing capability of the USSR. Soviet economic planners
were distressed by falling growth rates and the rising percentage of non
productive (e .g., clerical) workers. They were also having trouble control
ling the sheer immensity and complexity of the economy. The Soviets
were becoming increasingly aware of the economic and industrial poten
tial of computing, and they were not oblivious to what was being done in
the West. Public discussion of the use of computers, which had been
widespread since the late 1950s, began to be supplemented by very high
level Party endorsements (Holland, 1971b) and practical measures. Atten
tion was directed toward such esthetically unexciting, but practically im
portant, problems as the standardization of report forms, the elimination
of human errors in data reporting, etc. The national economic planning
process itself became a prime candidate for computerization (e.g.,
Glushkov , 1971a). Unlike the United States, which got into data process-

SOFTWARE IN THE SOVIET UNION

ing through an established business machines industry characterized by a
dynamic, fairly low-level, customer-vendor feedback relationship, most
of the driving force behind the entry of the USSR came via push from the
top of the economic hierarchy.

2.2 Soviet Software Si nee 1972

The most important necessary condition for upgrading the state of gen
eral purpose computing in the USSR was the creation of a modern upward
compatible family of computers with adequate quantities of primary
memory and a suitable assortment of peripherals. The first public an
nouncement of what was to become the Unified System of Computers (ES
EVM) came in 1967 (Kazansky, 1967). Within two years, the Soviet
Union had enlisted the aid of its CEMA partners, and the decision was
made to try to duplicate functionally the IBM S/360 by using the same
architecture, instruction set, and channel interfaces.

The first production units of the Soviet-Bulgarian ES-1020 (20K
operations/sec) were announced in early 1972. By the end of 1974, the
Hungarian ES-I0I0 minicomputer, the Czech ES-1021 (40K operations/
sec), the Soviet ES-1030 (lOOK operations/sec; a Polish version never
went into serial production), and the GDR ES-1040 (320K operations/sec)
were in production, providing the USSR and most of Eastern Europe with
about 1000 small- and medium-scale machines per year as of late 1975.
The two largest computers in the series were to suffer considerable de
lays. The ES-1050 (500 K operations/sec) would not go into production
until 1975-1976, the ES-1060 (1 .5M operations/sec) would not appear until
late 1977 (Khatsenkov, 1977; Trud, 1978a). The 1010 and 1021 are not
based on the S/360 architecture and are not program compatible with the
other models. In addition to the basic CPU models, the CEMA countries
have been producing a reasonable range of peripheral devices. Although
most of this equipment is at the level of IBM products that existed during
the second half of the 1960s, they represent a tremendous improvement
over what was formerly available . A much more extensive discussion of
Ryad can be found in Davis and Goodman (1978).

The policy to use the IBM instruction set and interfaces was clearly
based on software considerations. This was perceived to be the safest and
most expedient way to meet the high-priority national objective of get
ting an upward compatible family of general purpose computers into
productive use in the national economy. The Soviets had failed in two
previous attempts to produce such a family, and they must have been
aware of, and frightened by, the major problems IBM had with S/360
software. There was no serious interest in, or perceived need for, pushing

240 241 S. E. GOODMAN

the frontiers of the world state-of-the-art in computer technology. An
obvious course of action was to use a tried and proven system from
abroad. The clear choice was the IBM S/360. By appropriating the S/360
operating systems, they would be in a position to borrow the huge quan
tities of systems and applications programs that had been developed by
IBM and its customers over many years. This would do much to circum
vent the poor state of Soviet software and permit immediate utilization of
the hardware. Although it seems that the Soviets greatly underestimated
the technical difficulties of this plan, it has been followed with consider
able success and represents one of the most impressive technology acqui
sitions in Soviet history.

There are several S/360 operating systems (e.g., IBM S/360, 1974), the
two most important of which are the disk-oriented system DOS/360 and
the much larger OS/360, which consists of several versions that together
contain a few million instructions in a bewildering array of modules. A
tremendous volume and variety of documentation and training aids are
available for these systems. There was no effective way to deny either the
software itself or the documentation to the CEMA countries. Much of this
is in the public domain and can be sent anywhere without license. Sources
of information include IBM itself, tens of thousands of user installations
all over the world, and the open literature. Several CEMA countries have
legally purchased some of the small- and medium-scale S/360 systems,
which include the software and the opportunity to participate in SHARE,
the major IBM user group. Soviet and East European computer scientists
could also legitimately talk to Western counterparts at meetings, by using
Western consultants, through exchange visits, etc. Furthermore, the
Soviets have demonstrated that they can iUegally obtain entire IBM com
puter systems if they are willing to try hard enough.

DOS/ES is the Ryad adaptation of the IBM S/360 DOS disk-oriented
operating system. From the available literature, we cannot identify any
major DOS/ES features that are not part of DOS/360 (IBM/DOS, 1971;
ISOTIMPEX, 1973 ; IBM S/360, 1974; Drozdov et al., 1976; GDR, 1976;
Vasyuchkova et al., 1977). Both systems are subdivided into control and
processing programs. These fu·rther subdivide into supervisor, job con
trol, initial program loader, linkage editor, librarian, sort/merge, utilities,
and autotest modules. The DOS/360 system librarian includes a source
statement library, a relocatable library, and a core image library, as does
DOS/ES . Both will support up to one "background" partition in which
programs are executed in stacked-job fashion, and two "foreground"
partitions in which programs are operator initiated. Both support the same
basic telecommunications access methods (BTAM and QTAM) and the
same translators (assembler, FORTRAN, COBOL, PU1, and RPG).

SOFTWARE IN THE SOVIET UNION

DOS/360 uses OLTEP (On Line Test Executive Program) to test input!
output units; DOS/ES also uses OLTEP. The level of DOS/ES appears to
be at or near the level of the final DOS/360 Release 26 of December 1971.

Similarly, OS/ES appears to be an adaptation of OS/360. It has three
basic modes: PCP (primary Control Program with no multiprogramming
capability), MFT (Multiprogramming with a Fixed Number of Tasks), and
MVT (Multiprogramming with a Variable Number of Tasks) (Larionov et ·
al., 1973; Peledov and Raykov, 1975; 1977; GDR, 1976). All handle up to
15 independent tasks. OS/ES supports translators for FORTRAN levels
G and H and ALGOL 60. The levels of OS/ES seem to be around the IBM
MFT and MVT Release 21 of August 1972. OS/ES MFT requires a mini
mum of 128K bytes of primary storage; OS/ES MVT needs at least 256K
bytes (Naumov et al., 1975). OS/ES is mentioned much less frequently in
the literature than DOS/ES. No doubt this reflects on the fact that the
great majority of Ryads are at the lower end of the line. It may also
indicate serious problems in adapting OS/360 to the ES hardware and
problems with the supply of adequate quantities of core storage (many ES
systems were delivered with about half of the planned core memory
capacity). It is possible that DOS/ES may have been the only Ryad operat
ing system operationally available for a couple of years.

The ES assembly language, job control language, and operating system
macros are identical with those of S/360 (references in last two para
graphs; Larionov, 1974; Mitrofanov and Odintsov, 1977). The Soviet litera
ture preserves the style of IBM software documentation. Assorted error
codes, messages, console commands, and software diagnostics were origi
nally in English and identical to those used by IBM. Such things have
since become available in Cyrillic, but we do not know if these are stan
dard options. English error codes, etc., still seem to prevail.

Several observers who were very familiar with IBM S/360 systems
software have been able to identify fine details in ES software that leave
little doubt as to the source of the product and to the degree to which it
was copied.

It is as yet unclear exactly how program-compatible the Ryad family
members are with each other or with IBM products. Some serious testing
by CDC of their purchased ES-I040 indicates a high level of IBM com
patibility (Koenig, 1976). IBM systems software could be loaded and run
on the 1040 without much trouble. It is not known if the Soviet-made Ryad
hardware is as directly' compatible with IBM software. The Soviets are
investing literally thousands of man-years in the development of the
Ryad operating systems (Rakovsky, 1978b), but we really do not know
what all these people are doing. Hardware differences between the S/360
and Unified System, and between the different models of the Unified

242
243

S. E. GOODMAN

System, may have made it necessary to adapt the IBM operating systems
to each of the ES models.

Now that IBM no longer supports either DOS/360 or OS/360, the
socialist countries are on their own as far as the maintenance and en
hancement of the two systems is concerned. A recent "new version" is
not especially impressive. The Scientific-Research Institute for Electronic
Computers in Minsk, the institute that probably adapted DOS/360 to the
ES-I020, came out with DOS-2/ES in 1976 (Kudryavsteva, 1976a). The
most notable additions to DOS are an emulator for the Minsk-32 and some
performance monitoring software. We do not know to what extent these
enhancements are built into the operating system.

More generally, all of the ES operating systems have gone through
several releases since they were introduced. We cannot really tell to what
extent this reflects the addition of significant capability enhancements,
academic (i .e., noncost effective) design optimizing perturbations, or sim
ple accumulations of fixes. We suspect that the Soviets try not to tamper
with the operating systems unless they have to in order to get them to
function adequately. This may have been the case with an announced
real-time supervisor known as SRV, an OS/ES coresident program for
providing fast response in a real-time environment. SRV seems to be an
adaptation of the IBM S/360 Real-Time Monitor (IBM RTM, 1970;
Naumov, 1976), but, unlike the situations with DOS and OS, there are
substantial differences.

The first USSR State Prize to be awarded for practical software work
was announced at the end of 1978 (Trud, 1978b). In some ways it is
remarkable that it took this long for the Soviet scientific and technical
community to recognize the importance of software. The award was made
for the Ryad operating systems. Not surprisingly, neither IBM nor people
like F. P. Brooks , Jr. , were named as co-winners.

It is important not to underestimate the achievements of the CEMA
computer scientists in functionally duplicating S/360. They have mastered
the quantity production of reasonably modem hardware and they did
succeed in the formidable task of adapting the S/360 operating systems to
this hardware . This is not to say that they did not have considerable help
from external sources, or that they did a good, or fast, or imaginative job.
In fact, the effort took them about as long as it took IBM in the first place,
and they have yet to achieve S/360 quality and reliability standards across
the Unified System product line. Nevertheless, they had the talent and
resources to achieve the basic goals and, relative to their own past, they
have acquired a much enhanced indigenous computing capability.

Between 1975 and 1977, the CEMA countries came out with several
"interim" Ryad models that are essentially evolutionary upgrades of

SOFTWARE IN THE SOVIET UNION

some of the earlier machines. These include the Hungarian ES-I012 (an
other mini), the Soviet-Bulgarian ES-1022 (80K operations/sec) , the
Polish ES-I032 (200K operations/sec-the "real" Polish 1030), and the
Soviet ES-I033 (200K operations/sec) . In addition to these new CPU
models, the CEMA countries have been producing a small, but steady,
stream of new peripheral equipment (CSTAC II, 1978).

Although the current peripheral situation is much improved over the
pre-Ryad era, complaints about shortages of peripheral devices and their
associated paper products are still common (Lapshin, 1976; Ashastin,
1977; SovMold, 1978; Zhimerin, 1978).

The best evidence that the CEMA nations are basically satisfied with
the policy of copying the IBM product line is the current effort to develop
a new group of Ryad-2 models that are clearly intended to be a functional
duplication of the IBM S/370 family (IBM S/370, 1976; Bratukhin et al. ,
1976; CSTAC II, 1978; Davis and Goodman, 1978). By early 1977 most of
the new models were well into the design stage. By the end of 1978, the
Soviet ES-I035 was claimed to be in production (Sarapkin , 1978) and
prototypes for at least the GDR ES-I055 (Robotron, 1978) and the Soviet
ES-I045 (Kommunist, 1978) existed. The appearance of other prototypes
and the initiation of serial production will probably be scattered over
1979-1982. A Ryad-3 project was recently announced (Pleshakov , 1978),
but almost no details are available .

S/370-like features to be made available in the new Ryad-2 models
include larger primary memory, semiconductor primary memory,
virtual-storage capabilities, block-multiplexor channels, relocatable con
trol storage, improved peripherals, and expanded timing and protection
facilities. There are also plans for dual-processor systems and greatly
expanded teleprocessing capabilities .

It is not clear if the Soviets intend to use the IBM S/370 operating
systems to the same extent as they did those for S/360, or if they plan to
build the Ryad-2 operating systems on the Ryad-l OS/ES base. M. E.
Rakovsky, a vice-chairman of the USSR State Planning Committee
(Gosplan) and one of the highest ranking Soviet officials to be directly
involved in the Ryad project on a continuing basis, has stated that' 'devel
oping the Unified System's Ryad-l operating software to the point where
it will handle all the functional capabilities of the Unified System's
higher-level Ryad-2 system will take between 1600 and 2000 man-years."
He goes on to say thatthis effort will be carried out at "two institutes that
employ a total of about 450 programmers" (Rakovsky, 1978b). There is
also some reason to believe that GDR Robotron's new virtual operating
system OS/ES 6.0 for the ES-I055 may be more of an original effort than
was the ES-I040 operating system. Emulators have been announced as

244
245 S. E. GOODMAN

part of the initial offerings for the two most advanced of the Ryad-2
models : one for running programs for DOS/ES on the 1055 (Dittert, 1978),
and one for Minsk-32 programs on the 1035 (Kudryavsteva, 1976b).

The Unified System project has by no means absorbed the entire Soviet
computer industry although this may seem to be the case since most of
what appears in the Communist literature relates to Ryad . The joint
CEMA effort has forced the Soviets to be more open about computer
developments . The focus is on Ryad because it is by far the largest project
and many of the others are officially classified. With respect to mainframe
computers, the Unified System has roughly the same relative standing in
the USSR as the IBM 360/370 series has in the United States; although
most of the Soviet non-Ryad mainframes are smaller second-generation
computers, whereas in the United States most of the non-IBM main
frames are technically competitive CDC, UNIVAC, Burroughs , etc .,
models .

The most extensive, openly announced non-Ryad production is primar
ily in the form of assorted machines built by the Ministry of Instrument
Construction, Means of Automation, and Control Systems (Minpribor).
Many are part of the ASVT series: M-4030, M-5000, M-6000, M-7000,
M-400, M-40, and , most recently, the M-4030-1 (Naroditskaya, 1977). The
medium-scale M-4030 is compatible with the Ryad family at the operating
system level (Betelin et ai. , 1975). The other models are minicomputers,
the first of which, the M-5000 and M-6000, appeared in 1972-1973. The
USSR also relies on imports from Hungary, Poland, and the United States
to meet some of its minineeds. The ASVT line is widely used in Soviet
industry and the literature indicates that a considerable amount of
software has been developed for these machines. A great deal of substan
tive minicomputer related R&D is done in the Baltic states (e .g. , SovEst,
1978).

A joint CEMA effort is currently in progress to consolidate the scattered
member nation minicomputer activities by establishing a new SM
(Sistema Malykh-Small System) family (Naumov, 1977). Of the four an
nounced machines, the SM-1, -2, -3 , and -4 (SM-5 and -6 announcements
are expected in 1979), at least the first three were in production by mid
1978 . Early indications are that a substantial amount of general purpose
SM software is available, and that some form of ASVT program compati
bility is possible (Filinov and Semik, 1977; Rezanov and Kostelyansky,
1977 ; TECHMASHEXPORT 1978a,b). These minis can be used with
much of the peripheral equipment that has been developed for Ryad and
ASVT.

Large scientific computers are under advanced development at the In
stitute of Precise Mechanics and Computer Engineering in Moscow, the
developers of the BESM machines. Recently announced were the
El'brus-l and -2 (named after the highest mountain in Europe) (Burtsev,

SOFTWARE IN THE SOVIET UNION

1978; MosPrav , 1978). The El'brus-l is thought to be based on the Bur
roughs architecture (Burtsev, 1975). This architecture is particularly well
suited for ALGOL programming, the language greatly favored by Soviet
computer scientists and scientific programmers. The El'brus-2 may be a
loosely coupled collection of El'brus-l machines. Past experience makes
it likely that the Institute of Applied Mathematics in Moscow will partici
pate in the development of its systems software. The new large computers
will probably be produced in small numbers and many of these will be
used at military and other restricted installations. The majority will even
tually displace BESM-6s, so a BESM-6 emulator is likely to be an impor
tant element in early El'brus software offerings. By the time El'brus de
liveries start , the receiving installations will have been using their
BESM-6s for up to 15 yr. There will be considerable resistance to program
conversion.

In addition to these large projects, there are a number of scattered
smaller efforts that we know about. These include a few complete com
puter systems like the new line of RUTA models (Kasyukov, 1977) and
the Nairi-4 (Meliksetyan, 1976), work on microcomputers [e.g., the S5-11
being built in Armenia (Kommunist, 1977)], and some hand-held "pro
grammed keyboard computers" [e.g., the Electronika BZ-21 being built in
Kiev (Trud, 1977)]. We do not know anything about the software that is
being developed for these relatively unimportant machines, but it would
not be surprising if the software offerings to early purchasers were very
meager. Work on highly modular recursive machines is currently in a
rudimentary stage in both the US and USSR (Glushkov et ai., 1974; EE
Times, 1977). We have essentially no information on Soviet efforts to
develop software for machines with this architecture.

Relative to their pre-Ryad past,the Soviets have clearly come a long
way in correcting hardware and systems software deficiencies. There are
now 25,000-30,000 computers in the USSR and at least half of them are
respectably modern systems. The Unified System and the ASVT-4030, in
particular, provide a large, common hardware and systems software base .
But how productive have these machines been , and how well have they
been integrated into the fiber of the national economy?

There is no question that the Soviets and their CEMA partners have
given high priority to the use of computing as an important means to help
modernize the economy and increase factor productivity. Indeed , the
production of a large number of industrially useful programs began with
the delivery of the first ES units. There are visions of great efficiencies to
be achieved from the partition of this activity among the member coun
tries (Rakovsky, 1978a) , but since the various Eastern European econo
mies differ considerably at the microeconomic level, one might well enter
tain doubts as to how well this will work out.

The availability of ES and ASVT hardware has resulted in something of

246 247
S. E. GOODMAN

a minor software explosion. But this hardware is still backward by world
standards. More important, the experience and personnel base necessary
for the development of either large world-standard state-of-the-art
software systems or large numbers of low-level everyday data processing
programs is not something that can be put together in a short period. And
perhaps, in the light of past Western practices, Soviet institutional struc
ture tends to inhibit the customer-oriented design, development, and dif
fusion of software (see Section 3).

By far, the most extensive and prominent software activity in the USSR
relates to what are collectively called automated controVmanagement sys
tems (ASU). The ASU spectrum runs from the simple no-direct-control
monitoring of a small production process to a grand national automated
data system for planning and controlling the economy of the Soviet Union.
A broad range of economic/industrial ASUs is listed in Pevnev (1976). The
creation of ASUs has become a major nationwide undertaking (e.g. ,
Ekongaz, 1976; Zhimerin , 1978) and there are now literally hundreds of
articles and books on ASUs appearing in the Soviet literature. A small
sample of recent , general books includes Kuzin and Shohukin (1976),
Pevnev (1976, which gives the best overall perspective) , Pirmukhamedov
(1976) , Liberman (1978), and Mamikonov et al. (1978). Descriptions of
specific ASUs under development and more general articles on the sub
ject often appear in the periodicals Sotsialisticheskaya industriya,
Ekonomicheskaya gazeta , and Pribory i sistemy upravleniya. A large num
ber of industry-specific publications and the public press media also fre
quently carry articles on ASUs.

Although a great many articles describing a great many ASUs have
appeared, by US standards these articles give little substantive informa
tion. It is thus difficult to do much more than list a lot of specific ASUs
(the reader will be spared this) or present some tentative general observa
tions. The Soviet interest in ASUs at all levels is genuine and serious.
ASU s are being pushed vigorously from above, and there is a certain
amount of desire at every level of the economic hierarchy to be part of the
movement. Two major obstacles to the successful infusion of ASUs into
the economy are the resistance of management, who are comfortable in
their preautomation environment , and the inexperience of Soviet com
puter scientists and programmers. The Soviets have been making steady
progress in overcoming both problems. Industrial managers are beginning
to appreciate the potential of computers for doing tasks that people do not
enjoy, but which need to be done, and the software specialists are begin
ning to think more realistically about simple , useful systems that are
within their capabilities to build. This gradual convergence seems to be
getting a lot of small systems built and used. With few exceptions (Myas-

SOFTWARE IN THE SOVIET UNION

nikov , 1974), it appears that most of this software is not widely dissemi
nated, but used only locally (e.g. , Zhimerin, 1978). None of this work is
particularly imaginative by US standards, but there is no reason to expect
it to be. As we shall discuss at greater length in the next section, the
Soviet economic environment is conservative and introverted . The
Soviets are cautiously and independently repeating much of the learning
experience that took place in the US in the late 1950s and 1960s . It would
be surprising if they were doing anything else.

The Soviets continue to expend considerable local effort on software for
second-generation machines. Much of what is reported in the open litera
ture is for the Minsk-32 (e.g., Kulakovskaya et al., 1973; Zhukov, 1976;
Vodnyy transport, 1977), but this must be true more generally since al
most half of the computers in use in the USSR are of pre-Ryad
manufacture.

The appropriation of most of S/360' s software has eroded the past
ALGOL orientation of high-level programming in the USSR. FORTRAN
and PU1 are now widely used. The government has pushed COBOL since
1969 and, given the emphasis on economic applications, it is not incon
ceivable that it could become the most widely used nonscientific language
in the Soviet Union. Assorted CEMA computer centers have used LISP,
SNOBOL, PASCAL, etc., and these languages will find their local advo
cates at Ryad installations. SIMULA-67 is an important simulation lan
guage (Shnayderman et al., 1977). So far, we have seen little of the
Soviet-designed high-level languages on ES systems, although Ryad trans
lators for some of these do exist. Most of what is done with regard to these
languages may be intended to prolong the usefulness of programs written
for second-generation computers, or to permit users to remain in the
familiar and comfortable environ,ment of these older machines. This
would explain why ALGAMS , anALGOL-60 variant explicitly intended
for slow machines with small primary memories, has been made available
as an option with DOS/ES (Borodich et al., 1977).

Although frequent allusions to time-sharing systems appear in the
Soviet literature (e.g., Bratukhin et al., 1976; Drozdov et al. , 1976; So v
Ross , 1976), it is not clear what is readily available and used. None of the
Ryad-1 or interim models has virtual storage , and storage capacities are
marginal. Much of the telephone system in the USSR is not up to support
ing the reliable transmission of large volumes of information beyond a few
kilometers . We have seen no explicit mention of the TSO (time-sharing
option) extension of OS/360 MVT, which IBM announced in November
1969. Not one of the 20 large "time-sharing centers" scheduled for com
pletion in 1975 was fully operational by early 1977 (Rakovsky, 1977). Now
the goal is to have six by 1980 (Zhimerin, 1978). User demand for time

248 249 S. E. GOODMAN

sharing has only recently become serious enough to motivate more than
academic exercises. The development of suitable hardware and software
is currently being pursued (e.g., Bespalov and Strizhkov, 1978; Per
vyshin, 1978), but most of this seems to be in rudimentary stages of
development. Several experimental systems appear to be operational, and
the ES-1033 with time-sharing capabilities has been advertised for sale in
India (ElorglComputronics, 1978) using OS/ES. However, widespread
time-sharing use seems unlikely as long as most Ryad installations are
equipped to use only DOS/ES. The enhanced capabilities expected with
the Ryad-2 models should bring further progress.

There is considerable interest in database management systems
(DBMS) in the USSR. Much of the work that is described as operational
seems to be in the form of very low level, and localized, information
retrieval systems. In the past, Soviet work in this area was severely
constrained by a lack of disk and other secondary storage equipment, and
by the poor state of VO technology. Ryad and other developments have
eased this situation somewhat, but there are still serious limitations. For
example, most Soviet installations are still equipped with only 6-8 7.25
Mbyte IBM 2311-like disk configurations that do not allow the interleaving
of data transfers. IBM 3330-like disk drives are expected to be available in
moderate quantities for non special (i.e., nonmilitary or non-Party) users in
1979-1980. The new capabilities expected with Ryad-2 models, especially
block-multiplexor channels, should also be helpful.

Poland, the GDR, and the USSR are developing several DBMS based
on Codasyl. The Soviet system is called OKA and was developed at the
Institute of Cybernetics in Kiev (Andon et al., 1977). OKA runs on OS/ES
4.0 (MFT and MVT) and has both a batch- and time-sharing mode. OKA
is currently being field tested at at least one unknown installation. There is
an All-Union working group following Codasyl in the USSR.

The Institute of Cybernetics in Kiev is working on two systems pat
terned after IBM IMS-2 and the experimental IBM relational DBMS
System-R. The Soviet relational DBMS is called PALMA.

The Soviets have been developing several specialized DBMS. Most of
the publicly acknowledged work is oriented toward economic planning,
including a system that is being field-tested by Gosplan.

Soviet journals are filled with the description of experimental pro
gramming systems of various sorts. The relatively new (1975) journal
Programmirovanie has become one of the most academically prestigious
outlets for this work. It also seems to be the only major, regularly pub
lished, openly available , Soviet journal devoted exclusively to research in
programming and software, although other journals, e.g., Upravlyayus
chiye sistemy i mashiny, often contain informative articles. Few of these

SOFTWARE IN THE SOVIET UNION

articles are at the world state-of-the-art in software research (articles on
Minsk-32 software appear with some regularity), and the theoretical work
being done and the experimental systems being described seem consistent
with the overall level of Soviet computing compared to that of the West
and Japan. As far as we can tell, none of these products of Soviet research
were offered as standard options with the early Ryad computers. Al
though many of these programming systems are being built to run on
Ryads, it is not clear to what extent they are intended to become standard
software options.

It is important to emphasize that we currently have a rather poor overall
picture of how well or how extensively the Soviets have been using the
software they have announced, or even what they have had for a long
time. The lack of publications like Datamation, the very limited access we
have had to Soviet installations, etc., make it difficult to say much more
than we have.

3. SystemiC Factors

In spite of the real progress and future promise offered by improved
hardware availability and official recognition and support, there are some
deeply rooted systemic problems that will continue to constrain severely
the development of the Soviet software industry.

3.1 Software in the Context of the Soviet Economic SystemS

To a first approximation, the Soviet government/economy is organized
in a hierarchical, treelike structure. The highest level node in the tree is
the Council of Ministers (COM). The next levels represent a few score
ministries, state committees, and other high administrative agencies. Then
there are intermediate levels of Republic, branch, and department admin
istration and management. Finally, the lower levels contain the institutes
and enterprises that are responsible for R&D and the production and
distribution of goods and services. This is a large bureaucratic hierarchy
that encompasses every economic aspect of Soviet society. As a result of
this vertical structure, and a very long and strong Russian bureaucratic
tradition, much of the Soviet economy is unofficially partitioned into as
sorted domains or fiefdoms. These exist along ministerial, geographical,
and personality divisions. People and institutions in this structure gener

8 Some general background references for this subsection include Granick (1961) , Nove
(1969), Bornstein and Fusfeld (1974), Kaiser (1976), Smith (1977), Berliner (1976), and
Amann el al. (1977).

251

<::ou
S. E. GOODMAN

ally develop behavior patterns that please the higher level nodes in their9

domains. This behavior mayor may not coincide with the goal ofprovid
ing high-quality service or products to customers.

Superimposed over this vertical hierarchy are a variety of horizontal
relationships. The domains are not self-sufficient. In addition to directions
from above, they get supplies and services from units in other domains
and they, in tum, supply goods and services elsewhere. The centralized
planning apparatus, in collaboration with other levels in the hierarchy,
establishes suppliers and customers for almost every Soviet institute and
enterprise. Although there is some flexibility in establishing these horizon
tal relationships, they are for the most part beyond the control of lower
level management. One of the most important of the self-assigned tasks of
the Communist Party is to expedite all sorts of government and economic
activity. The Party intercedes to get things done . Although the Party
organization is also subdivided into fiefdoms, it is more tightly controlled
and operates freely across government/economic domains. Finally, there
are the unofficial, sometimes illegal, horizontal arrangements that are
often created to enable an enterprise to function successfully in spite ofeverything else.

In the centrally planned Soviet economy, there is no market or
quasimarket mechanism to determine prices, prodUct/service mixes, re
wards, etc . For the most part, all of this is worked out at high levels and
by a centrally controlled haggling process, although lower level manage
ment has been granted some degree of flexibility by gradual reforms since
1965. In this system quantity is stressed over quality, and production is
stressed over service. Enterprises are told what to do. Failure to meet
these imposed commitments can bring stiff penalties. Success is re

warded, but there is little opportunity for the high-risk, big-payoff, in

novative entrepreneurial activity that is common in the US. The central

planners do not like much activity of this sort because it is difficult to
control.

The business practices that have evolved in this environment are not
surprising. Enterprises are oriented toward the basic goal of fulfilling the
performance indices that are given to them. These are usually narrowly
defined quantitative quotas. Thus, for example, a computer producer' s
most important index may be the number of CPUs manufactured and a
less important index may be the number of peripheral devices built. Re
wards are paid for meeting the basic goals and for overfulfillment. Lists of
suppliers and customers are provided by the planners. Plant management

9 Of course , this behavior is not unique to the SOviet bureaucracy. It is characteristic of .
many bureaucracies, including most (if not all) of the US Government. However, in the
USSR it is much more pervasive and there is no alternative to being part of this system .

SOFTWARE IN THE SOVIET UNION

will obviously give first priority to meeting the CPU production norm,
then priority goes to the peripherals. They do not want to overdo things,
because this year's successes may become next year's quotas. Further
more, it is clearly in their own best interests to haggle with the planners
for low quotas. Since customer satisfaction is of relatively minor impor
tance (particularly if the customer is far away or under another ministry) ,
management is not going to divert its resources to installation and mainte
nance unless it absolutely has to. There is also an obvious incentive to try
to retain the status quo. Once a plant operation has started to function
smoothly, there is no market pressure to force innovation, improved ser
vice , and new products, All these things mean finding new suppliers,
changing equipment, and retraining personnel. They involve serious risk,
and local management cannot control prices or suppliers to balance the
risk.

There are strengths in this system. Central control and the powerful
expediting role of the Party allow national resources to be concentrated in
high-priority areas. The differences between the Minsk machines and
Ryad show that much can be done on a respectably large scale once the
high-level decisions have been made. Apathy disappears and labor quality
improves on priority undertakings. Of course , the government and Party
do not have the resources and cannot maintain enough pressure to do this
sort of thing across the entire economy. Furthermore, it can be argued
that some of this high-priority success occurs because these projects are
really removed from the economic mainstream.

Software development would seem to circumvent some of the systemic
difficulties that plague other products. Once the basic hardware exists at
an installation, software work does not depend to any great extent on a
continuing and timely flow of material supply from outside sources . Not
surprisingly, Soviet enterprises have a tendency to avoid intercourse with .
and dependence on the outside. It would seem easier to develop an in
house software capability than one for spare parts or raw materials. It
would also seem that commercial software houses would be able to pro
vide better service than,say, a hardware maintenance group. The
software house is not in the middle of a supply chain, the hardware
maintenance group is. Since the software industry does not involve the
distribution of material products, more casual horizontal vendor
customer relationships would be expected to be less troublesome for the
central planners. Finally, the problem of the mass production of copies of
a finished product is reduced almost to the point of nonexistence.

It would thus seem that software has been singularly blessed at both the
macro- and micro economic levels in the USSR. But high-level policy
statements are not always easy to translate into practice, and the firm

253 252 S. E. GOODMAN

level advantages just described may be less advantageous than they ap
pear. The development of a broad national software capability is not like
the development of a capability to build computing hardware or armored
personnel carriers. The nature of software develbpment places consider
able emphasis on traditional Soviet economic weaknesses and is not well
suited to the "annual plan" form of management that is dominant in the
USSR.

Before Ryad, hardware manufacturers did little to produce, upgrade, or
distribute software. Few models existed in sufficient numbers to make
possible a common software base of real economic importance. Repeated
attempts to form user groups produced limited successes. Soviet security
constraints restricted participation in sharing software for some models.
Enterprises rarely exchanged programs. Contracts with research insti
tutes to produce software products were often frustrating for the customer
(e.g. , Novikov, 1978). The research institute staff would be content with a
prototype system that was not well tailored to the customer's needs. Most
users had little recourse but to modify and maintain the programs on their
own.

Conditions are gradually improving, but changes take time even where
they are possible. One promising reform has been the establishment of the
corporationlike production associations (Berliner, 1976; Gorlin, 1976).10
These support the creation of relatively large and efficient computer cen
ters that should be able to better serve the needs of the association and its
component enterprises. The association may contain a research institute
with its own software group. On the surface, at least , an association
appears to be a more viable unit for the production and utilization of
software, and one that might be able to deal more effectively with other
firms. However, seemingly reasonable reforms in the past have actually
produced results opposite those that were intended (e.g., Parrott, 1977). It
is as yet too early to evaluate the impact of this reorganization, either in
general or with respect to software development.

In the US there are a large number of companies that provide profes
sional software services to customers. They range in size from giants like
IBM to one-man firms. Some build systems and then convince users to
buy them. Others ascertain customer needs, and then arrange to satisfy
them. A variety of other services are also offered . Basically they are all
trying to make a profit by showing their customers how to better utilize
computers. To a considerable extent, the software vendors and service
bureaus have created a market for themselves through aggressive selling
and the competitive, customer-oriented, development of general purpose

10 It is worth noting that enterprises engaged in the development of computer hardware
were organized in loose research-production associations before they became generally
fashionable .

SOFTWARE IN THE SOVIET UNION

and tailor-made products. There is probably no other sector of the Amer
ican economy with such a rapid rate of incremental innovation.ll The best
firms make fortunes, the worst go out of business . Adam Smith would
have been overjoyed with this industry.

The Soviets appear to have no real counterpart to these firms for the
customer-oriented design, development, diffusion, and maintenance of
software. One enterprise, the Tsentroprogrammsistem Scientific
Production Association in Kalinin, has been publicly identified as a pro
ducer of ES user software (Izmaylov, 1976; Ashastin, 1977; Myasnikov,
1977). This organization is under Minpribor. We assume that the Ministry
of the Radio Industry, the manufacturer of Ryad in the USSR, has some
central software facilities available because of legal responsibilities. Some
research institutes, computer factories, and local organizations develop
and service software, but complaints about their work is common (e.g.,
Zhimerin, 1978) and praise is rare. We know little about what any of these
places are doing or how they function. The average Soviet computer user
does not seem to have many places it can tum to for help. This is particu
larly true of installations that are not near major metropolitan areas (e.g.,
Davidzon, 1971; Letov , 1975; ZarVos, 1976).

The mere fact that we know so little about Soviet software firms is
strong evidence that the volume and pace of their activities must be much
below that of the American companies, or at least that benefits to users
are limited by a lack of readily available information. Most American
computer users are not very sophisticated and need to have their hands
held by vendors and service companies. Most Soviet users are less sophis
ticated. It is inconceivable that the USSR has anything comparable to the
American software companies that we do not know about , because then
there is no way for the thousands of computer users in the Soviet Union to
know about such services either. It is simply not the sort of thing that can
be successfully carried on in secret. It must advertise in some way or it
will not reach its customers.

Soviet installations are now pretty much on their own with regard to
applications software. The open literature seems to confirm this with arti
cles on how" Such-and-Such Production Enterprise" built an applications
system for itself. There are few articles on how some research institute
built something like a database management system that is now being used
at scores of installations in a variety of ways. Currently, Soviet installa
tions are building lots of fairly obvious local systems. This pace may
actually slow down once these are up and running because there are few
effective mechanisms for showing users what they might do next.

" Unfortunately, there appears to be no study of the US software industry that would
enable us to be more specific.

http:innovation.ll
http:1976).10

254 255 S. E. GOODMAN

Considerable potential for improvement exists. Although there do not
seem to be many commercially developed software products in wide
spread, operational use, there have been quite a few articles on ASUs that
are being developed with this goal (e.g., Bobko, 1977). Many of these are
for management information systems intended for general or industry
specific users. There is high-level push for standardization of ASUs and
the increased commercialization of software (Myasnikov, 1976; Zhimerin,
1978). Sooner or later, as they gain experience, some of the industrial and
academic institutes that are doing software work will evolve into viable
software houses . There are other possibilities. Right now computer instal
lations are building up in-house software capabilities to meet their own
needs. After a while there is bound to be some local surpluses of various
kinds. We might see the gradual development of an unplanned trade in
software products and programmers among enterprises. This sort of trad
ing goes on all over the economy, and there is substantial opportunity for
software. Finally, it is not inconceivable that a little unofficial free enter
prise might evolve, as it does in plumbing and medicine. Small groups of
bright young programmers might start soliciting moonlighting tasks .

The extent of the software service problem may go beyond applications
software. We know little about how new operating systems releases are
maintained or distributed to users , although in 1976 the All- Union Associ
ation Soyuz EVM Komplex was established, along with local affiliates like
Zapad EVM Komplex in the Ukraine and Moldavia, to service centrally
both hardware and software (Trofimchuk , 1977). We do not know who
produces the new releases or how changes are made. The Soviets are not
in the habit of soliciting or seriously consideripg a broad spectrum of
customer feedback. The research institutes that maintain the ES operating
systems may only communicate with a few prestigious computer centers .
New releases are probably sent on tape to users12 who are not likely to get
much help should local problems arise. New releases may well necessitate
considerable local reprogramming , particularly if the users modify the
systems software to their own needs . Once an installation gets an operat
ing system to work , there is a tendency to freeze it forever (Reifer, 1978).

There is a widespread users ' attitude that accepts the software service
situation and is thus a major obstacle to progress. The legendary tradition
for endurance of the Russian people, and the vertical structure and short
age of resources that strongly favor the vendor;s position, makes poor
service a chronic and pervasive feature of life in the USSR. Improvement
in the service aspects of the computer industry are taking place more
slowly than are improvements in production . . Most Soviet users can do

12 This is actuall y an optimistic assumption. There is no evidence that new releases are not
sent in a printed fonn that might require a major effort by users to put up on their machines.

SOFTWARE IN THE SOVIET UNION

little more than complain (complaints that would get at the core of the
problem are politically unacceptable), and wait until the leadership per
ceives that the problem is serious enough to do something constructive.
The Soviet Union has no counterparts to the market power of the average
consumer and the flexibility for creating mutually desirable business ar
rangements that have built up the impressive commercial software indus
try in the U ni ted States.

The introduction of computers into Soviet management practice has
been coming along slowly. Conservative applications, like accounting sys
tems, seem to be the rule. The use of simple management information and
process control systems is gradually increasing. Although there is some
Soviet research on the utilization of computer techniques for decision
analysis and modeling management problems (Ivanenko, 1977), little
seems to be put into practice. Soviet managers tend to be older and more
inhibited than their American counterparts . The system in which they
work stresses straightforward production rather than innovation and mar
keting decisions. Soviet economic modeling and simulation activity stress
the necessity ofreaching a "correct socialist solution," and is not oriented
toward being alert for general and unexpected possibilities in a problem
situation. Furthermore, Soviet industry has learned not to trust its own
statistics, and there may be a big difference between "official" and actual
business practice. What does one do with a computer system for the
"official" operational management of an enterprise when actual practice
is different? Does one dare use the computer to help manage " expediter"
slush funds , under-the-counter deals with other firms? A recent case indi
cates that these are serious problems (Novikov, 1978 ; WashPost , 1978).

Soviet programmers may be in an odd position with respect to industrial
management. It is not clear that the managers know what to do with them.
Firms are oriented toward plan fulfillment; they are not as information
oriented as their American counterparts. The work of a programmer is
often not directly related to the enterprise's plan, nor is his function as
readily perceived as that of, say , a secretary or janitor. Management has
to figure out what to do with these people and somehow measure their
value to the enterprise. This is a big burden, and many of the older, highly
politicized industrial managers are probably not up to doing this well. It
will take the Soviets at least as long to learn to use their machines effec
tively as it took us .13

The USSR can claim what is potentially the world's largest manage
ment application-an ASU for planning the entire Soviet economy

13 Americans should be reminded that some US management groups behaved similarly
during the 1950s. The insurance industry, now among the largest and most committed
computer users , is a notable case in point.

256 257 S. E. GOODMAN

(OGAS). The Soviets have been talking about a network of computer
centers for this purpose since the late 1950s. An often cited plan calls for a
hierarchy consisting of a main Gosplan center in Moscow, 80 regional
centers, and 4000 local centers (Chevignard, 1975). Data will be consoli
dated upward and plans will be passed downward in this treelike struc
ture. The literature on the subject is large, and this is neither the place to
review nor to analyze the project except to comment briefly on · some
software-related aspects.

On the surface, of course, it is ridiculous for the Soviets to talk about
such an undertaking when data communication between computer centers
often takes the form of someone carrying a deck of cards crosstown on a
bus . The Soviets do not understand the operation of their own planning
practices well enough to write down a useful set of specifications for the
super software system that would be necessary to support such a large,
highly integrated , and comprehensive network. The system is primarily a
political football that is being struggled over by Gosplan and the Central
Statistical Administration. From a software standpoint, it has helped them
to start thinking, in some detail, about important problems like standardi
zation, documentation , data-reporting procedures and formats, and the
usefulness of their own statistics (Ekongaz, 1977). It has also spurred
considerable investment in an assortment of data-processing systems.
These products are useful and the experience is desperately needed.

3.2 Internal Diffusion

Before Ryad, the dissemination of software products and services was
accomplished through a variety of mechanisms including national and
regional program libraries, user groups, and informal trades. None of this
was particularly effective or well organized [see references listed on p. 112
of Davis and Goodman (1978)]. For example, some libraries were little
more than mail-in depositories that were not properly staffed, indexed, or
quality controlled (Dyachenko, 1970; Galeev, 1973). The development of
the Unified System was accompanied by a greater appreciation of the
limitations of part practices. Ryad hardware would be pitifully under
utilized if each user installation were left with an almost empty machine
and expected to do all its own programming. This would have defeated the
whole purpose of the new system.

The creation of the Unified System, with its common hardware and
software base, is a major step in the alleviation of the technical difficulties
of portability-the transfer of software from one installation to another.
The hardware mixes and self-maintenance practices of the pre-Ryad days
were severe limitations to portability. It should be noted however that this

SOFTWARE IN THE SOVIET UNION

in itself does not guarantee portability of systems. Programs developed at
one IBM 360 installation in the West are not necessarily trivially transfer
able to another. Local differences in hardware and software-including
differences in operating systems-may make this difficult.

Ryad marks a singular development in Soviet computing history: Its
vendors are providing complete and modern operating systems and utility
programs to all users. We do not know what the vendors are doing beyond
this to promote standardization and diffusion. Standardization is an im
portant form of diffusion since it facilitates portability and centralized
maintenance. In the US, software standards exist primarily through the
activities of important vendors; government efforts have had some suc
cess (notably with COBOL) but tend to be less effective (White, 1977) .
With their hierarchical system, one would think that the Soviets are in a
particularly strong position to promote standardization and diffusion. For
example, the detailed specifications for a programming language can be .
incorporated in an official State Standard (GOST) that has the force of
law. Compilers that conform to this GOST could then be built for widely
used computer models by centralized software groups and distributed to
the users of these models. It would literally be against the law to change
the syntax at an installation. Such a standard exists for the ALGAMS
language (GOST, 1976). We do not know to what extent the Soviets are
trying to standardize software in this way. We do not even know how this
has affected the use of ALGAMS, a language that has been in use since
the mid-1960s. Many programs must have been written in a lot of local
variants of ALGAMS during this time. Are they being rewritten to run on
compilers for the standardized version? Does the State Standard effec
tively encourage future programming, on the new computers, in this lan
guage that was specifically designed against the limitations of Soviet
hardware of the mid-1960s? The Ministry of the Radio Industry, which
has a legal near-monopoly over the production of mainframe computers, is
in a strong position to push this kind of standardization and diffusion, but
seems to have little motivation to work very hard at it. To some extent
Minpribor acts as a competitive and mitigating influence. The Minpribor
Minister, K. N. Rudnev, has been a dynamic force in promoting standards
and customer service, and Minpribor has established the only publicly
announced national customer software service.

Since the Soviets currently seem to be doing better with hardware than
software, perhaps one way to gauge software service is to see what is
happening with hardware service. In 1977 the Council of Ministers "ob
liged" all ministries and departments to provide for centralized technical
service for computers (Trofimchuk, 1977). Although it is not clear what
these obligations are, it is clear that the extent and quality of this service

258 259 S. E. GOODMAN

leaves much to be desired (Fadeev, 1977; Perlov, 1977; Taranenko, 1977;
/zvestiya, 1978). We find situations where a Ministry X has a geograph
ically centralized service facility for its own enterprises using certain
computer models. An enterprise in that area with that model, but under a
different ministry, cannot use the service. This kind of bureaucratic frag
mentation pervades all computing services and is a major obstacle to
diffusion.

In addition to the software services provided by the hardware vendors,
diffusion in the US is greatly facilitated by independent software outlets.
We would conjecture that relatively few of the successful independent
software ventures in the US were started and principally staffed by people
with only an academic background. IBM and other computer companies
have been the real training grounds for these entrepreneurs, not the uni
versities or government facilities like the National Bureau of Standards. It
is, however, primarily the academics that the Soviets seem to tum to for
help with software problems. This does not appear to have done them
much good, and it is difficult to see where, in the Soviet institutional
structure, they will be able to create an effective substitute for the Amer
ican computer companies to train and diffuse aggressive and imaginative
software specialists. As we noted earlier, the Soviets are in the early
stages of developing their own counterparts to these firms, but it is as yet
too early to do much more than speculate on the possibilities and their
chances for success.

User groups are also vehicles for software diffusion. Before Ryad, the
Soviets tried several user groups. Lack of interest, the lack of sufficiently
large user bases, poor communications , large geographical distances, a
lack of hardware vendor support, and assorted bureaucratic aggravations
severely hampered these efforts. Furthermore, the existence of many
installations were secret, membership in some groups required security
clearances, and lists of centers using the same models were probably not
readily available. The BESM-6 and M-20/220/222 user groups seem to
have been the most successful. These machines were particularly favored
by the military and other high-priority users, and the importance of the
clientele and their applications had to be a significant factor in these
relative successes . These two groups hold regular technical meetings and
have built up respectable libraries over the last 10-20 yr. It is likely that
both had active support from the hardware developers and manufactur
ers. Most of the other user groups do not seem to have worked out as
well.

There is a Ryad-user group, but current indications are that it is not
much more effective than the others (Taranenko, 1977). To be really suc
cessful, the Ryad users would have to be broken down into specific model

SOFTWARE IN THE SOVIET UNION

groups and each of these would have to be supported by the specific
enterprises that developed that model's hardware and systems software .
Even then, a group's effectiveness might be geographically confined.

The Soviets have a respectable number of conferences and publications
on computing, although efforts in this direction are handicapped by a lack
of professional soci~ties that are as active as the ACM, SIAM, and the
IEEE. The Soviet Popov Society for electrical engineers does not engage
in the same level of activity. In the USSR, the ministries and some par
ticularly active institutes, such as the Institute of Cybernetics in Kiev,
sponsor conferences and publications. Each year, they hold a few large
national-level conferences and perhaps a couple dozen small, thematic
conferences. Occasionally, the Soviet Union hosts an international meet
ing. Conference proceedings are neither rapidly published nor widely dis
seminated. Until 1975, with the publication of Programmirovanie, there
was no generally available software journal in the USSR. Articles on
software were rare, theoretically oriented, and distributed over an as
sortment of other professional journals. Few journals are widely circu
lated or timely. At least two relatively substantive journals , Elektronnaya
Tekhnika Ser. 9 and Voprosi Radioelektroniki Ser. EVT, are restricted. In the
West, some of the most timely information appears in periodicals like
Datamation that are sustained by vendor advertisements. Soviet vendors
do not have the motivation, outlets, or funds for advertising. They seem to
have little interest in letting anyone know what they are doing.

The Soviets claim to have "socialized knowledge" and it is thus easier
to diffuse scientific and technical information in the USSR than it is in the
capitalist countries . "Soviet enterprises are all public organizations , and
their technological attainments are open and available to all members of
society, with the exception of course of information classified for military
or political reasons. The public nature of technological knowledge con
trasts with the commercial secrecy that is part of the tradition of private
property in capitalist countries. Soviet enterprises are obliged not only to
make their attainments available to other enterprises that may wish to
employ them but also actively to disseminate to other enterprises knowl
edge gained from their own innovation experience. The State itself sub
sidizes and promotes the dissemination of technological knowledge
through the massive publication services of the All-Union Institute for
Scientific and Technical Information [VINITI] " (Berliner, 1976).14 This
sounds better in theory than it works in practice. While services like those
provided by VINITI and efforts to establish national programming librar
ies (Tolstosheev, 1976) are unquestionably useful, they do not provide the

14 Not surprisingly, VINITI is at the forefront of Soviet work in large information retrieval
systems.

http:1976).14

260 261 S. E. GOODMAN

much broader range of diffusion services available in the US. Capitalistic
commercial secrecy is overstated; very little remains secret for very long.
The Soviets have no real counterpart for the volume and level of Western
marketing activity. By comparison, lists of abstracts of products that have
not been properly quality controlled for commercial conditions, that have
no real guarantees or back-up service cannot be expected to be as effec
tive a vehicle for diffusion. The Soviet incentive structure not only does
not encourage dissemination of innovation particularly well, but it also
often promotes the concealment of an enterprise's true capabilities from
its superiors.

The vertical structuring of the Soviet ministerial system works against
software diffusion. Responsibility is primarily to one's ministry and com
munication is up and down ministerial lines. It is much easier to draw up
economic plans for this kind of structure than it is for those with uncon
trolled horizontal communication. Furthennore, each ministry appears
detennined to retain full control of the computing facilities used by its
enterprises. In the West , software diffusion is a decidedly horizontal activ
ity. Data processing and computing personnel and management talk to
each other directly across company and industry lines, and people are
mobile in a wide-open job market. This communication is facilitated by
active professional organizations. Such arrangements do not exist to any
where near the same extent in the USSR.

It is not only the ministerial system that mitigates against the really
effective encouragement of direct producer-customer horizontal eco
nomic activity. Often the various layers of local Communist Party organi
zations perfonn the role of facilitating horizontal exchanges . The Party
needs visible activities that justify its existence and authority, and this is
one of the most important. No serious erosion of this prerogative is possi
ble. However, it is much easier for a local Party secretary to get a carload
of lumber shipped than it is for him to expedite the delivery of a special
purpose real-time software system. He can take the lumber away from a
lower priority enterprise, but what can he do to get the bugs out of the
software? He can throw extra people on the job, but that will probably
only make matters worse . Software projects tend to react badly to the
"Mongolian horde" approach often favored by the Soviets. The detailed
enterprise level software transactions cannot be managed by politicians.

This problem affects the diffusion of technical R&D to production en
terprises in general. Software is an extreme case because it is so difficult
to manage under any circumstances. One mechanism that has evolved to
facilitate technical work is the emergence of very large enterprises and
research institutes that are capable of handling most of their own needs
in-house . Thus one finds many enterprises who own and operate comput-

SOFTWARE IN THE SOVIET UNION

ing facilities entirely on their own .15 This is basically a defensive reaction
that improves local viability in a highly constrained environment. Glob
ally, the wide distribution, limited use, and hoarding of scarce resources,
particularly personnel, in bloated organizations is counterproductive. The
Party and government do recognize this and have shown themselves pre
pared to give up some control to obtain increased efficiency in innovation.
Most of these changes have related to highly technical R&D matters over
which they have had little effective control anyway. Changes include the
already discussed corporation like associations and R&D contract work,
and also reforms in innovation incentives and prices for new products
(Berliner, 1976). This represents progress and will help the development
and diffusion of software.

3.3 Stages in the Software Development Process

The Soviet literature is missing the detailed articles on software en
gineering that are so abundant in the Western literature. This would seem
to indicate a lack of widespread appreciation of and serious common
concern about the technical , economic, and management problems that
plague the stages of development of large software systems. As they gain
more experience, this situation is likely to change. Articles on program
ming methodology are beginning to appear in East European publications
(e.g., InforElek, 1977), and the Soviets should soon follow. Such articles
will become more common and , in time, there will be papers on case
studies, programming productivity experiments, chief-programmer
teams, etc. Until such studies are published , we have to content ourselves
with a cursory description of some of the problems they are probably
having with the various phases of the software development process.

There are several nearly equivalent breakdowns of these stages. We will
use the following list: producer-client get-together; requirements specifi
cation; system design; implementation; testing; maintenance; and
documentation . Of course , the software development process is not a
single-pass through this list. There are assorted feedback loops, iterations,
and overlaps. In particular, documentation is not a distinct stage, but an
activity that should pervade every stage. Nevertheless, the list suits our
purposes.

Producer-client get-together. This can obviously happen in one of two
ways. Either the software producer seeks out the client or vice versa. The
Soviets have trouble both ways. Producers in the USSR are not in the

" Computer rental seems to be nonexistent. Rental arrangements would complicate ser
vice obligations for the hardware manufacturers . There is a serious effort to establish large,
" collective-use ," computer centers , and these may eventually prove successful.

262 263 S. E. GOODMAN

habit of seeking out customers. On the other hand, most Soviet enter
prises are still naive customers for software. They do not know what they
want or need or what is available. We know almost nothing about how
Soviet firms negotiate software work, but they must be having even
greater difficulties than we have in the US in negotiating price, time, and
manpower needs . In general, the Soviets themselves do not know how
they determine prices for new products (Berliner, 1976).16 The annual
plans of both the producer and client must limit the flexibility of the
arrangements that can be made, and there is a serious shortage of experi
enced software specialists .

Requirements specification. This refers to the translation of customer
needs into a statement of the functions to be performed by the software
system. The specifications should be at a level of detail that will make it
possible to test the product unambiguously to see if they have been met.
They serve the producer by making its task clear. This stage clearly
demands good communications between the producer and client, some
thing Soviet enterprises are not noted for in general. This stage also re
quires a great deal of patience and sympathy on the part of the software
firm, something that is in short supply at most Soviet research institutes.
Experience shows that software specifications change almost continu
ously as a result of the changing needs, better perception on the part of the
customer, or because of problems encountered by the producer. It is
important that the client regularly monitor system development progress
and that the producer be receptive to client input. If not, then it is almost
inevitable that the wrong product will be built. '

Given their highly centralized economic and political structure, the
Soviets are in a position to take requirements specifications quite a bit
further than any of the developed noncommunist countries. As we noted
earlier, they can specify national (or lower level) standards that would be
legally binding. Some serious effort to do this has been undertaken by the
State Committee for Science and Technology and other agencies for ASUs
(Myasnikov, 1976; Zhimerin, 1978). However, the rigidity of these re
quirements are being resisted by the enterprises, who want systems that
are tailored to their individual desires (Bobko, 1977). As time goes on , and
more and more individually tailored systems are built by the enterprises
themselves and outside contractors , it will become more difficult and
disruptive to impose requirements specifications from above. One can

16 The Polish ELWRO-Service firm uses simple formulas based on unit prices for assembly
language instructions . Price appears to be determined primarily by the number and type of
instructions in the object code of the software (Mijalski , 1976). The USSR has been slow to
appreciate the economic aspects of software development. It came as something of an initial
shock to the Soviets when they learned that Western companies expected to be paid more
than simp le service fees for the software that they had built.

SOFTWARE IN THE SOVIET UNION

easily imagine the attractiveness of such uniform standards to the central
planners and the opportunities they provide to overcome some of the
systemic difficulties that affect Soviet software development and diffusion .
However, it is one thing to have the power to impose standards, but quite
another to do it well . The technical problems are enormous . It will be very
interesting to see what becomes of these efforts.

System design. A good design is usually put together by a few talented
people. The Soviet Union does produce such people . Right now, for the
reasons discussed earlier and others yet to be noted, they lack experience
and number. Their design options are also more restricted than those of
their American counterparts since they have far fewer software and
hardware tools and building blocks available.

Implementation. This generally refers to coding the design and getting
the system up to the point where there are no obvious errors or where
such errors are unimportant and can be patched. It is the most straight
forward of the stages. However, it can be made unpleasant by a lack of
hardware availability and reliability . Ryad has eased both of these prob
lems considerably. It can also suffer from a lack of well-trained pro
grammers and of available installation user services. These problems are
not deeply systemic and we should see a steady improvement in the
Soviet ability to handle this phase of software development.

Testing. This is the verification that the coded programs and other
components of the system satisfy the requirements specification. Tills
stage generally ends with customer acceptance of a supposedly error-free
or error-tolerant system. It involves program testing and consultation with
the client as to the satisfaction of his needs. Testing often accounts for
almost half of the total preacceptance development effort of large software
projects . Soviet strength in mathematics and their interest in program
ming theory may eventually place them among world leaders in the field of
formal proofs of program correctness. However, this is an abstract area
that currently has little practical impact. Testing large complicated sys
tems or real-time software is a completely different matter. We have seen
little in the Soviet literature that realistically and specifically comes to
grips with these problems . They do use a commission to approve comput
ers for production and use , but we do not know if there is a counterpart for
software. Software testing is also not the sort of activity that would be
expected to show up on any of their measures of institute or enterprise
productivity and is thus likely to suffer accordingly. Good system testing
is a difficult and complex activity that requires highly skilled people .
However, it is a frustrating and low profile thing to do. In light of common
Soviet personnel utilization practices, it is likely to be assigned to the
lowest ranking neophytes.

To a considerable extent, Soviet problems with this stage are basically a

http:1976).16

264
265

S. E. GOODMAN

matter of acquiring experience in building large software systems. It has
taken the US a long time to learn to struggle with these difficulties, and the
Soviets will have to go through the same painful learning experiences.
One place where systemic considerations might be important again relates
to customer docility. If the software developers can get away with not
taking responsibility for the errors that are passed on to the user, then this
is what will happen. The effort devoted to checkout is directly related to
customer power.

Maintenance. This refers to the continued support of a program after
its initial delivery to the user. It includes the correction of errors that
slipped through the checkout phase, the addition of new capabilities, mod
ification to accommodate new hardware or a new operating system, etc.
Good maintenance clearly extends the lifetime and economic value of
software. Maintenance costs in the West are now running around 40-60%
of the total life cycle cost of major software systems (Boehm, 1977). As
one extreme example, some Air Force avionics software cost about $75
per instruction to develop, but the maintenance of the software cost al
most $4000 per instruction (Trainor , 1973). Maintenance can either be
done by the original developer, the customer, or a third party. Extensive
third-party arrangements currently seem out of the picture in the USSR,
but could become important if software standardization becomes a reality
to any appreciable extent. Vendor/producer maintenance requires a high
quality of customer service and will be slow to develop there. It appears
that the usual procedure has been for the customer to do its own mainte
nance. This could result in local modifications that would eliminate coni
patibility and lead to the resistance of centrally supplied updates or
improvements.

Documentation. Documentation encompasses design documents,
comments in the code itself, user manuals, changes and updates, records
of tests, etc. To be most effective and accurate, it should be done concur
rently with all the other stages. This is not a particlarly interesting activ
ity, and is often slighted unless there exists pressure on the software
development group to do it. Good documentation can make checkout and
maintenance much easier; poor documentation can cause terrible prob
lems. It is difficult to see where serious pressure for the documentation of
ordinary software would come from in the USSR. It is another activity
that does not show up well in the measures of productivity. Customer
pressure is not likely to be effective. Pressure in the form of State Stan
dards will get software documented; but without strong customer in
volvement there is really no way to control quality and poor documenta
tion can be a lot worse than none at all. This is likely to remain along-term
problem.

SOFTWARE IN THE SOVIET UNION

The almost total lack of convenient Xerox-like services in the USSR is a
factor that adversely affects all the stages of the software development
process. This is a means to quickly and reliably record and distribute
changes in specifications, documentation, test data, etc. This capability is
particularly important for large projects involving frequent updates that
need to be seen by many people. The absence of fast photocopying
facilities can lead to unnecessary delays and costly and dangerous loss of
sychronization among the project subgroups. In a similar vein, there is a
shortage of good quality user terminals.

3.4 Manpower Development

The training of technically competent software personnel and raising
the computer consciousness of management is an important task in the
development of a national software capacity.' This diffuses and enhances
the capability to produce and utilize software effectively, and is the ulti
mate source of products and services. The USSR trains more mathemati
cians and engineers than any other country. Both the quantity and quality
of mathematical education in the Soviet Union, from the elementary
schoolleve'l (Goldberg and Vogeli, 1976) through postgraduate training, is
at least as good as that in the US. For the most part, Soviet managers have
engineering rather than business degrees (Granick, 1961). One might think
that, with this personnel base, they would be in an unusually good posi
tion to rapidly develop a large-scale national software capacity.

However, it is one thing to develop a strong national mathematics cur
riculum. It is quite another to train and utilize, say, a quarter million
professional quality programmers and systems analysts (about half the
number in the US) and a couple million scientists, engineers, adminis
trators, and businessmen who do applications programming as part of
their professional activities.

This requires equipment. One does not become a skilled programmer
unless one spends a lot of time programming. Schools and industrial train
ing centers are generally low on the priority list for computer allocation.
By 1976, Moscow State University, a school comparable in size to UC
Berkeley, but with a curriculum much more oriented toward science and
engineering, had among the best central computing facilities of any uni
versity in the USSR. This consisted of two BESM-6 machines, one of
which was to be used in a new time-sharing system with 25 terminals.
They were expecting to augment this with two ES-1020s by early 1977.
The first ES-1030 to go to a higher educational institution went to Lenin
grad State, another large prominent university, in 1975 (Solomenko,
1975). A major engineering school, the Moscow Aviation Institute, was

266 267 S. E. GOODMAN

still limited to a Minsk-22 , a BESM-2, and two Minsk-32 computers in its
computing center as of early 1976. These three universities are at the top
of the educational hierarchy . The vast majority do much worse.

As a result of this situation, there are many students still spending time
learning to write small applications and utility programs in machine lan
guage for the medium-scale Minsk and Razdan computers and a host of
small second- and third-generation computers such as the Mir, Nairi, and
Dnepr lines. This may not be as fruitless as it seems, since a lot of these
models are still in use in the general economy. The situation is currently
changing. The important objective should be to get respectable numbers
of the smaller Ryad models into the educational system. Once this is done,
students will be trained on the dominant national hardware/systems
software base, and their immediate postgraduation value will be increased
considerably. Ryad production capacity is such that this is likely to hap
pen by the early 1980s.

The software side of computing as an academic discipline went through
an extended infancy that started in 1952 with A. A. Lyapunov's first
course in programming at Moscow State University (an interesting ac
count of the early days can be found in Ershov and Shura-Bura, 1976),
and lasted until the end of the 1960s. Not surprisingly, the new Soviet
perspective on computing that emerged by the late 1960s included an
appreciation of the need to train a much larger number of programmers
and systems analysts. To help meet this need, separate faculties in
"applied mathematics" were established around 1970 at universities in
Moscow, Leningrad, Novosibirsk , and Voronezh (Novozhilov, 1971). In
addition to these , and other more recent(e.g., Sabirov, 1978) , separate
faculties, computer science is also taught under the auspices of mathemat
ics and electrical engineering departments.

The Soviet academic community has a strong theoretical tradition. Peer
group status considerations, and a shortage of hardware, tend to reinforce
this bias. Thus there is considerable pressure to do esoteric computer
science to maintain respectability among colleagues (Novozhilov, 1971).
Many instructors have had little practical training of their own. So , for
example, computer science under a mathematics faculty would be
strongly oriented toward numerical analysis, formal logic, and automata
theory. There was essentially no opportunity for a student to learn about
such things as practical database management systems. Industrial coop
eration programs have had only limited success in establishing a better
theory/practice balance. Soviet university students getting on-the-job
training at research institutes and industrial enterprises are often given
menial tasks.

The quality of university level education in the USSR varies consid-

SOFTWARE IN THE SOVIET UNION

erably across subject lines. Outstanding centers of learning in mathemat
ics exist at many places . Training in mathematics and in some of the
mathematically oriented science and engineering fields is as good there as
anywhere in the world. On the other hand , the academic study of history
and politics is severely circumscribed, rigid, and pervasive (the degree
requirements for all'technical fields include heavy course loads and exam
inations on Soviet ideology). Education in the range of subjects that lie
between mathematics and the ideologically sensitive areas, including all of
the engineering disciplines, seems to be more narrowly focused and rigid
than it is in the US [see Granick (1961) for some interesting first-hand
observations]. We do not have a good picture of how CS education is
evolving in the Soviet Union, but it is likely that it is some kind of hybrid
between mathematics and engineering. By US standards, it is probably
heavy on mathematics and light on practical programming work . As more
hardware becomes available at schools, as instructors gain more practical
experience themselves, and as Soviet industry pushes to have its needs
met, we can expect to see CS education move closer to US models.

Although there are frequent complaints about the shortage of pro
grammers and software specialists, there is little quantitative information
on the output from the higher educational institutions or the shortfall that
is perceived to exist. In addition to university-level training, there is also
substantial activity in the large number of vocational institutes and night
school programs. One thing is certain , there is currently an unprecedented
effort under way to expand the base of people who can make use of the
new computers. Where once 10,000 copies of a programming or software
text was a large printing, now books on the ES system are appearing in
quantities of 50,000 (Khusainov, 1978),80,000 (Naumov et a/., 1975), and
100,000 (Agafonov et ai., 1976) . Considerable efforts continue to be ex
pendedon software for second-generation machines, especially for the
Minsk-32 (Zhukov, 1976-43,000 copies).

The problem of raising the computer consciousness of management is
only part of the more general task of modernizing Soviet management
structure , training, and practice. The magnitude of the problem is enor
mous . "Soviet sociologists have estimated that 60% of all administrative
personnel in industry-including directors , deputy directors, chief en
gineers , heads of service departments, and shop foremen-are in their 50s
and 60s . It is estimated that in the next 5-10 yr, when 30- and 40-yr-olds
will move into responsible positions, approximately four million people
will have to be trained for administration. This will amount to 40% of all
such positions in industry. The number of managerial specialists (presum
ably above the shop level) to be brought into industry is estimated at 1.5
million" (Hardt and Frankel, 1971). In spite of much talk about improving

269
268 S. E. GOODMAN

managerial training along the lines of American models, little is apparently
being done in practice (Holland, 1971a) and certainly nothing is being
done on the scale just described. It is difficult to imagine how the Amer
ican models would be effective in the context ofSoviet economic institu
tional structure. Most consciousness raising will have to evolve on the
job.

4. Software Technology Transferl7

. For the most part, the influence of the West on Soviet software devel
opment by the mid-1960s was via the open literature. Although this influ
ence was very important (Ershov and Shura-Bura, 1976), the level of
technology transfer was weak and there was not much product transfer.
The reasons for this include the lack of suitable hardware, an underdevel
oped interest in nonnumeric computing, the theoretical orientation of
Soviet computer scientists, and the weak position of computer users. IS

With the change of perception of computing that led to the Ryad under
taking, there came a commitment to produce and install complex general
purpose computer systems in large enough numbers to make it necessary
to upgrade general software capabilities. During the last decade, the
rather low-key, localized, almost academic, Soviet software community
has evolved into a serious industry with a long term and intensive program
to acquire software products and know-how from abroad.

There are several reasons to think that software technology would be
particularly easy for the USSR to obtain from the rest of the world. This is
an extraordinarily open technology. Most of the basic ideas and many of
the details necessary to produce a functionally equivalent product are
available in open sources. It is much more difficult to hide "secrets" in the
prod uct itself than is the case with hardware, and the distinction between

11 Parts of this section are adapted from Goodman (1978). A more complete discussion of

the nature and control of this problem is in preparation (CTEG, 1979).

16 On rare occasions, influential users would take matters into their own hands . An impor
tant use of FORTRAN in the USSR stemmed from interest in Western applications programs
on the part of physicists at the Joint Institute for Nuclear Research in Dubna and the
Institute of High Energy Physics in Serpukhov. They had had considerable exposure to the
CDC applications programs at CERN in Switzerland and other research centers . Their
interest and influence led to the purchase of a CDC 1604, including software, that was
installed at Dubna in 1968 (Holland, 197Ic). The CDC FORTRAN compiler was translated,
line by line , into the machine language of the Soviet BESM-6 so that the applications
programs could be run on this machine [the result has become known as "Dubna FOR
TRAN" (Saltykov and Makarenko, 1976)J. Here is an instance where active contact with the
West produced a real stimulus to go out and get some useful software. However, this was a
transfer that was not diffused much beyond BESM-6 users.

SOFTWARE IN THE SOVIET UNION

product and technology transfer is often blurred. Relatively little software
is proprietary and much that is can stilI be obtained. Sources of informa
tion are abundant: conferences, journals, books, manuals, discussion
panels, program listings, software libraries,consulting groups, and ven
dors. The Soviets have a large trained scientific/engineering manpower
base l9 that should be capable of absorbing the contents of foreign work
and putting together similar products of their own. The successful appro
priation of the complex IBM S/360 operating systems is proof that they can
do this on a large scale .

On the other hand, there are reasons why software technology transfer
may not be as easy as it appears. Direct product transfers often run into
problems at hardware interfaces. Even small differences in donor and
borrower hardware can make conversion difficult. The Ryad hardware is
effectively a functional duplication of S/360, but it is not identical to it. It
may have taken the Soviets and their CEMA partners almost as long to
adapt the DOS/360 and OS/360 operating systems to their Unified System
hardware as it took IBM to build these systems in the first place. Fur
thermore, it is possible for an unwilling donor to make it painful and time
consuming to copy its products, e.g., by only releasing software in object
code form or by inserting "time bombs" (code that destroys critical por
tions of the system after the passage of a certain amount of time or after a
preset number of uses). Some of our most advanced software products
cannot be transferred because the Soviets lack appropriate hardware.
Most importantly, it is extremely difficult to effectively master the tech
niques and skills of software engineering and management.

4.1 Mechanisms for Software Technology Transfer

This subsection describes the active and passive mechanisms by which
software technology is transferred. We adopt the definitions used in the
Bucy Report (BucY,J976):

Active relationships involve frequent and specific communications between donor and
receiver. These usually transfer proprietary or restricted information. They are directed
toward a specific goal of improving the technical capability of the receiving nation
Typically, this is an iterative process : The recei ver requests specific information ,
applies it , develops new findings, and then requests further information . This process is
normally continued for several years, until the receiver demonstrates the desired capa
bility.
Passive relationships imply the transfer of information or products that the donor has
already made widely available to the public.

The term "passive" is used primarily in reference to donor activity. The
receiver may be very active in its use of passive mechanisms.

19 They claim 25 % of the world's total of " scientific workers" (Ovchinnikov , 1977).

270
271 S. E. GOODMAN

An illustration of how the terms "active" and "passive" will be used in
the context of software transfers might be helpful. There are two kinds of
proprietary software: that which is generally available to the public and
that which is not. The purchase of a publicly available system, perhaps
with some basic training and maintenance service, is passive, even though
the buyer might become very active in distributing or duplicating the
software. The sale of software that is not publicly available would be
considered a more active relationship. The donor is clearly contributing
more than what is normally and widely available. If sale is accompanied
by advanced training, then the donor relationship is that much more ac
tive. "How to build it yourself" lessons from the donor will be considered
very active even if such serviees are publicly available.

Listed below are a sample of mechanisms that can be used to transfer
software products and knOW-how. They are roughly ranked by the level of
donor activity. (One can easily imagine specific examples that might sug
gest some reordering, but this list is adequate for our purposes.)

Joint ventures More
Sophisticated training (e.g . • professional-level apprenticeships)

active

Consulting
Education of programmers and systems analysts

Licenses with extensive teaching effort

Donor
Sale of computing equipment with software training
Detailed technical documents and program listings activity
Membership in Western user groups
Documented proposals
Conferences More
Academic quality literature ->
Licenses and sale of products without know-how passive
Commercial and exchange visits
Undocumented proposals
Commercial literature and exhibits

The term "license" needs to be defined here since normal patent con
siderations do not applY to software (Mooers, 1977). We will take it to
mean the provision of a copy of the software to a receiver who then has
the recognized right to distribute it extensively within some domain. The
distinction between this and a simple product sale may be a matter of a
paragraph in a contract, but the distinction is worth making. It is easy to
produce mUltiple copies of software products and the Soviets have control
of a large, and economically isolated, domain of computer installations.

Of course, some categories of software are more transferable than oth
ers. The following four rough (partially overlapping) categories are listed
in order of decreasing ease of transferability:

SOFTWARE IN THE SOVIET UNION

(1) Applications programs written in higher-level languages.
(2) Systems and utility programs in machine or higher-level language

form.
(3) Large, highly integrated systems (e.g., multiprogramming operating

systems, real-time air traffic control systems).
(4) Microprograms and other forms of" software" that are very closely

interfaced with and dependent on the hardware on which they are run and
which they control.

Although it is difficult to quantitatively merge our two lists because the
effectiveness of software transfer is so strongly dependent on such highly
variable factors as local programmer talent, there is a clear qualitative
merge. As one goes down the list of transfer mechanisms, their effective
ness decreases for all software categories. For any given mechanism, its
effectiveness decreases as one goes down the list of software categories .

If any of the listed mechanisms should be candidates for US Govern
ment control, they should be the top four listed. An example will illustrate
the third mechanism. In their efforts to adapt DOS/360 and OS/360 to the
Ryad-1 models, it would have been of considerable help to the CEMA
countries if they had had a deal with IBM, or with a company that had
considerable experience in the business of making non-IBM hardware
compatible with IBM software, which would have included a license for
the software and a teaching effort that would have showed them how to
adapt it to the Ryad hardware. 2o This effort might have gone further and
included help in designing the hardware with the compatibility goal in
mind. Such an arrangement could conceivably have substantially reduced
the time it took the Soviet Bloc to acquire and adapt the systems on their
own, and it could have provided a tremendously valuable transfer of
know-how.

Simple product transfer should be of much less concern than know-how
transfers that will enable the Soviets to build up their indigenous software
capabilities. The top four mechanisms transfer considerable know-how
and short circuit the painful experience of learning through time
consuming and costly trial and error. The delay of the acquisition of
indigenous capability is a major goal of antitransfer measures.

The lesser forms of licensing and product sale on our list are not as
important. For example, IBM might have sold the Soviets a "subscrip
tion" to the S/360 operating systems. This could have taken the form of
supplying one copy of each of the operating systems on tape plus informa

20 No such arrangement actually existed .

http:hardware.2o

272
273

S. E. GOODMAN

tion on new releases, etc ., and a license for distribution to all Ryad users.
They would have had to adapt the software to the Ryad hardware them
selves. This would have saved them the effort of obtaining it through other
legal channels or by covert means, and IBM would have been able to
cultivate good will and get some compensation for the use of its products.
There was no effective way to deny the CEMA countries access to copies
of this software; it was simply available from too many sources. The time
that the Soviets could have saved through such an arrangement would not
have been great. The time it took to adapt the software to Ryad must have
been much greater than the time it took to acquire copies of it.

But the importance of the passive mechanisms to software technology
transfer to the USSR should not be underestimated. We think they con
tributed significantly to the massive appropriation of IBM S/360 software
for the Unified System. They also affect training programs at all levels.
Much written and oral material is available on subjects that relate to the
management of software projects and on software engineering. These are
areas where the Soviets are particularly weak. Passive material is publicly
available in huge quantities. The Soviets have been using these sources
for almost three decades and their influence is obvious in almost all Soviet
software work. Before Ryad , hardware problems limited the use of direct
product transfer. Now, of course , direct product transfer is an important
source of useful software. However, it is important to point out that
passive sources are of limited value for several of the most important
phases of the software development process. These include the
customer/developer relationship, certain aspects of specification and de~
sign , the higher levels of testing and integration, and maintenance. All of
these stages become particularly important for the construction and sup
port of large, highly integrated systems.

Active sources are also abundantly available in the West. In contrast to
a hardware area, such as disk manufacturing technology where there are
only a few really valuable potential donors , there are literally thousands of
places in the US alone that have something to offer the Soviets in software
products and know-how.

The Soviets do not use these active mechanisms to the extent that they
could (but there has been substantial improvement since the mid-1960s).
USSR restrictions on foreign travel by its citizens is a severe constraint.
The people they send out are helpful to their effort, but they are too few.
They would have to send several hundred software specialists to the West
each year, and most of these for extended study, to affect continuously
and broadly their software capabilities . The leadership is very unlikely to
do this. It might be politically and economically more acceptable for them
to import Western experts who would spend extended periods showing

SOFTWARE IN THE SOVIET UNION

them how to manage large software projects and how to upgrade com
puter science education. They might also buy full or part ownership in
Western software firms, and use the Western talent employed there to
develop software for their use. The ELORG centers in Finland and Bel
gium represent moves in this direction. A more unlikely form of long-term
joint venture would be to permit partial Western ownership and manage
ment of a Soviet enterprise. Some of the other CEMA countries allow
this, but so far the USSR has not. On the other hand , the internal political
situation in the USSR may change to militate against both the import and
export of computer scientists after the death or retirement of Brezhnev
(Yanov, 1977).

4.2 External Sources

The S/360-Ryad software transfer was facilitated with considerable
help from Eastern Europe, particularly the GDR. It is hard to avoid the
impression that the "per capita" software capabilities of the GDR, Hun
gary, Poland , and Czechoslovakia exceed that of the USSR. This is prob
ably the result of many factors , not the least important of which is the
greater contact these countries have with the West European computing
community . They have also had much more direct and indirect experience
with IBM products. We would not go so far as to conjecture that the
indigenous capacity of the USSR may have been such that the S/360-Ryad
software transfer would have failed without help from Eastern Europe,
but the role of these countries should not be underestimated.

Hungary, the GDR, Poland, and Czechoslovakia are not only important
conduits for facilitating software technology transfer from the West to the
USSR, but they are also valuable sources of products and know-how in
their own right. They have potentials for providing active mechanisms for
personnel training, consulting, etc. As communist countries using a com
mon hardware base, they are the best external source the Soviets have for
many industrial- and management-related software products. They are

. also external sources that can be used directly in the development of
military software systems, such as those used for command, control, and
communications, for the Warsaw Pact. Problems that inhibit active in
volvement with the West, such as travel restrictions and a lack of hard
currency, are much less important.

Perhaps the greatest value of the Eastern Europeans to the USSR is as
models forinstitutional arrangements and economic practices. In particu
lar, Hungary and the GDR seem to be much more effective in the areas of
software customer service and systems software support than the Soviets .
Marxist theory may be opposed to an uncontrolled gaggle of profit

274
275 S. E. GOODMAN

hungry, privately owned firms operating outside of a central plan, but it is
hardly opposed to the development and maintenance of products that
benefit the economy. The Hungarians and East Germans are showing that
it is possible for communist economies to provide minimum basic
software services to general users. The Soviet Union might learn much
from them.

Western Europe is both a conduit for US software technology and a
source of innovation in 'its own right. Not surprisingly CEMA has easier
access to US multinational corporations through their European com
panies than through US-based enterprises. The shared culture and lan
guage across East and West Germany makes for a particularly low barrier.
Notable West European developments of direct value to the USSR in
clUde: the Europe-based ALGOL project, CERN in Geneva, SIMULA-67
(Norway), the Aeroflot airlines reservation system (France), and the
International Institute of Applied Systems Analysis located in Austria.21
The most important SOurces are West Germany, England, and France.
Others are Belgium, Denmark, Holland, Norway, and the politically neu
tral Austria, Finland, Sweden, and Switzerland. Joint ventures with firms
in these countries may become an important transfer mechanism.

The US remains the ultimate source of software technology. In addition
to the IBM-Ryad connection, Soviet interest stems from the facts that
more R&D is done here than anywhere else and that we are the largest
repository of software products and information. The US is clearly the
world leader in the development of large military-related software sys
tems. English is an effective second language for almost all Soviet com
puter scientists. Finally, there is the nontrivial matter of prestige and the
"Big Two" psychology. From the standpoint of career enhancement, it is
more desirable for a Soviet citizen to come here than to travel anywhere
else. Russian pride also seems to suffer less when they borrow from us
than when they have to go to the Hungarians or Germans for help.

The Soviets make less extensive use of the Japanese as a source of
software technology transfer. This is partially because Japan has not de
veloped as much software, although their potential is high. However,
Japanese software institutional arrangements and development!
maintenance practices may be even less suitable for Soviet emulation than
those of the US. In general , it would appear that cultural and language
barriers make Japan a less attractive source than the West.

A distinction should be made between commercial software, which is
produced for sale, and noncommercial software, which is used only by its
developers or distributed free or at a nominal cost. The latter is usually

2 1 It should be noted that all five of these important examples involve substantial US
participation.

SOFTWARE IN THE SOVIET UNION

produced by nonprofit organizations (e.g., universities, government labs)
and may be of high quality, but most of it is not tested, maintained, or
protected to the same extent as commercial software. Commercial
software has become a multibillion dollar business in the West. Over the
last 10-15 yr, the companies in this industry have become increasingly
aware of protecting the proprietary value of their products. The protective
mechanisms include a variety of legal and technical options that appear to
be reasonably effective, although in such a dynamic industry it is usually
only a matter of time before a competitor comes up with an equivalent or
better product.

We do not know how well people who have been trained in the West, or
in jointly operated facilities in Eastern Europe, are actually used . It is not
clear if they are used in any particularly effective way to promote the
internal diffusion of know-how.

It is important to recognize that technology transfer will not solve the
most basic Soviet software problem. The Soviets may be able to import
enough turnkey plants for manufacturing automobiles to satisfy their per
ceived need for cars , but they are going to have to develop the internal
capacity to produce most of their own software. There are thousands of
computer centers in the USSR and they all need large quantities of
software. Contacts with foreign sources are limited to only a very small
fraction of the Soviet computing community. The orifice is too small to
import the volume of software technology required, and internal systemic
problems prevent its effective diffusion and use. Finally, these computer
installations have their own special software needs that reflect their way
of doing business and Western commercial applications software products
may be unsuitable for these needs.

4.3 The Control of Software Technology Transfer

In terms of in-depth understanding and the avoidance of repetition of
mistakes, the Soviets do not seem to have profited much, so far, from the
Western experience. They consistently make the same mistakes and suffer
from the same growing pains as we did. These are often exacerbated by
difficulties of their own making. The Soviets have been making extensive
use of Western software technology, but they currently seem satisfied
with the short-term goals of recreating selected Western systems at a rate
that may actually be slower than that with which the West built these
systems originally.

It is inevitable that the Soviets will significantly improve their software
capabilities as they acquire more experience and as their perception of the
role of software matures. Their interest in software technology transfer as

http:Austria.21

277
276 S E. GOODMAN

a means of acquiring both products and know-how is likely to continue
indefinitely. Furthermore, as their own indigenous capabilities improve,
they can be expected to make more extensive and more effective use of
transfer mechanisms and opportunities. 22

We could make life more difficult for them through various forms of
control. Unfortunately, software control is more complex than the control
of the kinds of technology that were used as examples in the Bucy Report
(1976) . The range of software products and know-how is enormous. Some
of it, such as microprograms and sealed-in software (Mooers, 1977), can
be controlled in much the same way as hardware. Some of it, such as
numerical and combinatorial algorithms, is essentially mathematics and
beyond any effective control (although the translation from algorithm to
program is often nontrivial). Most software lies somewhere between
hardware and mathematics, and we do not know how to protect this part
of the spectrum.

There are several different ways to try to control software. We could try
to focus on those categories that are most amenable to control. For exam
ple, we might attempt to control the large, lllghly integrated systems, and
give up on the applications programs in high-level languages and the small
systems routines. Another approach would be to try to control the mech
anisms of transfer. Thus we might regulate licenses with extensive teach
ing effort, joint ventures, etc., and ignore the mechanisms at the lower end
of the list. A third approach would be to base controls on the potential
military uses of the software. We could try to regulate software for pattern
recognition, communications networks, test and diagnostic systems,
command and control. Finally, we might use some form of "time-release"
control over many products. All four approaches have serious definitional
and enforcement problems. For example, where does technology transfer
for management information systems end and transfer for command and
control uses begin?

Not the least of the problems faced by efforts to regulate software
transfer is its huge number of sources. There is nothing that can be
done to seal up all the ways to obtain noncommercial products and
know-how from universities, laboratories, and the open literature. One of
the largest single sources of readily obtainable software is the US Gov
ernment, including the Department of Defense. Assorted US Government

22 We should not forget that transfers can go both ways. The Soviets will someday develop
software products and ideas that American firms or the US Government would want to use.
Systemically , we are capable of more effectively exploiting and diffusing software advances
than are the Soviets. There is potential for a two-way flow of software technology transfer.
Although the flow into the US would be much smaller than the outflow, we would probably
make better use of what we get.

SOFTWARE IN THE SOVIET UNION

agencies literally give it away to the Warsaw Pact countries (CSTAC IT,

1978).
It is more realistic to try to control commercial software. Commercial

software houses distribute products that are usually better tested, main
tained, and documented than noncommercial products. Regulation may
delay acquisition or discourage the Soviets from obtaining as much
software as they might if there were no regulations. The best specific
forms of control might be the protective mechanisms the commercial
software producers use against their market competitors. With their grow
ing appreciation of the cost and value of software has come the desire and
effort to protect it more effectively. The trend with the IBM operating
systems is a case in point. With S/360, almost all the software was avail
able to anyone who wanted to take it. With S/370 and the 303X models
there is a continuing tendency to collapse the "free" software around the
nucleus of the operating system, and give the user an option to purchase
the rest. Unfortunately, some marginal US companies might be willing to
let the Soviets have more than they would their market competitors. Thus

. government regulation would be necessary to supplement company

practices.
One of the best forms of control of software transfer is the control of

hardware. Sophisticated software systems often require sophisticated
hardware. Soviet general purpose hardware has reached a 360-level
plateau and it will not be easy for them to develop advanced telecom
munications and real-time processing hardware for widespread use.
Software is basically an evolutionary technology. The closest it comes to
revolutionary developments results from opportunities presented by
major advances in hardware availability. Control over hardware technol
ogy transfer may be an effective way to delay acquisition of advanced

capabilities.
A basic problem in the formulation of controls is that we really do not

understand what benefits past transfers have given the Soviets or how
well they utilize transfer mechanisms. Did the CEMA countries learn
more by adapting the S/360 operating systems to Ryad than they would
have if they had built new operating systems? Would the latter have taken
the same time as the former.? Did they use fewer people than it would have
taken them to do something more innovative? They devoted many man
years of many of their best people to the piecemeal debugging of the huge
S/360 operating systems on the Ryad hardware. This time might have had
a higher payoff, from the standpoint of enhancing their indigenous
software capabilities, if these people had invested the effort in acquiring
experience in large system design, integrated test design, and planning for

maintenance.

http:opportunities.22

278

279

S. E. GOODMAN

Perhaps the best statement on software technology transfer was made
by Edward Teller:

The Russians know all of our secrets; they know what secrets we will develop two years
in ad vance. we are still ahead in electronic computers because there are no secrets.
Without secrets we are advancing so rapidly that the Russians can' t keep up.

Although this statement was made in reference to computer hardware,
and in that context it may be a bit exaggerated, there is no better short
appraisal of the software situation. Ultimately the diversity, openness,
and high rate of incremental innovation of the American software industry
is the best protection it has.

5. A Summary

By and large, the development of Soviet computing has tended to follow
closely the US technical pattern, but it has differed considerably in terms
of timescale, philosophy , institutional arrangements, capital decisions,
and applications. In particular, the USSR was slow to appreciate data
processing, and to develop the technology to support the widespread use
of digital computers for such applications. It is only within the last ten
years that the Soviets have given the priority and resources necessary to
the production and installation of complex general purpose computer sys
tems in large enough numbers to make it necessary to improve greatly
their software capabilities.

Prior to this, computer use in the USSR was limited primarily to small
and medium-scale scientific and engineering computations. There was no
well-developed business machines industry, nor was there an important
clientele with a perceived need for such equipment. The Soviet military
and technical communities were less enamoured with computers than
their US counterparts, and the Soviet computer industry developed only
to the extent that it could meet the relatively limited needs of these users .
As a result, Soviet computing went through an extended infancy, with its
first-generation hardware/software period lasting to the mid-1960s, and the
second generation continuing into the early 1970s. Very few machines
large enough to necessitate a real operating system were built. Storage
and peripheral limitations restricted the use of high-level languages. The
Soviets did not build the software that aUowed computers to be used by
many people who had not had much technical training.

The shift to the production of large numbers of general purpose com
puters was forced by internal economic pressures and , most likely, by the
greater needs of the military. A substantial commitment necessitated the

SOFTWARE IN THE SOVIET UNION

development of much improved hardware capabilities-most important,
the creation of an upward compatible family of computers with a respect
able assortment of peripherals . The Ryad-l family, an effective functional
duplication of the IBM S/360, provides the Soviets and their CEMA
partners with a reasonably modem mainframe capability. The computers
of this family have been produced in considerable quantities and give
Soviet users an unprecedented assortment of peripherals and level of
reliability. Soviet satisfaction with this hardware can be inferred from

their continued development of evolutionary upgrades of the early Ryad

models, and their further commitment to the development of the Ryad-2

series, based on the IBM S/370. There has been a parallel, although

somewhat smaller, major effort devoted to the development of minicom

puters: first to the ASVT models, and more recently to the CEMA SM

family.
This new, and substantial, base of mainframe, minicomputer, and pe

ripheral hardware has done much to give the Soviets a broad general
purpose national computing capability. Although backward by the current
US state-of-the-art, it seems clear that it was never the intention of the
Soviets to try to push the frontiers of either hardware or software technol
ogy. The overall plan was to put a large number of respectable, compati
ble computers into productive use as expeditiously as possible.

To this end, it was not surprising that the Soviets decided to use an
already proven technology in the form of the IBM S/360. Although they
seriously underestimated many of the difficulties of trying to duplicate a
sophisticated foreign technology, they felt that the appropriation of the
S/360 systems and applications software was the safest and quickest way

to achieve their primary goal.
The Soviets have been making extensive use of Western software prod

ucts, particularly in the area of systems software. They currently seem
satisfied with the goal of recreating selected Western software systems at
a rate that may actually be slower than that with which the West built
them in the first place. In terms of in-depth understanding and the
avoidance of repetition of mistakes in their own work, the Soviets do not
seem to have profited much from the Western experience. They consis
tently make the same mistakes and suffer from the same growing pains as
we did. These are often exacerbated by difficulties of their own making.

The Soviet economic system, with its vertical hierarchical structure and
lack of opportunity for developing flexible horizontal relationships, seems
ill-structured to support many of the software development practices that
have worked well in the US. A strong hierarchical bureaucratic environ
ment and a conservative incentive system effectively discourages entre
preneurial innovation. Enterprises are severely constrained with respect to

280
281

S. E. GOODMAN

finding both suppliers and customers. By US standards, there is very little
consumer pressure exerted on vendors, except in the case of special (e.g.,
military or Party) customers. The net result is that most Soviet computer
installations have to rely on their own internal assets for most of their
software needs. It is not even clear if they get much outside help with the
systems software supplied by the hardware vendors. There is a long stand
ing users' attitude that accepts this situation and is thus a major obstacle
to progress. These difficulties exist in many other sectors of the Soviet
economy, but they appear to be especially serious in the sophisticated
service-oriented software industry.

In spite of these problems, Soviet software has come a long way during
the last decade. The appropriation of IBM software for the Unified Sys
tem was a substantial technological achievement. The volume, level, and
intensity of software development and use has risen greatly over this
period . The indigenous software capacity of the USSR has become re
spectable by world standards. Furthermore, as their own capabilities im
prove, they can be expected to make more extensive . and more effective
use of technology transfer mechanisms and opportunities.

The Soviet software industry will need some systemic changes to func
tion more effectively. It is not clear to what extent such reforms will be
allowed to take place. As the Soviets gain more experience, and as their
perception of the value and problems of software matures, we can expect
to see considerable improvement take place within the present economic
structure. Past reforms, such as the establishment of the corporation like
associations and the expansion of contracting arrangements, seem likely
to benefit software development. But improvements within the existing
economic environment would still appear to leave the Soviet software
development/user community well short of the systemic advantages en
joyed by its US counterpart. Since software is such a widely dispersed
and pervasive technology, it would seem impossible to permit major re
forms here without also permitting them elsewhere in the economy. It is
doubtful if the needs of computing alone could build up enough pressure to
bring about broad reforms in the economic system.

The USSR has lots of potential software talent and lots of need. The
two have to be brought together in some effective way. Various forms of
technology transfer from the West might serve as catalysts to help bring
this about. However, the changes that will come will take time and have
to fit in with the way things are done in the Soviet Union. Simple foreign
transplants will not work. No reforms in a country that is as self-conscious
as the USSR can be successful if they are divorced from Russian and
Soviet traditions. But the history of Soviet computing shows a strong
dependence on Western, and particularly US, technology and social!

SOFTWARE IN THE SOVIET UNION

economic practices. Effective solutions to Soviet software problems will
have to have a hybrid character.

ACKNOWLEDGMENTS AND DISCLAIMER

Various forms of support are gratefully acknowledged. These include a NSF Science

Faculty Fellowship, a Sesquicentennial Associateship from the University of Virginia, and a

research fellowship from the Center for International Studies at Princeton University . Other

support has come from the US Army Foreign Science and Technology Center, Department

of Defense, and FIO/ERADCOM, Ft. Monmouth , New Jersey. Continued collaboration

with N. C. Davis of the CIA has been particularly valuable.

A couple dozen scattered paragraphs have been excerpted from Davis and Goodman
(1978) and Goodman (1979) . Permission has been granted by the ACM and the Princeton
University Press . Some duplication was necessary to keep this article reasonably self
contained. Permission to use the quotations from Berliner (1976) in Section 3.2 and from
Hardt and Frankel (1971) in Section 3.4 was granted by the MIT and Princeton University

Presses.
The views expressed in this paper are those of the author. They do not necessarily reflect

official opinion or policy of the United States Government.

REFERENCES*

Agafonov, V. N. et al. (1976). "Generator of Data Input Programs for ES Computers. "

Statistika, Moscow.
Amann, R., Cooper, J. M., and Davies, R. W., eds. (1977) . " The Technological Level of

Soviet Industry. " Yale Univ. Press, New Haven , Connecticut.
Andon, F. I. et al. (1977). Basic features of data base management system OKA. Upr. Sist.

Mash. (2).
Ashastin, R. (1977) . On the efficiency with which computer equipment is used in the econ

omy. Plan. Khoz. May (5), 48-53.
Aviation Week (1972). July 31, 14.
Babenko, L. P., Romano vskaya, L. M., Stolyarov, G. K. , and Yushchenko, E. L. (1968). A

compatible minimal COBOL for dom.estic serial computers. Presented at A U Conf. Prog ..

lSI , 1968.
Bakharev, I. A. et al. (1970) . Organization of teletype operations and debugging in the lAM

operating system. Presented at AU Conf. Prog., 2nd, 1970.
Barsamian, H. (1968). Soviet cybernetics technology: Xl. Homogeneous, general-purpose,

high-productivity computer systems-a review. Rand Corporation, RM-5551-PR.
Bauer , F. L., ed. (1975). "Advanced Course on Software Engineering" (Munich , 1972).

Springer- Verlag, Berlin and New York.
Belyakov, V. (1970). How much does a computer need ? l zves tiya March I, 3.
Berenyi , I. (1970). Computers in Eastern Europe. Sci. Am . Oct., 102-108.
Berliner , J . S. (1976). "The Innovation Decision in Soviet Industry ." MIT Press, Cam

bridge, Massachusetts .

* Foreign publication titles translated .

282 283 S. E. GOODMAN

Bespalov, V. B., and Strizhkov, G. M. (1978). The equipment complex of the Unified
System for teleprocessing of data. Prib. Sist. Upr. (6), 9-12.

Betelin , V. B ., Bazaeva, S. E ., and Levitin, V. V. (197S). "The ES-ASVT Small Operating
System." Order of Lenin Institute of Applied Mathematics, Academy of Sciences USSR,
Moscow.

Bezhanova, M. M. (1970). The Tenzor system program: Presented atAU Conj., Prog. 2nd,
1970.

Bobko ,1. (1977). Testing. Sov. Rossiya July 12 , 2.
Boehm, B. W. (197S). The high cost of software. In (Horowitz, 1975), 3-14.
Boehm, B. W. (1977). Software engineering: R&D trends and defense needs. In (Wegner,

1977) , 1.1-1.43.
Bornstein, M., and Fusfeld, D. R., eds. (1974). "The Soviet Economy: A Book of Readings"

(4th ed .). Irwin, Homewood, Illinois.
Borodich, L. 1. et al. (1977). "ALGAMS-DOS ES Computers." Statistika, Moscow.
Bratukhin , P. I. , Kvasnitskiy, V. N., Lisitsyn , V. G., Maksimenko , V. I., Mikheyev, Yu. A.,

Cherkasov, Yu. N. , and Shohers, A. L. (1976). " Fundamentals of Construction of Large
Scale Information-Computer Networks" (D. G. Zhimerin and V. I. Maksimenko, eds.).
Statistika, Moscow.

Brich, Z. S ., Voyush, V. I., Deztyareva, G. S., and Kovalevich, E. V. (197S). "Programming
ES Computers in Assembly Language ." Statistika, Moscow.

Bucy, J . F. (1976). An analysis of export control of U.S. technology-a DoD perspective.
Defense Science Board Task Force Report (Feb. 4) on Export of U.S. Technology,
ODDR&E. Washington, D.C.

Burtsev , V. S. (197S). Prospect for creating high-productivity computers. Sov . Sci. 45.
Burtsev, V. S . (1978) . Computers : relay-race of generations. Pravda April 4, 3.
Buxton , 1. M ., Naur. P., and Randell , B. (1976). Software Engineering: Concepts and

Techniques Proc. NATO Conferences, Garmish, West Germany , Oct. 7-11, 1968; Rome,
Oct. 27-31, 1969. Petrocelli/Charter, New York .

Campbell, H . (1976). Organization of research , development and production in the Soviet
computer industry. RAND Corporation, R-1617-PR, Santa Monica, California. '

Cave, M. (1977). Computer technology. In (Amann et al., 1977), 377-406.
Chevignard , D . (197S). Soviet automation and computerization effort. Dej. Nat. (Par;s)

Feb ., 117- 128 .
CSTAC IT (1978) . Transfer of computer software technology. Jan . 20 Report of the Tech

nology Transfer Subcommittee of The Computer Systems Technical Advisory Committee
(CSTAC), U.S . Dept. of Commerce.

CSTAC II (1978). COMECON Ryad-II Report (Rev. I, Feb. 22). Foreign Availability Sub
committee (CSTAC), U.S. Dept. of Commerce.

CTEG (1979) . Computer Networks : An Assessment of the Critical Technologies and
Recommendations for Controls on the Exports of Such Technologies. Computer Network
Critical Technology Expert Group (CTEG), U.S. Dept. of Defense May .).

Davidzon, M . (1971). Computers wait for specialists . Sal. Ind. Dec. 2S, 2.
Davis, N. C, and Goodman, S. E. (1978) . The Soviet Bloc's Unified System of computers.

ACM Camp. Surv . 10 (2), 93-122.
Del Rio, B. (1971). Cybernetics: To a common denominator. Pravda Jan. S.
Dittert , W. (1978). ES-lOSS computer. Szamitastechnika (Hung.) Jan .
Doncov, B. (1971). Soviet cybernetics technology: XII. Time-sharing in the Soviet Union.

Rand Corporation, R-522-PR, Santa Monica , California.
Drexhage , K . A. (1976). A survey of Soviet programming. SRI Tech. Rep . Proj. 3226.

SOFTWARE IN THE SOVIET UNION

Drozdov , E. A., Komarnitskiy , V. A. , and Pyatibratov , A. P. (1976) ... Electronic Computers
of the Unified System. " Mashinostroyenie , Moscow.

Dyachenko, A. I. (1970). Ukrainian Republic fund of algorithms and programs . Mekh.

Avtom. Kontrola (I) , 6\.
Efimov , S. (1970). Horizontals and verticals of control. /zvestiya, March 8, 3.
Ekonomicheskaya Gazeta (1976). Sept. \.
Ekonomicheskaya Gazeta (1977). April IS .
Electrical Engineering Times (1977). Nov. 28.
ElorgiComputronics (1978). Growth of Soviet computers and Indo-Soviet cooperation: new

high rate performance third generation computer ES-I033 from the USSR. May-June
advertisement by V/O Elektronorgtekhnika, a Soviet foreign trade organization , and by
Computronics, India, its marketing agent in India.

Ershov , A. P. (1966) . ALPHA-An automatic programming system of high efficiency. 1.

ACM 13, 17-24.

Ershov, A. P. (1969). Programming 1968. Avtomat. Program. (Kiev) 3-19.

Ershov , A. P. (1970). Problems of programming. Vestn. Akad. Nauk SSSR (6), 113-IIS .

Ershov , A. P. (197S) . A history of computing in the USSR. Datamation Sept. , 80-88.

Ershov, A. P., and Shura-Bura, M. R. (1976). Directions of development of programming in

the USSR. Kib ernetika 12 (6), 141-160.

Ershov, A. P. , and Yushchenko, E. L. (1969). The first All-Union conference on program

ming. Kibernetika 5 (3), 101-102 .

Evreinov, E . V., and Kosarev, Yu. G., eds . (1970). " Computer Systems." Akademiya

Nauk , Novosibirsk; translated and published for the National Science Foundation by

Amerind Pub!., New Delhi, 1975 .

Fadeev , V. (1977) . Who is to answer for computer servicing? Sots. Ind. Sept. 4,2.

Filinov , E. N., and Semik, V. P. (1977). Software for the SM-3 UVK . Prib . Sist. Up. (10),

IS-17.
First AU Conf. Prog. (1968) . " First All-Union Conference on Programming" (II vols.),

Kiev . Excerpts translated in Sov. Cybern. Rev., July 1969, pp. 20-6S .
Galeev , V. (1973). The collection is large but the benefit is smalL Pravda Jan . 8.
GDR (German Democratic Republic) (1976). Ryad Overview. In "Rechentechnik Daten

verarbeitung" . Memorex, McLean, Virginia (distr.).
Gladkov, N . (1970). A help or a burden? Pravda Oct. 16 (2).
Glushkov, V. M. (197Ia). The computer advises, the specialist solves. Izves tiya Dec. IS, 3.
Glushkov, V. M. et al. (1971b). ANALITIK (Algorithmic language for the description of

computational processes with the application of analytical transformations) . Kib ernetika 7

(3), 102-134.
Glushkov, V. M., Ignatyev, M. B. , Myasnikov , V. M., and Torgashev , V. A. (1974). Recur

sive machines and computing technology . Proc. AFIPS Conj., pp . 6S-70. North Holland,

Amsterdam.
Godliba, 0 ., and Skovorodin , V. (1967). Unreliable by tradition . Pravda Aug. 27, 3.
Goldberg, J . G., and Vogeli, B. R . (1976). A decade ofreform in Soviet school mathematics .

CBMS Newsletter Oct.-Nov.
Goodman, S. E. (1978). The transfer of software technology to the Soviet Union. Presented

at " Integrating National Security and Trade Policy : The United States and the Soviet
Union," a conference held June IS-17 at the U.S . Military Academy, West Point, New

York.
Goodman , S. E. (1979). Soviet Computing and Technology Transfer: An Overview. World

Politics 31 (4).

http:1.1-1.43

284 285 S. E. GOODMAN

Goriin , A. C. (1976). Industrial reorganization: the associations. In (Hardt, 1976), 162-188.
GOST 21551-76 (1976) . "USSR State Standard for the Programming Language ALGAMS."

Standartov, Moscow.
Granick , D. (1961). "The Red Executive ." Anchor Books, Garden City, New York .
Hardt, J. P. , and Frankel, T (1971). The industrial managers. In (Skilling and Griffiths,

1971),171-208.
Hardt, J. P., ed. (1976). "The Soviet Economy in a New Perspective ." Joint Economic

Committee U.S. Congress, Washington, D.C.
Holland , W. B. (l971a). Kosygin greets first class at management institute. Sov. Cybern .

Rev . May , 7-11.
Holland, W. B. (l97Ib) . Party congress emphasizes computer technology . Sov . Cybern. Rev.

July , 7-14.

Holland , W. B. (l971c). CDC machine at Dubna Institute. Sov. Cybern . Rev. July, 19-20.
Holland , W. B. (197Id). Comments on an article by M. Rakovsky. Sov. Cybern. R ev. Nov ., 33 .
Horowitz , E ., ed. (1975). "Practical Strategies for Developing Large Software Systems."

Addison-Wesley, Reading, Massachusetts.
IBM RTM (1970). " Introduction to the Real-Time Monitor (RTM)." GH20-0824-0, IBM

Systems Reference Library .
IBM DOS (1971). " Concepts and Facilities for DOS AND TOS." DOS Release 25, GC

24-5030-10, IBM Systems Reference Library.
IBM S/360 (1974). IBM Systeml360 Models 22-195. In '''Datapro Reports" (70C-491-03).

Datapro Research, Delran, New Jersey.
IBM S/370 (1976). IBM Systeml370. In " Datapro Reports " (70C-491-04) Datapro Research,

Delran , New Jersey .
Informacio Elektronika I,ffang.) (1977). Three articles on structured programming and pro

gram correctness verification. 12 (4).
Infotech Information Ltd. (1972). "Software Engineering." International Computer State of

the Art Report. Maidenhead, Berkshire, England.
Infotech Information Ltd. (1976) . "Real-Time Software:" Ihternational Computer Stat ofr

the Art Report. Maidenhead, Berkshire, England.
ISOTIMPEX (1973). English language description of the ES-1020. Bulgarian State Trade

Enierprise ISOTIMPEX, Sofia. (Untitled , undated, assume issued 1973 .)
Ivanenko, L. N. (1977). Imitation and game simulation of human behavior in technological

and socioeconomic processes. Report on a conference held in Zvenigorod, May 27-June I ,
1977. Kibernetika 13 (5), 150.

Izmaylov, A. V. (1976). Software system for the 'Tver-ES' automated control system. Ref.
Zh. Kibern. (8), Abstract No. 8G603.

lzvestiya (1978). March 14,2.
Judy, R. W. (1967). Appendix: Characteristics of some contemporary Soviet computers. In

"Mathematics and Computers in Soviet Economic PlalUling" (1. Hardt et al. , eds.), pp.
261-265 . Yale Univ. Press, New Haven.

Kaiser, R. G. (1976). " Russia: The People and The Power. " Atheneum, New York .
Kasynkov , I. (1977). hvestiya March 4,2.
Kazansky, G. (1967). Moscow Nedelya Dec. 4 (7).
Kharionovich, I. V. (1971). Automated system for controlling railroad transport . Avtom.

Telemekh. Svyaz (8), 1-3 .
Khatsenkov, G. (1977). Instantaneously subject to computers. Sots. Ind. April 24, I.
Khusainov, B. S. (1978). "Macrostatements in the Assembler Language of the ES EVM. "

Statistika, Moscow .

Kitov , A. 1. , Mazeev , M. Ya. , and Shiller, F. F. (1968). The ALGOL-COBOL algorithmic
language. In AU Conf. Prog., 1st, 1968 .

SOFTWARE IN THE SOVIET UNION

Kmety, A. (1974). Demonstration of the R-20 at the capital city office for construction
operations and administration. Szamitastechnika (Budapest) April-May , 1-2.

Koenig, R. A. (1976). An evaluation of the East German Ryad 1040 system. Proc. AFIPS
Conf., pp. 337-340.

Kommunist (Yerevan) (1977). Nov. 29,4.
Kommanist (Yerevan) (1978). Dec . 31, I.
Kryuchkov, V., and Cheshenko , N. (1973). At one-third of capacity: Why computer effi

ciency is low . Izvestiya June 14 , 3.
Kudryavsteva, V. (l976a). SOY. Beloruss . April 25 , 2.
Kudryavsteva, V. (l976b) . SOY. Beloruss . July 18, 4.
Kulakovskaya, V. P. et al. (1973) . "Minsk-32 Computer COBOL. " Statistika, Moscow.
Kuzin, L. T, and Shohukin, B. A. (1976). "Five Lectures on Automated Control Systems."

Energiya, Moscow.
Lapshin , Yu. (1976). Maximizing the effectiveness of computer technology. Sot. Ind. Sept.

I.
Larionov, A. M., Levin, V. K., Raykov, L. D., and Fateyev, A. E. (1973). The basic

principles of the construction of the system of software for the YeS EVM. Upr. Sisto
Mash. May-June (3), 129-138. '

Larionov, A. M. , ed. (1974). " Software Support for ES Computers." Statistika, Moscow.
Leonov, O. I. (1966). Connecting a digital computer to telegraph communication lines in a

computer center. Mekh . Avtom. Proiz. (8),40-42.
Letov, V. (1975). Computer in the basement. hvestiya Aug. 22 , 3.
Liberman , V. B. (1978). "Information in Enterprise ASU. " Statistika, Moscow.
Mamikonov , A. G. et al . (1978). "Models and Methods for Designing the Software of an

ASU." Statistika, Moscow.
Meliksetyan, R. (1976) . Nedelya Dec . 27, 3.
Mijalski, Czelslaw (1976). The principles, production and distribution of the software of

MERA-ELWRO computers. Informatyka (Warsaw) Nov ., 27.
Mitrofanov , V. V., and Odintsov, B. V. (1977). "Utilities in OS/ES. " Statistika, Moscow .
Mooers, C. N. (1977) . Preventing software piracy. In " Microprocessors and Microcomput

ers" (selected reprints from Computer), pp. 67-68. IEEE Computer Society .
Moskovskaya Pravda (1978). April 8, 3.

Myasnikov, V. A. (1972). Need for improved computer technology. Iz vestiya May 27, 2.

Myasnikov, V. A. (1974). Automated Management Systems Today. Ekon. Organ. Promyshl.

Proizv . (6), 87-96.
Myasnikov, V. A. (1976). Sov. Ross . Dec. 24, 2.
Myasnikov , V. A. (1977). Results and priority tasks in the field of automation of control

processes in the national economy of the USSR. Upr . Sisto Mash . (Kiev) Jan .-Feb. (I),

3-6.
Myers, G. J . (1976). "Software Reliability. " Wiley, New York.
Naroditskaya, L. (1977). New computers are running ... We audit fulfillment of Socialist

pledges. Pravda Ukr. Nov. 18, 2.
NASA (1977) . Standardization, certification , maintenance, and dissemination of large scale

engineering software systems, NASA Conference Publication No. 2015.
Naumov , B. N. (1977). International small computer system. Prib . Sisto Upr. (10),3-5.
Naumov , V. V. (1976). Real-Time Supervisor (SRV). Programmirovanie May-June, 54-60.
Naumov, V. V., Peledov, G. V., Timofeyev , Yu . A., and Chekalov , A. G. (1975). "Super

visor of Operating System ES Computers. " Statistika , Moscow.

Nove, Alec (1969) . "The Soviet Economy" (2nd ed.). Praeger, New York.

Novikov , I. (1978). They put their AMS up for sale. Pravda March 13, 2.

Novikov, N. (1972). Idle computers. Pravda Aug. 21.

286 287 S. E. GOODMAN

N ovoshilov, V. (1971) . The levels of mathematics. /zves tiya Jan. 17, 3.
OECD Report (1969). Gaps in technology-Electronic computers . Organization for Eco

nomic Cooperation and Development , Paris . .
Ovchinnikov, Yu. (1977) . Science in a nation of developed socialism. Izvestiya Nov. 18 , 2.
Parrott, Bruce B. (1977). Technological progress and Soviet politics. In (Thomas and

Kruse- Vaucienne, 1977), 305-328.
Peledov , G. v., and Raykov , L. D. (1975). The composition and functional characteristics of

the software system for ES computers. Programmirovanie Sept.-Oct. (5) , 46-55 .
Peledov, G. V., and Raykov, L. D. (1977). "Introduction to OS/ES ." Statistika, Moscow.
Perlov, I. (1977). The ASU-Its use and return. Ekon. Zhizn (Tashkent) (6), 83-86.
Pervyskin, E . K. (1978). Technical Means for the Transmission of Data. Ekon. Gaz . June

(25), 7.
Petrov , A. P. (1969). "The Operation of Railroads Utilizing Computer Technology. " Trans

port, Moscow.
Pevnev , N. I. (1976). "Automated Control Systems in Moscow and Its Suburbs. " Mos

kovsky Rabochy, Moscow.
Pirmukhamedov , A. N. (1976). "Territorial ASU ." Ekonomika, Moscow.
Pleshakov, P. S. (1978). Utilizing Automated Management Systems Efficiently: Computer

Hardware. Ekol1omicheskaya gazeta , July 31, 15 .
Rakovsky , M. (1977). Computers ' surprises. Pravda March 2, 2.
Rakovsky , M. (1978a). According to a single plan. Pravda Feb. 3, 4.
Rakovsky , M. (l978b). On a planned and balanced basis . Ekon. Ga z. June (23) , 14. (Quota

tions from a translation in CDSP Vol. XXX , No. 24 , _po 24.)
Reifer , D. J. (1978). Snapshots of Soviet computing. Datamation Feb., 133-138.
Rezanov , V. V., and Kostelyansky, V. M. (1977). Software for the SM-I and SM-2 UVK.

Prib. Sist. Upr. (10),9-12.
Robotron (1978). EC-I055 electronic data processing system. VEB Kombinat Robotron

Brochure, May 25 .
Rudins , George (1970). Soviet computers: A historical survey. 5 0 1'. Cybem. R ev. Jan ., 6-44.
Sabirov , A. (1978). Specialty: cybernetics . /zvestiya March 12,4.
Saltykov , A. I., and Makarenko, G. I. (1976). " Programming in the FORTRAN Language"

(Dubna FORTRAN for the BESM-6). Nauka, Moscow.
Sarapkin , A. (1978) . To new victories. 501'. Beloruss. Jan. 4, I.
Second AU Conf. Prog. (1970). Second All-Union Conference on Programming,

Novosibirsk. (Translated abstracts in SOl'. Cybem. Rev. May, 9-16).
Shnayderman, I. B., Kosarev, V. P., Mynichenko , A. P., and Surkov, E. M. (1977). "Com

puters and Programming." Statistika, Moscow.
Skilling, H. G., and Griffiths, F., eds. (1971) . "Interest Groups in Soviet Politics. " Princeton

Univ. Press , Princeton, New Jersey.
Smith , H. (1977). "The Russians." Ballantine, New York.
Solomenko, E. (1975). Machines of the Unified System. Leningradskaya Pravda May 15.
Sovetskaya Esto niyci (1978). March 15, 2.
Sovetskaya Moldavia (1978) . Jan. I , 2.
Sovetskaya Rossiya (1976). Sept. II, 4.
Tallin (1976). First IFAC/IFIP Symposium on Computer Software Control, Estonia. Paper

titles published in Programmirovaniye (Mos cow) (5), 100-102 , and Ve stn. Akad. Nauk
SSSR (II), 1976, 93-94 .

Taranenko, Yu. (1977) . How to service computers. Sots. Ind. July 19,2.
TECHMASHEXPORT (1978a). SM EVM Minicomputer Family: SM-I, SM-2. Marketing

Brochure. Moscow.

SOFTWARE IN THE SOVIET UNION

TECHMASHEXPORT (l978b). SM EVM Minicomputer Family: SM-2. Marketing

Brochure. Moscow.
Thomas, J . R., and Kruse- Vaucienne, U. M., eds . (1977). "Soviet Science and Technology , "

pp. 305-328. National Science Foundation, Washington, D.C.
Tolstosheev, V. V. (1976). "The Organizational and Legal Problems of Automatic Systems

of Control." Ekonomika, Moscow, pp. 49-50.
Trainor, W. L. (1973) . " Software-From Satan to Savior." USAF Avionics Laboratory,

Wright-Patterson. AFB, Ohio. Referenced in (Boehm, 1975).
Trofimchuk, M. (1977). How do you work, computer? Pravda Ukrainy Sept. 7.

Trud (1977). Jan. 14, 2.
Trud (1978a). Jan. 4, I.
Trud (l978b). Nov. 7.
Vasyuchkova, T. D., Zaguzoba, L. K., Itkina, O. G., and Savchenko, T. A. (1977). "Pro

gramming Languages with DOS ES EVM ." Statistika, Moscow.
Vodnyy Transport (1977). Riga ship repair plant to use ASU with 'Tver' software system.

Sept. 24, 4.
Ware, W. H. , ed. (1960). Soviet computer technology-1959. Commun. ACM 3 (3), 131- 166.
Washington Post (1978) . The battle of Minsk, or socialist man beats computer. March 28 .
Wegner, P., ed. (1977). Proc. Conf. on Research Directions in Software Technology. Final

version to be published 1978, MIT Press, Cambridge, Massachusetts.
White , H. (1977). Standards and documentation. In (NASA, 1977), 20-26.
Yanov, A. (1977). Detente after Brezhnev: The domestic roots of Soviet foreign policy.

Policy Papers in International Affairs, No.2 . Institute of International Studies, University

of California, Berkeley .
Zadykhaylo , I. B. et al. (1970). The BESM-6 operating system of the USSR Academy of

Sciences' Institute of Applied Mathematics . In AU Conf. Prog . . 2nd, 1970.
Zarya Vostoka (1976). July 28 , 2.
Zhimerin, D. G. (1978). Qualitatively new stage . Ekon. Gaz. May 22, 7.
Zhimerin, D. G., and Maksimenko, V. I., eds. (1976). "Fundamentals of Building Large

Information Computer Networks." Statistika, Moscow.
Zhukov , O. V. (1976). "Generation of Programs For Data Processing." Statistika, Moscow.
Zhuravlev, V. (1973). Translators for computers . Pravda Feb. 20.

