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Abstract-The number of threshold functions of eight variables is
counted by ILLIAC II, the computer of the University of Illinois. Sets
of optimum weights of majority elements realizing these functions
also are investigated. Actually, canonical positive self-dual threshold
functions of nine variables are investigated instead of directly inves-
tigating threshold functions of eight variables because it is easier to
deal with them. The number and optimum weights of threshold func-
tions of eight variables are easily obtained from these functions of
nine variables and their realization.

First a linear program to minimize the total input weight is con-
sidered. Canonical positive self-dual functions of nine variables are
generated by modifying Winder's method and tested by the simplex
method to find whether or not they are threshold functions. The num-
ber of canonical positive self-dual threshold functions of exactly nine
variables and the number of all threshold functions of exactly eight
variables are 172 958 and 17 494 930 604 032, respectively. It had been
an open question whether there exists any completely monotonic
function of exactly eight variables which is not a threshold function.
But the computational result verified that there was no such function.
Unlike the case of threshold functions of seven or fewer variables,
there are some threshold functions of exactly eight variables whose
extreme optimum weights include fractional numbers. Other proper-
ties of these functions are also explored.

Next a linear program to minimize the threshold is considered. The
linear program is considerably different from the previous linear pro-
gram to minimize the total input weight with respect to uniqueness
of an optimum solution. The number of threshold functions which
have multiple optimum solutions is counted.

Index Terms-Completely monotonic functions, enumeration of
threshold functions, linear programming, optimum structure, switch-
ing theory, threshold logic.

I. INTRODUCTION

T is an interesting problem to find how many Boolean
functions of n variables are actually threshold func-
tions. Threshold functions have been enumerated by a

a few authors for n equal to seven or fewer [1], [2], [12].
In this paper we enumerate all threshold functions of eight
variables and investigate algebraic properties of these func-
tions and sets of optimum structures which realize them.
The digital computer of the University of Illinois, ILLIAC II,
was used for this study.
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First a linear program to minimize the total input weight
is considered. Properties of optimum weights of threshold
functions of eight variables which will be discussed in this
paper are quite different from those of seven or fewer vari-
ables. For example, functions of seven or fewer variables
have only integral and unique optimum weights. But some
of the functions of eight variables have fractional optimum
weights and some others multiple sets of optimum weights.
Whether there are completely monotonic functions which
are not threshold functions for eight variables has been an
interesting open question, because there is none for seven
or fewer variables but there is at least one known for nine
variables discovered by Gabelman [9]; but no such func-
tion was found in our enumeration.
Next a linear program to minimize the threshold is con-

sidered. This linear program is somewhat different from the
one to minimize the total input weight.

These two linear programs and their solutions are dis-
cussed in this paper.
For the definition of terminology, see [2]-[4], [14], [16],

and [20].

II. LINEAR PROGRAM TO MINIMIZE
TOTAL INPUT WEIGHT

First let us formulate the following linear programming
problem [3], [4] for a positive threshold function of n vari-
ables, f(x1, - , x"). Minimize the objectivefunction

n
W= E Wi

i=O

under the constraints

wo 2 Oandwi 2 0 (i = 1, , n),
n

ZWi) + wg0o . 1
i= 1

and
n

E Wi4(j) + wo0o < -1
i= 1

(1)

(2)

for f(xV°, ... , x(j)) = 1, (3)

for f(xJ, , x(j)) = 0, (4)

where

4j = 2x( - 1 (i = 1,2,---,n).

Then a solution wl, , wn and wo0o for which the value
of the objective function (1) is minimum and finite is
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called an optimum solution, optimum weights of f, or an
optimum structure of f.
The sum of the absolute values of all weights, i.e.,

D=o |wil, is called the total input weight. Since wi>0 for
i= 0, 1, 2, n, (1) is the total input weight.
The minimization of (1) has engineering significance.

When it is minimized, the input tolerance and reliability of
a majority element are maximized [10].
Winder [6] showed an important property that if the self-

dualized function of a given non-self-dual function
f(x1, , x.) is [(n + 1)/3]-monotonic, where [x] is the
greatest integer which is not greater than x, f is completely
monotonic. This can be easily strengthened into the neces-
sary and sufficient condition, which Winder apparently
knew but did not state. This condition is useful for finding
whether a given threshold function of n variables is com-
pletely monotonic, by examining whether the self-dualized
function is [(n + 1)/3 ]-monotonic. We make use of this
property.
When we solve the linear program (1)-(4), it is desirable

to eliminate unnecessary extremal inequalities before solv-
ing by the simplex method. Two elimination methods based
on extrinsic extremal vectors of a function were explored.
When a function is individually given, some of the extremal
inequalities in (3) and (4) can be eliminated by these two
elimination methods and then the linear program (1)-(4)
can be solved with fewer inequalities.
When all functions of a certain specified number of vari-

ables are to be generated and the linear programs for them
are to be solved, different approaches might be appropriate.
Winder [2] devised an efficient method of generating ex-
tremal inequalities for canonical positive self-dual func-
tions. In our enumeration of threshold functions of eight
variables, or equivalently canonical positive self-dual func-
tions of nine variables, we adopted Winder's generation
method to generate the extremal inequalities for two-
monotonic functions which are candidates for threshold
functions. His generation method, however, eliminates
some of the inequalities which can be eliminated by the
above two elimination methods but not all of them (this in-
complete elimination was due to Winder's treating x1 dif-
ferently from other variables in his generation method),
although a majority of inequalities which can be eliminated
by two-monotonicity are eliminated in Winder's generation
method. (Any inequalities which can be eliminated by
three-or-more-monotonicity are not eliminated.) In our
computer program, we eliminate further inequalities by one
of the above two elimination methods after using Winder's
generation method since it is easy to incorporate.
The variables of each canonical two-monotonic positive

self-dual function generated are ordered as

(5)X1 >- X2 "z . >- X".

The inequalities

Wa t W2g W3 fuctWn-1 aW s u0

are added. Sinice the generated functions are self-dual, oi

the inequalities of (3) need to be considered since wo=0 and
(4) may be ignored. When an extremal inequality

n

,wi4(V) > 1
= 1

(7)

is redundant in terms of (6) and other extremal inequalities,
in other words, when we can prove by using (6) and other
extremal inequalities that the left side of (7) is not smaller
than 1, the extremal inequality (7) may be eliminated. The
extremal n-tuples generated by Winder's method do not
include the extremal n-tuples which are redundant in terms
of the inequalities (6) of w2, , w", but do include redundant
ones in terms of the inequalities with w1. The elimination of
these redundant ones takes little computer time but reduc-
tion of computer time for the linear programming due to
this elimination is significant.
Then we considered the following linear program for a

canonical positive self-dual function, by converting the
unknown wi of the linear program (1H4) into their differ-
ences. Minimize

n-i

Z i(Wi- wi+1) + nWn
i= 1

under the constraints

(8)

(w._ 1- w.) 2 , w. 2 (9)
and the extremal inequalities left after the above elimination
method,
n-1 i

E (wi - wi+ 1) E ai)
i= 1 k= 1

+ wn E (i)> 1
i = 1

(j= 1,2, ,r). (10)

As pointed out by Winder [2], taking the differences
(wi-wi+ 1) as the unknowns will make the number of itera-
tions fewer than that by taking wi themselves as the un-
knowns, in solving the following dual linear program.

Then the dual linear program of the above linear program
was formulated as follows. Maximize

(11)zvj
j=l

under the constraints

vj 2 0 forj = 1, 2, , r

and
r

Z vj(4(j')) < 1
j=1

vj E di)) < 2
= 1 k= I

(12)

(6) r .n .
E vjf E X(j) <- n.

nly j=1 kk=l J
(13)
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At this stage some of the inequalities of (13) can be elimi-
nated, reducing the size of the linear program further. (Ac-
cording to the literature this elimination scheme has not
been used before.)
Then the dual linear program of (1 1)-(13) is solved by the

simplex method. The advantage of dealing with the dual
linear program is the immediate availability of the initial
feasible solution without introduction of artificial variables.
We exhausted all extreme solutions in order to get all

optimum solutions. The last tableau is examined to deter-
mine whether there is a symptom for multiple extreme
optimum solutions, according to the method suggested by
Gomory as reported in [10].

III. COMPUTATIONAL RESULTS
First, 319 124 canonical two-monotonic positive self-dual

functions were generated. We then solved the same number
of linear programs. 175 428 ofthem turned out to be thresh-
old functions and the remaining 143 696 to be non-
threshold functions. By our modification of Winder's gen-
eration, we had a total of 1 898 947 extremal inequalities
for threshold functions (3 477 178 extremal inequalities for
all generated functions). This means that each threshold
function on the average had 10.8 extremal inequalities.
(Each of all generated functions had an average of 10.9 ex-
tremal inequalities.) The maximum number of extremal
inequalities for a threshold function was 23.

Since a large number of linear programs had to be solved,
the computer program for the simplex method had to be
fast. Special features of ILLIAC II were used [8].
The statistics of the number of threshold functions and

other types of functions are shown in Table I. In this table
NPN type means the class of functions which are equivalent
by negation and/or permutation of variables and/or nega-
tion of a function. NP type means the class of functions
which are equivalent by negation and/or permutation of
variables (no operation on a function). Some figures were
available already and our results were checked against them.
(One obvious mistake in Winder's table [2], i.e., number of
nondegenerate threshold functions of seven variables, was
corrected.)

Let Rn be the number of threshold functions of up to n
variables. The bounds on Rn are known [15]-[19] as

1 1
n<1- < lim-2log2 R, . 1.

2 n09n-+o

The values of (l/n2) log2 Rn from the figures in Table I are
computed in Table II. The value reaches a minimum at
n = 5 and increases again for larger n.
We enumerated also the symmetry types of canonical

positive self-dual threshold functions, i.e., how many sets of
symmetrical variables each of the canonical positive self-
dual threshold functions has, and then their numbers.
A set of optimum weights which includes the maximum

w° was 42, 22, 18, 15, 13, 10, 8, 4, 3.
A set of optimum weights which includes the maximum

The maximum of the optimum total input weight, i.e.,
3= , w°, was 209. The set of optimum weights (unique) for

this function was 34, 32, 28, 27, 24, 20, 18, 15, 11 (T= 105).
The minimum was of course 9.
Each of the optimum weights for the 175 428 threshold

functions were added up and were shown in Table III with
the average size for each weight. For functions which had
multiple extreme optimum solutions, average optimum
weights were used (i.e., since all these functions had only
two extreme optimum solutions, the optimum weights at
the midpoint were added).
Twelve canonical positive self-dual threshold functions

of exactly nine variables were discovered to have multiple
extreme optimum solutions, though none of those of eight
or fewer variables had multiple solutions. These are listed in
Table IV. Each function has only a single pair of symmetri-
cal variables whose weights are encircled. If encircled
weights are interchanged, the other extreme optimum solu-
tion is obtained.
Two functions were discovered to have an extreme

optimum solution which included fractional weights. Both
solutions were unique extreme optimum ones. These are
shown in Table V. When a function has multiple extreme
optimum solutions of integral weights, we may have an
extreme optimum solution having fractional weights in the
last tableau which were not originally extreme solutions but
were brought in by the constraints (6). Of course, such
solutions were not counted.
Each time we discovered a set of optimum weights for a

generated canonical positive self-dual threshold function of
up to nine variables, we counted how many of the extremal
inequalities used for the primal linear program are satisfied
by equality by the solution and how many by strict inequal-
ity.
The maximum number of inequalities which are satisfied

by strict inequality by an optimum solution was ten. Six
functions were found to have this number of ten strict in-
equalities. But some of these strict inequalities can be
eliminated as the inequalities corresponding to extrinsic
prime implicants. In this sense these are interesting func-
tions. Let us discuss one ofthese six functions as an example.
The self-dual threshold function expressed by the follow-

ing optimum weights (unique optimum solution) 23, 17, 15,
13, 1 1, 9, 7, 5, 3 (T= 52) has 47 prime implicants, 35 ofwhich
are extrinsic and 12 of which are intrinsic. By elimination of
inequalities, 20 extremal inequalities are left in the primal
linear program and the corresponding dual linear program
is solved by the simplex method. By the optimum solution
obtained, ten of these inequalities are satisfied by equality
and the remaining ten by strict inequality. However, eight of
these ten strict inequalities can be eliminated as the inequal-
ities corresponding to extrinsic prime implicants but the re-
maining two strict inequalities correspond to intrinsic prime
implicants.

There was no three-monotonic self-dual function of ex-
actly nine variables which was not a threshold function.
wThis means that there is no completely monotonic self-dual
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TABLE I
NUMBER OF FUNCTIONS BY CLASSIFICATION

n 0 1 2 3 4 5 6 7 8

Switching functions of upton vari-
ables 2 4 16 256 65 5361 about 4.3 x 109 about 1.8 x 10' about 3.4 x 1038 about 1.16x10x

I-- F I F I
Switching functions of exactly n
variables 2 2 10 218 64 594 about 4.3 x 109 about 1.8 x IJ90 about 3.4x 1038 about 1.16x10x

It1 FThreshold functions ofup to n varn-
ables 2 4 14' 104 1882 94 572 15 028 134 8 378 070 864 17 561 539 552946

Threshold functions of exactly n
variables 2 i2 8 72 1536 86 080 14487 040 8 274 797 440 17 494 930 604 032

I-4- I i2
N-type threshold functions of up
ton variables 2 3 6 20 150 3287 244 158 66 291 591 68 863 243 522

N-type threshold functions of ex-

actly n variables 2 1 2 9 96 2690 226 360 64 646 855 68 339 572 672

N-type self-dual threshold func-
tions of up to n+ 1 variables 1 2 81 1684 123 565 33 207 256 34448 225 389

N-type self-dual threshold func- F
tionsofexactlyn+lvariables I Oj 1 4 46 1322 112519 I 32267 168 34153652752

NPtype ofu to vaibe F
-

F F __NP types of up to n variables 2 3 6 22 4021 1 228 158 T 400 507 806 843 728

NP types of exactly n variables 2 31 16 380 1 227 756 400 507 805 615 570

NP threshold functions of up tonn F r
variables 2 3 5 1 27 119 1113 29 375 2 730 166

NP threshold functions of exactly
nvariables 2 1 2 51 17I 92 994 28 262 2 700791

NPN types of up to n variables 1 2 4 14 222 616 126 200 253 952 527 184

NPN types ofexactlyn variables I 1 2 510 2088 615 904 200 253195 1911 058

NPN threshold functions of up ton 1 F 1
variables I 2 3I 6 15 63 567 14 755 1 366 318

NPN threshold functions of exactly 1 F _______
n variables I 1 1 3 9 48 504 14 188 1 351 563

Self-duality types of up to n + 1
variables I 1 3 7 83 109 958 j

Self-duality types of exactly n + 1
variables 0 2 4 76 109 875 _

Self-duality type threshold func- - F
tionsofupton+ I variables I I 2 3 7 21 135 2470 175 428

Self-duality type threshold func- F I
tionsofexactlyn+1 variables I 0 1 1 4 14 114 2335 172 958.

Note that the 7th, 8th, and the last four rows are for n + 1 variables instead of for n variables.
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TABLE II

n
(l

Number of Variables (1/n2) log2 Rn

1 2
2 0.95184
3 0.74449
4 0.67988
5 0.66117
6 0.66226
7 0.67273
8 0.68740

TABLE III

AVERAGE SIZE OF WEIGHTS

Total Sum Average Size

WI 3 367 459 19.2
W2 22643212 15.1
W3 2 150 516.5 12.3
W4 1 762 341 10.0
W5 1 442 171 8.2
W6 11145 993.5 6.5
W-7 882 375.5 5.0
W8 628 050.5 3.6
W9 379 946 2.2

function of exactly nine variables which is not a threshold
function and also that there is no completely monotonic
function of eight or fewer variables which is not a threshold
function. Therefore, as Gabelman had shown [9], for nine
variables there appears for the first time a completely mono--
tonic function which is not a threshold function.
The computer program which we wrote in NICAP for

ILLIAC II contains various error-checking procedures. All
strongly asymmetrical threshold functions of exactly nine
variables are printed out and compared with the self-dual
threshold functions of exactly eight variables. This partly
served to insure that the generation program generated all
nine variable functions, because strongly asymmetrical
canonical positive threshold functions of exactly n variables
have a one-to-one correspondence with canonical positive
threshold functions of exactly (n - 1) variables [7].
Computation time of our computer program was ap-

proximately ten hours on ILLIAC II. It includes time for
auxiliary error-checking programs and intermediate print-
ings.

IV. LINEAR PROGRAM TO MINIMIZE A THRESHOLD

In this section, the linear program to minimize a threshold
is discussed.

Let us define a linear program corresponding to the
threshold expression as follows.

Minimize T (14)

under the constraints

wi 2 0 (i= 1, 2, - , n), (15)
n

Z wix > T
i= 1

for f (x(1), ", xn'1) = 1, (16)

TABLE IV
CANOMCAL POSITIVE SELF-DUAL THRESHOLD FUNCTIONS WHICH HAVE

MULTIPLE EXTREME OPTIMUM SOLUTIONS

One Set of ExtremeChow's Parameters Opiu Wegt*Optimum Weights*

83, 33, 31, 31, 19, 19, 19, 13, 13 13, 7,6,6,4,4, 4,(),T(2)
87,33,31,25,25,21,9,7,7 17,9, 8,(),(), 5,3,2,2
72, 44, 32, 32, 30, 18, 18, 12, 12 113, 9,7, 7,6, 4, 4,(3), )
79,41,31,31,23,23, 11,9,9 14,9,O),6,5,5,3,2,2
77,43,31,31, 25,25,9,7,7 17, 12,8,8,O, ,3,2,2
68,52,32,32,22,22,22,8,8 11,9,6,6,4,4,4,(j,G
66, 54, 32, 32,24, 24, 20, 6,6 13, 11,7,7,5,5,44,(2),
67,53,37,27,27, 19, 19,7,7 13, 11,8,6,6,4,4,©,,(D
66,54,36,28,28,20, 18,6,6 15, 13,9,7,7,5,44,),t
59, 47, 45, 33, 25, 25, 19, 19,7 13, 11, 10, 8, 6, 6,($,®),2
65, 55, 41, 31, 23, 15, 15,5,5 16, 14, 11,9,6,4, 4,429D
64, 56, 40, 32, 24, 16, 14,4,4 18, 16, 12, 10, 7, 5,4,(2),()

* The other set of extreme
changing encircled weights.

optimum weights is obtained by inter-

TABLE V

CANONICAL POSITIVE SELF-DUAL THRESHOLD FUNCTIONS WHOSE EXTREME
OPTIMUM SOLUTIONS INCLUDE FRACTIONAL WEIGHTS

Chow's Parameters Unique Optimum Weights*

66, 54, 40, 30,_4. 16, 16, 6, 6 14.5, 12.5, 9.5, 7.5, 6, 4, 4, 1.5, 1.5, T=31
65, 55, 39, 31, 25, 17, 15, 5,55 16.5,14.5,10.5,8.5,7,5,4,1.5,1.5, T=35

* T is a threshold.

n

Z wix < T - 1
i= 1

for f(x(1), ,x(j)) = O (17)

for a positive function f. Minimization of T has some engi-
neering motivation [10]. It gives maximization of input
tolerance.(revision of the proof of this in [10] will be given
elsewhere), yielding more reliable operation of threshold
elements. The inequalities (16) and (17) are called a normal-
ized system of inequalities in threshold expression.
Note that the inequalities in majority expression (3) and

(4) can be converted into (16) and (17), respectively, by the
conversion formula

w040 = E wi + 1 - 2T
i= 1

(18)

and vice versa. The objective function (14) is equivalent to
(3) by (18), when c0= -*1 or w, = 0, but they are different
when o- +1. In other words, the linear program to
minimize ZD=0 wi of (1H4) is equivalent to the linear pro-
gram to minimize T of (14H17), if a given function is a
minor function or a self-dual function. If the function is a
major function, these two linear programs are not equiva-
lent [10]. Actually they have different solutions for some
major functions. For example, optimum solutions of the
linear program to minimize T for the major function

f(X1, X2, X3) = X1 V X2X3

are

w? > 2, w2 = W0 = 1 and T° = 2,
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TABLE VI
NUMBER OF CANONICAL POSITIVE MAJOR THRESHOLD FUNCTIONS

AND NUMBER OF THOSE WHICH HAVE SINGLE LITERAL
PRIME IMPLICATIONS

M(n), Number of S(n), How Many M(n) - S(n), How
n, Number Canonical Positive of M(n) Have at Many of M(n) Do

of Major Threshold Least One Single Not Have Single
Variables Functions of Literal Prime Literal Prime

Exactly n Variables Implicant Implicants

1 0 0 0
2 1 1 0
3 2 2 0
4 8 5 3
5 44 17 27
6 490 92 398
7 14 074 994 13 080
8 1 349 228 28 262 1 320 966

TABLE VII

NUMBER OF CANONICAL POSITIVE MAJOR THRESHOLD FUNCTIONS WHICH HAVE DIFFERENT OPTIMUM
STRUCTURES FOR THE Two LINEAR PROGRAMS

NNumber of Functions, Among M(n) Functions, which have Nonequivalent
Threshold and Majority Structures due to: Number of Functions,

M(n), jI I IAmong M(n) Functions,
n, Number Of Number of Canonical Which Have Unique and
Variables PositiveMajor Threshold 1) Single Literal Prime 2) Multiple Threshohresholdand Equivalent Threshold

Functions of Exactly Implicants are Structures and a Majority Structures and Majority
n Variables Possessed Unique Majority Both Unique but Structures

Structure Nonequivalent

1 1 100 0 0 0
2 1 0 0 0
3 2 0 0 0
4 8 5 0 0 3
5 44 17 0 0 27
6 490 92 6 0 392
7 14 074 994 314 0 12 766

while its optimum solution for the linear program to
minimize Z7= O wi is (2, 1, 1; wo0o= 1) which is unique. In
other words, the linear program for this f defined by (14)-
(17) has multiple optimum solutions, while that defined by
(1)-(4) has a unique solution.

It is easy to prove the following which was observed by
Yen.

Theorem 1. The linear program to minimize T, (14)-(17),
for a positive threshold function has optimum weights of
unbounded magnitude if and only if the function contains a
prime implicant consisting of a single literal.

Therefore, at least for those functions which have single
literal prime implicants, the linear program to minimize T
has optimum solutions different from those of the linear
program to minimize W, (1)-(4), since the latter linear pro-
gram always has optimum weights of finite magnitude for
threshold functions.

Table VI shows the number of canonical positive major
threshold functions of exactly n variables (the class of func-
tions which are equivalent by complementation and/or
permutation of variables and/or complementation of a
function) and it also shows how many of them have at least
one single literal prime implicant.
A computer program was written for investigating how

many of (M(n) - S(n)) of Table VI have different optimum

structures in threshold expression from those in majority
expression. The number of the interesting functions of
eight variables, 1 320 966, is unfortunately too big to
handle. So our investigation was limited only to the case of
the functions of seven or fewer variables.
The linear programs to minimize T, (14)-(17), were

formulated for all canonical positive major threshold func-
tions of seven or fewer variables except those with single
literal prime implicants. After solving these linear programs
by simplex method, it was checked whether the optimum
solution (w°, , wo; 1°) obtained in the last tableau was
identical to the optimum solution (w°, , w°, w° CO) of
the linear program of (1)-(4), by the conversion formula
(18).
As was seen in Table VI, 3 (4 variables), 27 (5 variables),

398 (6 variables), and 13 080 (7 variables) major functions
were actually investigated to find whether they have differ-
ent structures in threshold expression and majority expres-
sion. Table VII shows the result of this investigation.
A total of 320 functions of seven or fewer variables were

found which do not have single literal prime implicants and
which have a different optimum structure in threshold ex-
pression from an optimum structure in majority expression.
All of those structures have the following properties: 1)
multiple and bounded; 2) one of the extreme optimum
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TABLE VIII

MULTIPLE OPTIMUM STRUCTURES OF FUNCTIONS OF SIX VARIABLES

Wl W2 W3 W4 W5 W6 T

6 - 7 4 3 3 2 2 8
5 -6 4 3 3 2 2 7
7 - 8 5 4 3 2 2 9
6 - 7 5 4 3 2 2 8
5 - 6 3 3 2 2 2 7
4- 5 3 3 2 2 2 6

TABLE IX

TYPES OF THRESHOLD FUNCTIONS OF SEVEN VARIABLES WHICH HAVE MULTIPLE OPTIMUM SOLUTIONS FOR LINEAR PROGRAM TO MINIMIZE T

Nuimber ofTi Number °f : W, W2 W3 W4 W5 W6 W7Type Functions
I _I_

1 200 a-a+1 2 a+2
2 22 a-a+2 3 a+3
3 6 a-a+ I a-a+1 2 a+2
4 46 a-a+1 b+2 b a+b+2
5 18 a-a+1 b+2 b a+b+2
6 10 a-a+1 b+2 b a+b+2
7 4 ala-a+2 b+3 b a+b+3

8 8 Miscellany (See Table X)

TABLE X

EXAMPLES OF THRESHOLD FUNCTIONS SHOWN IN TABLE IX

Type Optimum Weights T

1 6- 7, 5, 4, 4, 3, 3, 2 18
2 7- 9, 6, 5, 5, 4, 3, 3 lo

5- 6, 5-6, 4, 3, 3, 2, 2 7
6- 7, 6-7, 5, 4, 3, 2, 2 8

3* 4 5, 4-5, 3, 3, 2, 2, 2 6
7- 8, 7-8, 5, 4, 3, 2, 2 9
5- 6, 5-6, 3, 3, 2, 2, 2 7
6- 7, 6-7, 4, 3, 3, 2, 2 8

4 6- 7, 4, 4, 3, 3, 3, 1 9
5 8- 9, 7, 6, 5, 5, 3, 3 13
6 10'-.11, 9, 7, 6, 4, 4, 2 16

13-15, 9, 7, 6, 4, 4, 1 17
7* 1 -13, 9, 7, 6, 4, 4, 1 '15

11-13, 7, 6, 5, 4, 4, 1 15
9-11, 7, 6, 5, 4, 4, 1 13

10--11, 9, 8, 5, 3, 2, 2 17
8 -9, 6, 5, 5, 2, 2, 2 12
7- 8, 6, 5, 5, 2, 2, 2 11

8* 9- l0, 7, 6, 5, 2, 2, 2 13
8- 9, 7, 6, 5, 2, 2, 2 12
9, 7 - 8, 5, 5, 3, 2, 2 14
9, 6 - 7, 5, 5, 3, 2, 2 13
9, 8, 6-7, 5, 3, 2, 2 13

* All functions of types 3, 7, and 8 in Table IX are shown here.
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solutions agrees with the structure derived from the optimal
majority structure, by the conversion formula (18).

Six functions of six variables with multiple solutions are
listed in Table VIII. In this table w, is any number in the
range shown. For example, w1 of the first row is any num-
ber between 6 and 7. 314 functions of seven variables
which have multiple optimum solutions are classified into
eight types in Table IX. These fairly crude classifications are
chosen only to demonstrate a few of the general patterns
observed in the list of seven variable functions. For type 1,
w1 may be any number between a and a + 1 where a is the
number determined for each function. W7 = 2, W2 <a,
T=a + 2 for all functions in this type, and x1 X7 is a prime
implicant but X2 X7 is not. For type 3 both w1 and w2 may
be any numbers between a and a+ 1, but not necessarily
W= w2. Type 8 is a miscellany which includes all functions
not belonging to the previous seven types and all functions
of type 8 are shown in Table X. The first function of type 8 in
TableX has w1 which may be any number between 10 and 11
but the threshold is not related in a way as in type 1. Table X
shows some examples of functions of the types of Table IX.
For types 3, 7, and 8, all functions are shown.
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